Dynamic Aspect-Weaving with .NET

Wolfgang Schult and Andreas Polze
Hasso-Plattner-Institute
14440 Potsdam, Germany
{wolfgang.schult|andreas.polze } @hpi.uni-potsdam.de

September 12, 2002

Abstract

Besides design and implementation of components,
software engineering for component-based systems
has to deal with component integration issues whose
impact is not restricted to separate components but
rather affects the system as a whole. Aspect-oriented
programming (AOP) addresses those cross-cutting,
multi-component concerns. AOP describes system
properties and component interactions in terms of so-
called aspects. Often, aspects express non-functional
component properties, such as resource usage (CPU,
memory, network bandwidth), component and object
(co-) locations, fault-tolerance, timing behavior, or
security settings. Typically, these properties do not
manifest in the components’ functional interfaces.

Like objects, aspects can be used at any stage of
the software lifecycle, including requirements speci-
fication, design, implementation, configuration, and
even run-time. Applicable aspects often constrain the
design space for a given software components. This
may have severe implications on the implementation
of a component, especially if tradeoffs between mul-
tiple, possibly contradicting aspects for same compo-
nent have to be made (e.g.; the fault-tolerance aspect
may require replication of component data, whereas
the security aspect may prohibit it).

Components may be deployed in different contexts,
may be requiring emphasis on only a few of the aspects
considered during design and implementation. Static
interconnection of aspect code and functional code
(aspect weaving) often requires compromises with re-

spect to the the generality of services provided by a
component.

Within this paper, we focus on dynamic manage-
ment of aspect information during program runtime.
We introduce a new approach called ”dynamic aspect
weaving” to interconmect aspect code and functional
code. Using our approach, it is possible to decide
at runtime whether objects living inside a component
should be instantiated with support for a particular
aspect or not. We have implemented our approach in
contezt of the language C# and the Microsoft .NET
environment.

1 Introduction

There exists a variety of application areas for Aspect-
Oriented Programming (AOP). Generally, it is very
acceptable to have a preprocessor-like aspect-weaver
to interconnect functional code and aspect code.
However, sometimes it is desirable to postpone the
decision about whether aspect information is to be
added or not to a particular component until program
runtime. For instance, one may have a huge resource
consuming image processing algorithm located in a
component, and depending on system load and avail-
able computing nodes a trade-off between data distri-
bution, memory allocation scheme, and utilization of
computing power at runtime has to be made and per-
haps one wants to distribute the calculations for bet-
ter performance or one wants to optimize local mem-
ory usage. Both are crosscutting concerns. One may

Call function

Figure 1: Distributing Calculations

define an aspect which distributes invocation of the
components’ functions calls and another aspect which
optimizes local and remote memory utilization during
a distributed computation. Figure 1 illustrates the
situation of a distributed computation. Fagle gets a
request for a service in the component. Depending
on its own utilization, the decision is whether to del-
egate it to the neighbors (Tomcat and Raptor), or
to execute the service locally. However, in the case
of local computation, no aspect information at all is
needed. Emphasis is on service execution with as lit-
tle overhead as possible.

The same with the second aspect. If memory usage
is not of a concern, the aspect can safely be ignored.
At this point, our example identifies a weakness of
traditional approaches to aspect oriented program-
ming. Typically, one has to decide at compile time
whether an aspect should be interwoven with a com-
ponent or not and at the runtime one can neither
‘switch off’ the aspect nor interweave another aspect
with the component.

Within this paper, we present a solution to this
problem and and demonstrate how to interweave pre-
viously defined aspects with functional component
code. This 'Dynamic Weaving’ is promising because

of its flexibility: neither at design nor at compilation
time a definite decision has to be made whether a
particular aspect should be applied to a component.
Aspects specialized for a particular situation can be
defined and can be interwoven depending on actual
runtime requirements. Furthermore one can param-
eterize the aspects during the runtime. We discuss
how all is done without the need of any tool support.
The remainder of the paper is organized as follows:
Section 2 presents related work. Section 3 describes
the dynamic weaving. In Section 4 we demonstrate
a simple case study with the sample described above
and finally, Section 5 summarizes our conclusions.

2 Related Work

The concept of aspect-oriented programming (AOP)
offers an interesting alternative for specification of
non-functional component properties (such as fault-
tolerance properties or timing behavior). There ex-
ists a variety of language extensions to deal with
AOP. One of which, AspectJ [7], a Java extension,
can be cited as a prominent example. The cen-
tral concept of most AOP-frameworks is a joinpoint
model described in [6][4].

Dynamic joinpoints are an extension of the original
AOP model which allow dealing with dynamic infor-
mations during the runtime [5]. A dynamic joinpoint
allows one to define conditions which are compared
during the runtime. Depending on the result the code
may be executed or not.

Mehmet Aksit has developed the composition fil-
ters object model, which provides control over mes-
sages received and sent by an object which provides
control over messages received and sent by an object
[2][1]. In this work, the component language follows
traditional object-oriented programming techniques,
the composition filters mechanism provides an aspect
language that can be used to control a number of as-
pects including synchronization and communication.
Most of the weaving happens during runtime.

The authors have implemented a static aspect
weaver, which uses the unmanaged metadata inter-
faces from .NET to interweave aspect code [11].

A similar approach towards dynamic weaving for

.NET is described in [8]. However, this solution uses
the current internal debug interfaces of the .NET
framework implementation to interweave aspect code
during the runtime and is therefore less general and
portable than our approach.

3 Dynamic Weaving

Dynamic weaving means that a component (a tar-
get class) and an aspect class will become interwo-
ven during runtime. There is no need for the aspect
class to know something about the target class and
vice versa. To understand how the weaving process
works, some notions have to be defined.

3.1 What is an Aspect Class?

An aspect describes crosscutting concerns. In this
case an aspect is a simple class derived from Aspect.
It will be called aspect class. One can define meth-
ods, properties, and members as well. In every case
an aspect class works in conjunction with another in-
stance of a class (the target class). This means, that
it makes no sense to instantiate an aspect class alone.
It has to be instantiated together with a class. This
process is called weaving. It will be described later in
this section.

3.2 Connection Points

As mentioned above, an AspectClass works only in
conjunction with another instance of a class. At a
connection point both will become interwoven. If one
wants to define a method as a connection point, one
simply writes the call attribute above the method
definition in the aspect class. The call attribute is
defined as follows:

[call (Invoke InvokeOrder{, Alias=AliasName})]

If one interweaves a class (target class) with an As-
pectClass each connection point will become interwo-
ven with a target class method if one of the following
requirements are met:

1. The method names and the signature are the
same

2. If there is an AliasName defined and the method
name from the target class is the same as the
alias and - the signature of both are the same

3. If there is an AliasName and the alias contains
a wildcard at the end, or the signature of the
Aspect class method contains wildcards and the
target method fit.

In any case, if a function is interwoven with a
connection point. Requirement 1 is easy, if one
defines a method:
[call(Invoke.Instead)]

void mymethod(int i) { /x ...

x/ }

then every method mymethod with one int as pa-
rameter and void as result will interweave with this

method.
Now, requirement 2 is if one defines
Alias="myspecialmethod” on this method,

only methods named myspecialmethod with an
int parameter and a void return value will become
interwoven.

Requirement basically says that if one modifies the
alias to Alias=""my*” every method beginning with
"my” and the same parameters will become involved.
Furthermore one can use signature wildcards. A
wildcard for the result type is object, and for the
parameters params object[], this is like a method
with variable arguments. But in every case one has
to define an alias. If not params object[] will not
be handled as wildcard. I.e. the following connection
point:

[call(Invoke.Instead, Alias="*")]
object catchall (params object[] args)

will become interwoven with every method in the tar-
get class and args will contain each parameter, one
passes through the method. For instance, if the tar-
get class has a method void f(int i, double d), then
args[0] will contain i and args/1] will contain d after
the method is called.

It has been shown, when a connection point will in-
terweave, now the focus will be on how to interweave.
This is described by the InvokeOrder parameter of
the call attribute. There are three possibilities:

e Invoke.Before: The aspect method of the con-
nection point will be invoked before the object
method will be called.

e Invoke.After: As to be expected, the aspect
method will be invoked after the object method
has been called.

e Invoke.Instead: The object method will not be
called automatically. The aspect method has to
do it.

The first two cases are useful if one wants to trace
method calls only. The last case is to be used in
order to get full control over the method.

3.3 Aspect Context

When one defines an Inwvoke.Instead connection
point, one needs a mechanism to call the appropriate
target class method. The problem is that neither
the type of the target class (the aspect can become
interwoven with any type) nor, in some cases, the
signature of the called method (this is when one
uses signature wildcards) are known. The solution
is to define an Context property in the Aspect base
class. With this property one gets an object of type
AspectContext which has the needed information.
There are two methods defined:

public object Invoke(params object[] args)

public object InvokeOn(object target, params
object[] args)

The first simply invokes the target class method with
the given parameters. With the second, one can in-
voke one’s own instance (target) of the target class.
This is useful if there are special instances of the tar-
get class stored in the aspect, and one wants to invoke
these.

3.4 Implementation Issues

In the sections above it has been described what an
aspect class is, how connection points are defined,
and what object context means. The question is how
to implement it. A language is needed which has the
following requirements:

e 3 way to define attributes

e reflection to analyse the target class and the as-
pect class signature (this means methods and
method parameters)

N4

CreateWovenlinstance

w
)

A

Woven Type
/

Connection Points

Figure 2: The Weaving Process

e last, but not least, a possibility to emit the in-
terwoven class

We implemented our solution in Microsoft .NET be-
cause it fulfills all these requirements. MS .NET is
a framework like Java which provides a runtime en-
vironment to run a system independent code. This
code is present in an intermediate language (IL). Un-
like java, .NET has the capability of working with
a variety of languages. So it has the big advantage
that one gets the ability to interweave an aspect writ-
ten in C4++, with a component written in pascal, for
example.

Now our solution is a library for .NETThis library
provides several classes and attributes defined in the
namespace Aspects:

e Aspect is the base class for all defined aspects

e Weaver is a class which includes the weaving
functionality

e Call is an attribute to define connection points.

e AspectContext accessible via the As-

pect.Instance, to invoke instance methods.

3.5 Dynamic vs. Static Weaving

Most aspect frameworks use a compiler (aspect
weaver) approach. This is fine as long as all system

parameters are well known at compile time. Dynamic
weaving describes a process where a class will become
interwoven with an aspect class during the runtime.

3.6 The Dynamic Aspect Weaver

As described above, the Aspects namespace
contains a class called Weaver. It provides a special
function with which to interweave an AspectClass
with a specified class:
static object Weaver.CreatelInstance(

Type classtype)

static object Weaver.CreatelInstance(
Type classtype,
params object[] args)

static object Weaver.CreatelInstance(
Type classtype,
params object[] args,
Aspect aspect)

static object Weaver.CreatelInstance(
Type classtype,
params object[] args,
Aspect[] aspectarr)

The first and the second version generate an instance
of a class classtype. The objects in arg are the
constuctor parameters for the target class. The last
two versions have an additional parameter aspect
resp. aspectarr where one has to commit an instance
of the AspectClass(es). A possible call would be:
A a=VWeaver.CreateInstance (typeof (), null, new
MyAspect()) as A;

In the first two versions, there is no aspect. This is
when one wants to define the aspect as attribute. The
following lines have the same meaning as the sample
above:

[MyAspect]

class A

{ /f+...%x/ %
[..x/

A a=VWeaver.CreateInstance (typeof(A), ...) as A;

The first way is more flexible. One can determine
the Aspect and its parameters during runtime. First
the weaver looks for a custom attribute derived
from Aspect. If there is no aspect, the call is
the same as new A(args). What happens during

CX

Calculate(...) CY

—

Memory Hard disk

Figure 3: Mandelbrot Function Call

the creation is illustrated in figure 2. The weaver
looks for connection points and tries to join them
with the target class as described above. With this
information, it builds a new type, and creates a
new instance of this type. At the end the method
Aspect.ctor will called. This method is overridable
and has the following form:

virtual void ctor(Weaver weaver, object

target , params object[] args)

e weaver the aspect weaver itself
e target is the new interwoven instance

e args are the constructor parameters

After that, the newly built instance will be returned
to the caller.

4 An Example

Now going back to the situation in the introduction,
listing 1 shows a class which calculates a Mandelbrot
set [9]. The input for the algorithm is a filename, a

bounding box, and the resolution.
public class Mandelbrot
{
const int m_iLimit=255; // calculation limit
public Mandelbrot(){}
// this method calculates the mandelbrot and returns the
// result in matriz
private void InternalCalculate(double x1, double yl1, double
dAddx, double dAddy, int line, ref Byte[] matrix)
{
int iPos=0;
while(iPos<matrix.Length)
{
double dCr=x1;
for(int iPosLine=0;iPosLine<line;iPosLine++)
{
Byte c=0;

double
dZr = 0.0, // real component of Z
dzi = 0.0, // imaginary component of Z
dZiSqr = 0.0, // Zi squared
dZrSqr = 0.0, // Zr squared
dZri; // temporary holder for Zr

while (¢ < m_iLimit && dZiSqr + dZrSqr < 4)
{
dZrl = dZrSqr - dZiSqr + dCr;
dZi = 2 * dZr * dZi + yl;
dZr dZril;
dZiSqr = dZi * dZi;
dZrSqr = dZr * dZr;
++c;
}
if (¢ >= m_iLimit)
matrix[iPos]=0;
else
matrix[iPos]=c;

dCr+=dAddx;
iPos++;

}

yl+=dAddy;

}
// only this method is accessible from outside
// It calls the InternalCalculate function and
// stores the result to the hard disk
public virtual void Calculate(string filename, double x1,
double y1, double x2, double y2, int cx, int cy)
{
double dAddx=(x2-x1)/((double)cx);
double dAddy=(y2-y1)/((double)cy);
// memory allocation and calculate
Byte[] matrix=new Byte[cy*cx];
Calculate(x1,yl,dAddx,dAddy,xRes,ref matrix);
// store the result
FileStream fs=new FileStream(filename, FileMode.Create,
FileAccess.Write);
fs.Write(matrix,0,matrix.Length);
fs.Close();

Listing 1: The Mandelbrot Class

Figure 3 shows what happens: The algorithm first
calculates the whole Mandelbrot set in memory and
then stores it to the hard disk. For small resolutions
this algorithm works well. But what happens if the
resolution is increased? The amount of consuming
memory will increase polynomial (one needs cz*cy
memory storage). A possible solution is to rewrite the
algorithm. But under certain circumstances, there
is not the possibility to do that (i.e. the algorithm
is only as binary available), so another solution is
needed.

4.1

The idea is that the function calls are split so that
only single lines will be written to the hard disk.
After that one can join these files together to the
requested file. Figure 2 shows this approach. This
can be done by an aspect class (it should be left
transparent to the client). Listing 2 shows a possible
implementation of this aspect.

The Save Memory Aspect

Calculate(...) cX

1 Calculate(...) 1T T ITT[TT]

Memory \
2?Calculate(...) 1 [T I ITTITTT1]
Memory ;:

cy" Calculate(...) 1 [TITTTITTTTT]

Memory Hard disk

Figure 4: Function Call with the SaveMemory Aspect

public class SaveMemory:Aspect
{
[Call(Invoke.Instead)] // connection point
public void Calculate(string filename, double x1, double yl1
, double x2, double y2, int xRes, int yRes)
{
// split up in lines
double dStep=(y2-y1)/((double)yRes);
for(int i=0;i<yRes;i++)

// call original function
Context.Invoke(filename+i.ToString(),x1,y1,x2,y1,xRes,1)

yl+=dStep;

}

// join the files together

Byte[]l data=new Byte[xResl;

FileStream fsdst=new FileStream(filename, FileMode.Create

, FileAccess.lWrite);

for(int i=0;i<yRes;i++)

{
FileStream fssrc=new FileStream(filename+i.ToString(),

FileMode.Open, FileAccess.Read);

fssrc.Read(data,0,data.Length) ;
fssrc.Close();
fsdst.Write(data,0,data.Length);

}

fsdst.Close();

}
}

Listing 2: The Save Memory Aspect

As one sees in the aspect class the function calculate
is defined as a connection point. As described in Sec-
tion 3, if the target class contains a function Calculate
with the same signature (and in this case it has) then
both will become interwoven. The for loop simply in-

vokes, via the Aspect Context, the algorithm line by
line. For n lines it will generate n files on the hard
disk. At the end, these n files will become joined to
a new file which was originally requested.

4.2 The Distribution Aspect

The second goal was to distribute the function calls
to several computers. For that problem, too, one can
define an aspect. Figure 5 shows what one has to do:
On every function call one splits the calculation up
and delegates each part to the computers Eagle and
Tomcat'. Both write the result to a central location
(a file Server). The aspect class now gets the result
files and joins them together. Listing 3 shows an
extract.

cv, cv,

InvokeOn(Rapt&)
InvokeOn(Tomcat)

C

hard disk :

distributed file system

Figure 5: Function Call with the Distribution Aspect

public class Distribution:Aspect

{
// instances on remote computers
private object eagle;
private object tomcat;

public override void ctor(Weaver weaver, object o, object
[1 args)

{

/+ Create remote instances for Eagle and Tomcat /

}

// the connection point

[Call(Invoke.Instead, Alias="Calculate")]

public void Distribute(string filename, double x1, double
y1, double x2, double y2, int xRes, int yRes)

// calculate boundaries for both computers
int yRes2=yRes/2;

LAt this point both computer names are hard coded in our
aspect class. However, the algorithm sketched out here can
easily be extended to use dynamically assigned computers. In
fact, this would be an example of the next aspect describing
system configuration.

double yStep=(y2-y1)/((double)yRes);
double yl12=yl+yStep*yRes2;
double y21=y12+yStep;
// Prepare event for async call
AutoResetEvent ev=new AutoResetEvent(false);
workcount=2;
// Queue function calls
System.Threading.ThreadPool.QueueUserWorkItem(
new WaitCallback(Distributing.Calculate),
new WorkItem(this, ev, eagle,temppath+"/eagle.raw",xl,yl
,x2,y12,xRes,yRes2)) ;
System.Threading.ThreadPool.QueueUserWorkItem(
new WaitCallback(Distributing.Claculate),
new WorkItem(this, ev, tomcat,temppath+"/tomcat.raw",x1,
y21,x2,y2,xRes,yRes-yRes2));
// wait until ready
while(workcount!=0) ev.WaitOne();
// join files together
FileStream fsdst=new FileStream(filename, FileMode.Create
, FileAccess.lWrite);
Copy (temppath+"/eagle.raw",fsdst,xRes,yRes2);
Copy (temppath+"/tomcat.raw",fsdst,xRes,yRes-yRes2);
fsdst.Close();

}

VA4

public static void Calculate(object para)
{

WorkItem item=(WorkItem)para;

item.aspect.Context.InvokeOn(item.target, item.filename,
item.x1, item.yl, item.x2, item.y2, item.xRes, item.
yRes);

// ready

item.aspect.workcount--;
item.readyevent.Set();
}
}

Listing 3: The Distribution Aspect

The aspect class here contains three important func-
tions. The first is ctor, which will be called from the
Weaver when the instance is created. It is used to cre-
ate further instances of the same type on which one
can distribute the function calls. The second is Dis-
tribution. This method contains the call attribute,
which defines it as connection point as well. Here the
function calls are we distributed to the instances at
the computers tomcat and eagle. To do that a previ-
ously defined WorkItem is generated and put in a
thread pool. The asynchronous callback will happen
in Calculate where the target class is invoked.

4.3 The Client Side

In the client only the instantiation of the Mandelbrot
class changes. Depending on what is needed one of
both of the aspects will become interwoven to the
class (Listing 4). The function call itself does not
change.

Mandelbrot mb;
// we need less memory usage
if (opt_memory.Checked)
mb=Aspects.Weaver.CreateInstance(typeof (Mandelbrot) ,null,
new SaveMemory()) as Mandelbrot;
// we more performance
else if (opt_speed.Checked)
mb=Aspects.Weaver.CreateInstance(typeof (Mandelbrot) ,null,
new Distributing("d:/temp")) as Mandelbrot;
// we need nothing of both
else mb=new Mandelbrot();

Listing 4: The Client Side

5 Conclusions

Aspect-oriented programming (AOP) is a relatively
new approach for separation of concerns in software
development. AOP makes it possible to modularize
crosscutting aspects of a system.

We have presented our approach to dynamic man-
agement of aspect-information at program runtime.
We have introduced a new approach called ”dynamic
weaving” which allows for late binding (weaving) of
aspect code and functional code. Using our approach,
it is possible to decide at runtime whether a compo-
nent should be instantiated with support for a par-
ticular aspect or not. We have implemented our ap-
proach in context of the language C# and the .NET
environment. Relying on the .NET support for a va-
riety of programming languages, our approach is not
restricted to C#, but works for all of the .NET lan-
guages.

Our current implementation has some constraints
for the programmer of a component. Currently, only
virtual methods can be interwoven dynamically. The
reason for this lies in our implementation of late bind-
ing of the function calls. Currently the Weaver ”over-
rides” the function so that the virtual method table
maintained inside the .NET virtual machine points
to the woven function (the version enriched with as-
pect information). Other members of a class, such as
fields, properties, static, and class functions currently
cannot be accessed this way. However, recursively ap-
plying the AOP techniques described here and in [11],
it is a simple task to generate proxy classes which sub-
stitute non virtual member functions and fields with
their virtual counterparts.

References

[1] M. Aksit and L. Bergmans. Composing multible
concerns using composition filters. Communica-
tions of the ACM, 44, Tssue 10:51-57, Oktober
2001.

[2] M. Aksit and B. Tekinerdogan. Solving the mod-
eling problems of object-oriented languages by
composing multiple aspects using composition
filters. AOP’98 workshop position paper, 1998.

[3] T. Archer. Inside Microsoft C#. Microsoft
Press, 1 edition, 2001.

[4] Aspect] Hompage.
2002.

http://www.aspectj.org/,

[5] K. Gybels. Using a logic language to express
cross-cutting through dynamic joinpoints. In
Second Workshop on Aspect-Oriented Software
Development, Bonn, Germany, February 21-22
2002.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Ker-
sten, J. Palm, and W. G. Griswold. Getting
started with aspectj. Communications of the
ACM, 44, Tssue 10:59-65, October 2001.

[7] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. V. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect oriented programming. In Fu-
ropean Conference on Object-Oriented Program-
ming (ECOOP), Finnland, June 1997. Springer
Verlag LNCS 1241.

[8] J. Lam. http://www.iunknown.com, 2002.

[9] B. Mandelbrot. The Fractal Geometry of Nature.
Freeman, San Francisco, 1982.

[10] Microsoft. Common Language Infrastructure.

Internal Working Document.

[11] W. Schult and A. Polze. Aspect-oriented pro-
gramming with C# and .NET. In Interna-
tional Symposium on Object-oriented Real-time
distributed Computing (ISORC), pages 241-248,

Crystal City, VA, USA, April 29 - May 1 2002.

