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m SIMD systems demand structured connectivity
0 Processor-to-processor interaction

0 Processor-to-memory interaction
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Optimization criteria
Connectivity — ideally direct links between any two stations

High number of parallel connections

Cost model
Production cost - # connections

operational cost — distance among PEs

Bus networks, switching networks, point-to-point interconnects
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Interconnection Networks
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m Network Interfaces

0 Processors talk to the network via a network interface
connector (NIC) hardware

o Network interfaces attached to the interconnect
¢ Cluster vs. tightly-coupled multi-computer
o SIMD hardware bundles NIC with the processor
m Switching elements map a fixed number of inputs to outputs
o Total number of ports is the degree of the switch
0 The cost of a switch grows as square of the degree
0 The peripheral hardware grows linearly as the degree
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m A variety of network topologies proposed and implemented
m Each topology has a performance / cost tradeoff
m Commercial machines often implement hybrids
o Optimize packaging and costs
m Metrics for an interconnection network graph
o Diameter: Maximum distance between any two nodes

o Connectivity: Minimum number of edges that must be
removed to get two independent graphs

o Link width / weight: Transfer capacity of an edge

o Bisection width: Minimum transfer capacity given between
any two halves of the graph

o Costs: Number of edges in the network
m Often optimization for connectivity metric
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m Static interconnect technology
m Shared communication path, broadcasting of information
o Diameter: O(1)
o Connectivity: O(1)
o Bisection width: O(1)
o Costs: O(p)
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Optimal #connection per PE: 1
Constant distance among any two PEs

Busvergabe-
steuerung




Crossbar switch
(Kreuzschienenverteiler)

Arbitrary number of
permutations

Collision-free data
exchange

High cost, quadratic
growth

n * (n-1) connection points
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Crossbar Switch
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Multistage Interconnection Networks

m Connection by switching elements

m Typical solution to connect processing and memory elements

m Can implement sorting or shuffling in the network routing

Processors

Multistage interconnection network
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Omega Network

m Inputs are crossed or not, depending on routing logic
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o Destination-tag routing: Use positional bit for switch decision
o XOR-tag routing: Use positional bit of XOR result for decision

m For N PE’s, N/2 switches per stage, log,N stages

m Decrease bottleneck probability on parallel communication
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0 1
Only n/2 log n delta- ¢ ¢

switches :#
Limited cost

Not all possible
permutations
operational in parallel
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Delta Networks operation
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m Stage n checks bit k of -
the destination tag _ n

m Possible effect of \ /
,output port contention’

and ,path contention'




Clos coupling

networks 2
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C.Clos, A Study of Nonblocking Switching Networks,

Bell System Technical Journal, vol. 32, no. 2,
1953, pp. 406-424(19)
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PEs arranged as leafs on a binary tree
Capacity of tree (links) doubles on each layer
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Ring has only two connections per PE (almost optimal)
Fully connected graph — optimal connectivity (but high cost)

Ring vollstandiger Graph
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Compromise between cost and connectivity
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Cubic Mesh

PEs are arranged in a cubic fashion
Each PE has 6 links to neighbors

20



e
Hypercube Ingtitng{

Dimensions 0-4, recursive definition
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Logarithmic cost
Problem of bottleneck at root node
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Logarithmic cost
Uni-directional shuffle network + bi-directional exchange network
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PM 2i — 2*m-1 separate unidirectional interconnection networks
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Systolic Arrays

m Data flow
architecture

m Common clock

m Maximum signal
path restricted by
frequency

m Single faulty
element breaks the
complete array
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Network Diameter Bi\fv?giir?n Conr?ergtivity (No.%?‘sl;[nks)
Completely-connected 1 p?/4 p—1 pp—1)/2
Star 2 1 1 p—1
Complete binary tree 21log((p + 1)/2) 1 1 p—1
Linear array p—1 1 1 p—1
2-D mesh, no wraparound 2(\/3_9 —1) /P 2 2(p — \/@
2-D wraparound mesh 2 L\/}_?/ZJ 2\/5 4 2p
Hypercube log p p/2 logp  (plogp)/2

Wraparound k-ary d-cube d| k/2] 2k4—1 2d dp
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Comparison
Network Diameter Bisection Width C on: ergtivity (N O.CC)C])‘SI;[nkS)
Crossbar 1 p 1 p -
Omega Network ]ng p/2 2 p/2
Dynamic Tree 2 lng 1 2 p— 1




Comparison of networks
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Netzl simuliert | Gitter(2D) PM 2i Shuffie-Exchange  Hypercube
Netz2 -=>

Gitter(2D) — sqrzt(Z) sqre(n) sqgrt(n)
PM 2i 1 — log, n 2
Shuffie-Exchange 2* logyn 2*log:n — log.n+!
Hypercube log-n log,n log,n —
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