
Dynami
 Aspe
t-Weaving with .NET

Wolfgang S
hult and Andreas Polze

Hasso-Plattner-Institute

14440 Potsdam, Germany

fwolfgang.s
hultjandreas.polzeg�hpi.uni-potsdam.de

September 12, 2002

Abstra
t

Besides design and implementation of
omponents,

software engineering for
omponent-based systems

has to deal with
omponent integration issues whose

impa
t is not restri
ted to separate
omponents but

rather a�e
ts the system as a whole. Aspe
t-oriented

programming (AOP) addresses those
ross-
utting,

multi-
omponent
on
erns. AOP des
ribes system

properties and
omponent intera
tions in terms of so-

alled aspe
ts. Often, aspe
ts express non-fun
tional

omponent properties, su
h as resour
e usage (CPU,

memory, network bandwidth),
omponent and obje
t

(
o-) lo
ations, fault-toleran
e, timing behavior, or

se
urity settings. Typi
ally, these properties do not

manifest in the
omponents' fun
tional interfa
es.

Like obje
ts, aspe
ts
an be used at any stage of

the software life
y
le, in
luding requirements spe
i-

�
ation, design, implementation,
on�guration, and

even run-time. Appli
able aspe
ts often
onstrain the

design spa
e for a given software
omponents. This

may have severe impli
ations on the implementation

of a
omponent, espe
ially if tradeo�s between mul-

tiple, possibly
ontradi
ting aspe
ts for same
ompo-

nent have to be made (e.g.; the fault-toleran
e aspe
t

may require repli
ation of
omponent data, whereas

the se
urity aspe
t may prohibit it).

Components may be deployed in di�erent
ontexts,

may be requiring emphasis on only a few of the aspe
ts

onsidered during design and implementation. Stati

inter
onne
tion of aspe
t
ode and fun
tional
ode

(aspe
t weaving) often requires
ompromises with re-

spe
t to the the generality of servi
es provided by a

omponent.

Within this paper, we fo
us on dynami
 manage-

ment of aspe
t information during program runtime.

We introdu
e a new approa
h
alled "dynami
 aspe
t

weaving" to inter
onne
t aspe
t
ode and fun
tional

ode. Using our approa
h, it is possible to de
ide

at runtime whether obje
ts living inside a
omponent

should be instantiated with support for a parti
ular

aspe
t or not. We have implemented our approa
h in

ontext of the language C# and the Mi
rosoft .NET

environment.

1 Introdu
tion

There exists a variety of appli
ation areas for Aspe
t-

Oriented Programming (AOP). Generally, it is very

a

eptable to have a prepro
essor-like aspe
t-weaver

to inter
onne
t fun
tional
ode and aspe
t
ode.

However, sometimes it is desirable to postpone the

de
ision about whether aspe
t information is to be

added or not to a parti
ular
omponent until program

runtime. For instan
e, one may have a huge resour
e

onsuming image pro
essing algorithm lo
ated in a

omponent, and depending on system load and avail-

able
omputing nodes a trade-o� between data distri-

bution, memory allo
ation s
heme, and utilization of

omputing power at runtime has to be made and per-

haps one wants to distribute the
al
ulations for bet-

ter performan
e or one wants to optimize lo
al mem-

ory usage. Both are
ross
utting
on
erns. One may

1

Eagle

Tomcat Raptor

Delegate

Call function

Delegate

Figure 1: Distributing Cal
ulations

de�ne an aspe
t whi
h distributes invo
ation of the

omponents' fun
tions
alls and another aspe
t whi
h

optimizes lo
al and remote memory utilization during

a distributed
omputation. Figure 1 illustrates the

situation of a distributed
omputation. Eagle gets a

request for a servi
e in the
omponent. Depending

on its own utilization, the de
ision is whether to del-

egate it to the neighbors (Tom
at and Raptor), or

to exe
ute the servi
e lo
ally. However, in the
ase

of lo
al
omputation, no aspe
t information at all is

needed. Emphasis is on servi
e exe
ution with as lit-

tle overhead as possible.

The same with the se
ond aspe
t. If memory usage

is not of a
on
ern, the aspe
t
an safely be ignored.

At this point, our example identi�es a weakness of

traditional approa
hes to aspe
t oriented program-

ming. Typi
ally, one has to de
ide at
ompile time

whether an aspe
t should be interwoven with a
om-

ponent or not and at the runtime one
an neither

'swit
h o�' the aspe
t nor interweave another aspe
t

with the
omponent.

Within this paper, we present a solution to this

problem and and demonstrate how to interweave pre-

viously de�ned aspe
ts with fun
tional
omponent

ode. This 'Dynami
 Weaving' is promising be
ause

of its
exibility: neither at design nor at
ompilation

time a de�nite de
ision has to be made whether a

parti
ular aspe
t should be applied to a
omponent.

Aspe
ts spe
ialized for a parti
ular situation
an be

de�ned and
an be interwoven depending on a
tual

runtime requirements. Furthermore one
an param-

eterize the aspe
ts during the runtime. We dis
uss

how all is done without the need of any tool support.

The remainder of the paper is organized as follows:

Se
tion 2 presents related work. Se
tion 3 des
ribes

the dynami
 weaving. In Se
tion 4 we demonstrate

a simple
ase study with the sample des
ribed above

and �nally, Se
tion 5 summarizes our
on
lusions.

2 Related Work

The
on
ept of aspe
t-oriented programming (AOP)

o�ers an interesting alternative for spe
i�
ation of

non-fun
tional
omponent properties (su
h as fault-

toleran
e properties or timing behavior). There ex-

ists a variety of language extensions to deal with

AOP. One of whi
h, Aspe
tJ [7℄, a Java extension,

an be
ited as a prominent example. The
en-

tral
on
ept of most AOP-frameworks is a joinpoint

model des
ribed in [6℄[4℄.

Dynami
 joinpoints are an extension of the original

AOP model whi
h allow dealing with dynami
 infor-

mations during the runtime [5℄. A dynami
 joinpoint

allows one to de�ne
onditions whi
h are
ompared

during the runtime. Depending on the result the
ode

may be exe
uted or not.

Mehmet Aksit has developed the
omposition �l-

ters obje
t model, whi
h provides
ontrol over mes-

sages re
eived and sent by an obje
t whi
h provides

ontrol over messages re
eived and sent by an obje
t

[2℄[1℄. In this work, the
omponent language follows

traditional obje
t-oriented programming te
hniques,

the
omposition �lters me
hanism provides an aspe
t

language that
an be used to
ontrol a number of as-

pe
ts in
luding syn
hronization and
ommuni
ation.

Most of the weaving happens during runtime.

The authors have implemented a stati
 aspe
t

weaver, whi
h uses the unmanaged metadata inter-

fa
es from .NET to interweave aspe
t
ode [11℄.

A similar approa
h towards dynami
 weaving for

2

.NET is des
ribed in [8℄. However, this solution uses

the
urrent internal debug interfa
es of the .NET

framework implementation to interweave aspe
t
ode

during the runtime and is therefore less general and

portable than our approa
h.

3 Dynami
 Weaving

Dynami
 weaving means that a
omponent (a tar-

get
lass) and an aspe
t
lass will be
ome interwo-

ven during runtime. There is no need for the aspe
t

lass to know something about the target
lass and

vi
e versa. To understand how the weaving pro
ess

works, some notions have to be de�ned.

3.1 What is an Aspe
t Class?

An aspe
t des
ribes
ross
utting
on
erns. In this

ase an aspe
t is a simple
lass derived from Aspe
t.

It will be
alled aspe
t
lass. One
an de�ne meth-

ods, properties, and members as well. In every
ase

an aspe
t
lass works in
onjun
tion with another in-

stan
e of a
lass (the target
lass). This means, that

it makes no sense to instantiate an aspe
t
lass alone.

It has to be instantiated together with a
lass. This

pro
ess is
alled weaving. It will be des
ribed later in

this se
tion.

3.2 Conne
tion Points

As mentioned above, an Aspe
tClass works only in

onjun
tion with another instan
e of a
lass. At a

onne
tion point both will be
ome interwoven. If one

wants to de�ne a method as a
onne
tion point, one

simply writes the
all attribute above the method

de�nition in the aspe
t
lass. The
all attribute is

de�ned as follows:

[
all(Invoke InvokeOrder {, Alias=AliasName })℄

If one interweaves a
lass (target
lass) with an As-

pe
tClass ea
h
onne
tion point will be
ome interwo-

ven with a target
lass method if one of the following

requirements are met:

1. The method names and the signature are the

same

2. If there is an AliasName de�ned and the method

name from the target
lass is the same as the

alias and - the signature of both are the same

3. If there is an AliasName and the alias
ontains

a wild
ard at the end, or the signature of the

Aspe
t
lass method
ontains wild
ards and the

target method �t.

In any
ase, if a fun
tion is interwoven with a

onne
tion point. Requirement 1 is easy, if one

de�nes a method:

[
all(Invoke.Instead)℄

void mymethod(int i) { /� ... �/ }

then every method mymethod with one int as pa-

rameter and void as result will interweave with this

method.

Now, requirement 2 is if one de�nes

Alias="myspe
ialmethod" on this method,

only methods named myspe
ialmethod with an

int parameter and a void return value will be
ome

interwoven.

Requirement basi
ally says that if one modi�es the

alias to Alias="my*" every method beginning with

"my" and the same parameters will be
ome involved.

Furthermore one
an use signature wild
ards. A

wild
ard for the result type is obje
t, and for the

parameters params obje
t[℄, this is like a method

with variable arguments. But in every
ase one has

to de�ne an alias. If not params obje
t[℄ will not

be handled as wild
ard. I.e. the following
onne
tion

point:

[
all(Invoke.Instead, Alias="*")℄

obje
t
at
hall(params obje
t[℄ args)

will be
ome interwoven with every method in the tar-

get
lass and args will
ontain ea
h parameter, one

passes through the method. For instan
e, if the tar-

get
lass has a method void f(int i, double d), then

args[0℄ will
ontain i and args[1℄ will
ontain d after

the method is
alled.

It has been shown, when a
onne
tion point will in-

terweave, now the fo
us will be on how to interweave.

This is des
ribed by the InvokeOrder parameter of

the
all attribute. There are three possibilities:

� Invoke.Before: The aspe
t method of the
on-

ne
tion point will be invoked before the obje
t

method will be
alled.

3

� Invoke.After: As to be expe
ted, the aspe
t

method will be invoked after the obje
t method

has been
alled.

� Invoke.Instead: The obje
t method will not be

alled automati
ally. The aspe
t method has to

do it.

The �rst two
ases are useful if one wants to tra
e

method
alls only. The last
ase is to be used in

order to get full
ontrol over the method.

3.3 Aspe
t Context

When one de�nes an Invoke.Instead
onne
tion

point, one needs a me
hanism to
all the appropriate

target
lass method. The problem is that neither

the type of the target
lass (the aspe
t
an be
ome

interwoven with any type) nor, in some
ases, the

signature of the
alled method (this is when one

uses signature wild
ards) are known. The solution

is to de�ne an Context property in the Aspe
t base

lass. With this property one gets an obje
t of type

Aspe
tContext whi
h has the needed information.

There are two methods de�ned:

publi
 obje
t Invoke(params obje
t[℄ args)

publi
 obje
t InvokeOn(obje
t target , params

obje
t[℄ args)

The �rst simply invokes the target
lass method with

the given parameters. With the se
ond, one
an in-

voke one's own instan
e (target) of the target
lass.

This is useful if there are spe
ial instan
es of the tar-

get
lass stored in the aspe
t, and one wants to invoke

these.

3.4 Implementation Issues

In the se
tions above it has been des
ribed what an

aspe
t
lass is, how
onne
tion points are de�ned,

and what obje
t
ontext means. The question is how

to implement it. A language is needed whi
h has the

following requirements:

� a way to de�ne attributes

� re
e
tion to analyse the target
lass and the as-

pe
t
lass signature (this means methods and

method parameters)

TARGET
CLASS

ASPECT
CLASS

CreateWovenInstance

TARGET
CLASS

ASPECT
CLASS

Connection Points

Woven Type

Figure 2: The Weaving Pro
ess

� last, but not least, a possibility to emit the in-

terwoven
lass

We implemented our solution in Mi
rosoft .NET be-

ause it ful�lls all these requirements. MS .NET is

a framework like Java whi
h provides a runtime en-

vironment to run a system independent
ode. This

ode is present in an intermediate language (IL). Un-

like java, .NET has the
apability of working with

a variety of languages. So it has the big advantage

that one gets the ability to interweave an aspe
t writ-

ten in C++, with a
omponent written in pas
al, for

example.

Now our solution is a library for .NET

_

This library

provides several
lasses and attributes de�ned in the

namespa
e Aspe
ts:

� Aspe
t is the base
lass for all de�ned aspe
ts

� Weaver is a
lass whi
h in
ludes the weaving

fun
tionality

� Call is an attribute to de�ne
onne
tion points.

� Aspe
tContext a

essible via the As-

pe
t.Instan
e, to invoke instan
e methods.

3.5 Dynami
 vs. Stati
 Weaving

Most aspe
t frameworks use a
ompiler (aspe
t

weaver) approa
h. This is �ne as long as all system

4

parameters are well known at
ompile time. Dynami

weaving des
ribes a pro
ess where a
lass will be
ome

interwoven with an aspe
t
lass during the runtime.

3.6 The Dynami
 Aspe
t Weaver

As des
ribed above, the Aspe
ts namespa
e

ontains a
lass
alled Weaver. It provides a spe
ial

fun
tion with whi
h to interweave an Aspe
tClass

with a spe
i�ed
lass:

stati
 obje
t Weaver.CreateInstan
e(

Type
lasstype)

stati
 obje
t Weaver.CreateInstan
e(

Type
lasstype ,

params obje
t[℄ args)

stati
 obje
t Weaver.CreateInstan
e(

Type
lasstype ,

params obje
t[℄ args ,

Aspe
t aspe
t)

stati
 obje
t Weaver.CreateInstan
e(

Type
lasstype ,

params obje
t[℄ args ,

Aspe
t[℄ aspe
tarr)

The �rst and the se
ond version generate an instan
e

of a
lass
lasstype. The obje
ts in arg are the

onstu
tor parameters for the target
lass. The last

two versions have an additional parameter aspe
t

resp. aspe
tarr where one has to
ommit an instan
e

of the Aspe
tClass(es). A possible
all would be:

A a=Weaver.CreateInstan
e(typeof(A), null, new

MyAspe
t()) as A;

In the �rst two versions, there is no aspe
t. This is

when one wants to de�ne the aspe
t as attribute. The

following lines have the same meaning as the sample

above:

[MyAspe
t℄

lass A

{ /� ... �/ }

/� ... �/

A a=Weaver.CreateInstan
e(typeof(A), ...) as A;

The �rst way is more
exible. One
an determine

the Aspe
t and its parameters during runtime. First

the weaver looks for a
ustom attribute derived

from Aspe
t. If there is no aspe
t, the
all is

the same as new A(args). What happens during

CX

CY

Memory Hard disk

Calculate(...)

Figure 3: Mandelbrot Fun
tion Call

the
reation is illustrated in �gure 2. The weaver

looks for
onne
tion points and tries to join them

with the target
lass as des
ribed above. With this

information, it builds a new type, and
reates a

new instan
e of this type. At the end the method

Aspe
t.
tor will
alled. This method is overridable

and has the following form:

virtual void
tor(Weaver weaver , obje
t

target , params obje
t[℄ args)

� weaver the aspe
t weaver itself

� target is the new interwoven instan
e

� args are the
onstru
tor parameters

After that, the newly built instan
e will be returned

to the
aller.

4 An Example

Now going ba
k to the situation in the introdu
tion,

listing 1 shows a
lass whi
h
al
ulates a Mandelbrot

set [9℄. The input for the algorithm is a �lename, a

bounding box, and the resolution.

publi

lass Mandelbrot

{

onst int m_iLimit=255; //
al
ulation limit

publi
 Mandelbrot(){}

// this method
al
ulates the mandelbrot and returns the

// result in matrix

private void InternalCal
ulate(double x1, double y1, double

dAddx, double dAddy, int line, ref Byte[℄ matrix)

{

int iPos=0;

while(iPos<matrix.Length)

{

double dCr=x1;

for(int iPosLine=0;iPosLine<line;iPosLine++)

{

Byte
=0;

5

double

dZr = 0.0, // real
omponent of Z

dZi = 0.0, // imaginary
omponent of Z

dZiSqr = 0.0, // Zi squared

dZrSqr = 0.0, // Zr squared

dZr1; // temporary holder for Zr

while (
 < m_iLimit && dZiSqr + dZrSqr < 4)

{

dZr1 = dZrSqr - dZiSqr + dCr;

dZi = 2 * dZr * dZi + y1;

dZr = dZr1;

dZiSqr = dZi * dZi;

dZrSqr = dZr * dZr;

++
;

}

if (
 >= m_iLimit)

matrix[iPos℄=0;

else

matrix[iPos℄=
;

dCr+=dAddx;

iPos++;

}

y1+=dAddy;

}

}

// only this method is a

essible from outside

// It
alls the InternalCal
ulate fun
tion and

// stores the result to the hard disk

publi
 virtual void Cal
ulate(string filename, double x1,

double y1, double x2, double y2, int
x, int
y)

{

double dAddx=(x2-x1)/((double)
x);

double dAddy=(y2-y1)/((double)
y);

// memory allo
ation and
al
ulate

Byte[℄ matrix=new Byte[
y*
x℄;

Cal
ulate(x1,y1,dAddx,dAddy,xRes,ref matrix);

// store the result

FileStream fs=new FileStream(filename, FileMode.Create,

FileA

ess.Write);

fs.Write(matrix,0,matrix.Length);

fs.Close();

}

}

Listing 1: The Mandelbrot Class

Figure 3 shows what happens: The algorithm �rst

al
ulates the whole Mandelbrot set in memory and

then stores it to the hard disk. For small resolutions

this algorithm works well. But what happens if the

resolution is in
reased? The amount of
onsuming

memory will in
rease polynomial (one needs
x*
y

memory storage). A possible solution is to rewrite the

algorithm. But under
ertain
ir
umstan
es, there

is not the possibility to do that (i.e. the algorithm

is only as binary available), so another solution is

needed.

4.1 The Save Memory Aspe
t

The idea is that the fun
tion
alls are split so that

only single lines will be written to the hard disk.

After that one
an join these �les together to the

requested �le. Figure 2 shows this approa
h. This

an be done by an aspe
t
lass (it should be left

transparent to the
lient). Listing 2 shows a possible

implementation of this aspe
t.

CX

Hard disk

Memory

1

Memory

1

Memory

1

...

Calculate(...)

Calculate(...)

Calculate(...)

Calculate(...)1
st

2
nd

CY
th

Figure 4: Fun
tion Call with the SaveMemory Aspe
t

publi

lass SaveMemory:Aspe
t

{

[Call(Invoke.Instead)℄ //
onne
tion point

publi
 void Cal
ulate(string filename, double x1, double y1

, double x2, double y2, int xRes, int yRes)

{

// split up in lines

double dStep=(y2-y1)/((double)yRes);

for(int i=0;i<yRes;i++)

{

//
all original fun
tion

Context.Invoke(filename+i.ToString(),x1,y1,x2,y1,xRes,1)

;

y1+=dStep;

}

// join the �les together

Byte[℄ data=new Byte[xRes℄;

FileStream fsdst=new FileStream(filename, FileMode.Create

, FileA

ess.Write);

for(int i=0;i<yRes;i++)

{

FileStream fssr
=new FileStream(filename+i.ToString(),

FileMode.Open, FileA

ess.Read);

fssr
.Read(data,0,data.Length);

fssr
.Close();

fsdst.Write(data,0,data.Length);

}

fsdst.Close();

}

}

Listing 2: The Save Memory Aspe
t

As one sees in the aspe
t
lass the fun
tion
al
ulate

is de�ned as a
onne
tion point. As des
ribed in Se
-

tion 3, if the target
lass
ontains a fun
tion Cal
ulate

with the same signature (and in this
ase it has) then

both will be
ome interwoven. The for loop simply in-

6

vokes, via the Aspe
t Context, the algorithm line by

line. For n lines it will generate n �les on the hard

disk. At the end, these n �les will be
ome joined to

a new �le whi
h was originally requested.

4.2 The Distribution Aspe
t

The se
ond goal was to distribute the fun
tion
alls

to several
omputers. For that problem, too, one
an

de�ne an aspe
t. Figure 5 shows what one has to do:

On every fun
tion
all one splits the
al
ulation up

and delegates ea
h part to the
omputers Eagle and

Tom
at

1

. Both write the result to a
entral lo
ation

(a �le Server). The aspe
t
lass now gets the result

�les and joins them together. Listing 3 shows an

extra
t.

CX

CY1

Memory

Calculate(...)

Calculate(...)

Tomcat

Falcon hard disk

CX

CY2

Memory

Calculate(...)

Raptor

InvokeOn(Raptor)
InvokeOn(Tomcat)

distributed file system

Figure 5: Fun
tion Call with the Distribution Aspe
t

publi

lass Distribution:Aspe
t

{

// instan
es on remote
omputers

private obje
t eagle;

private obje
t tom
at;

publi
 override void
tor(Weaver weaver, obje
t o, obje
t

[℄ args)

{

/� Create remote instan
es for Eagle and Tom
at �/

}

// the
onne
tion point

[Call(Invoke.Instead, Alias="Cal
ulate")℄

publi
 void Distribute(string filename, double x1, double

y1, double x2, double y2, int xRes, int yRes)

{

//
al
ulate boundaries for both
omputers

int yRes2=yRes/2;

1

At this point both
omputer names are hard
oded in our

aspe
t
lass. However, the algorithm sket
hed out here
an

easily be extended to use dynami
ally assigned
omputers. In

fa
t, this would be an example of the next aspe
t des
ribing

system
on�guration.

double yStep=(y2-y1)/((double)yRes);

double y12=y1+yStep*yRes2;

double y21=y12+yStep;

// Prepare event for asyn

all

AutoResetEvent ev=new AutoResetEvent(false);

work
ount=2;

// Queue fun
tion
alls

System.Threading.ThreadPool.QueueUserWorkItem(

new WaitCallba
k(Distributing.Cal
ulate),

new WorkItem(this, ev, eagle,temppath+"/eagle.raw",x1,y1

,x2,y12,xRes,yRes2));

System.Threading.ThreadPool.QueueUserWorkItem(

new WaitCallba
k(Distributing.Cla
ulate),

new WorkItem(this, ev, tom
at,temppath+"/tom
at.raw",x1,

y21,x2,y2,xRes,yRes-yRes2));

// wait until ready

while(work
ount!=0) ev.WaitOne();

// join �les together

FileStream fsdst=new FileStream(filename, FileMode.Create

, FileA

ess.Write);

Copy(temppath+"/eagle.raw",fsdst,xRes,yRes2);

Copy(temppath+"/tom
at.raw",fsdst,xRes,yRes-yRes2);

fsdst.Close();

}

/� ... �/

publi
 stati
 void Cal
ulate(obje
t para)

{

WorkItem item=(WorkItem)para;

item.aspe
t.Context.InvokeOn(item.target, item.filename,

item.x1, item.y1, item.x2, item.y2, item.xRes, item.

yRes);

// ready

item.aspe
t.work
ount--;

item.readyevent.Set();

}

}

Listing 3: The Distribution Aspe
t

The aspe
t
lass here
ontains three important fun
-

tions. The �rst is
tor, whi
h will be
alled from the

Weaver when the instan
e is
reated. It is used to
re-

ate further instan
es of the same type on whi
h one

an distribute the fun
tion
alls. The se
ond is Dis-

tribution. This method
ontains the
all attribute,

whi
h de�nes it as
onne
tion point as well. Here the

fun
tion
alls are we distributed to the instan
es at

the
omputers tom
at and eagle. To do that a previ-

ously de�ned WorkItem is generated and put in a

thread pool. The asyn
hronous
allba
k will happen

in Cal
ulate where the target
lass is invoked.

4.3 The Client Side

In the
lient only the instantiation of the Mandelbrot

lass
hanges. Depending on what is needed one of

both of the aspe
ts will be
ome interwoven to the

lass (Listing 4). The fun
tion
all itself does not

hange.

7

Mandelbrot mb;

// we need less memory usage

if(opt_memory.Che
ked)

mb=Aspe
ts.Weaver.CreateInstan
e(typeof(Mandelbrot),null,

new SaveMemory()) as Mandelbrot;

// we more performan
e

else if(opt_speed.Che
ked)

mb=Aspe
ts.Weaver.CreateInstan
e(typeof(Mandelbrot),null,

new Distributing("d:/temp")) as Mandelbrot;

// we need nothing of both

else mb=new Mandelbrot();

Listing 4: The Client Side

5 Con
lusions

Aspe
t-oriented programming (AOP) is a relatively

new approa
h for separation of
on
erns in software

development. AOP makes it possible to modularize

ross
utting aspe
ts of a system.

We have presented our approa
h to dynami
 man-

agement of aspe
t-information at program runtime.

We have introdu
ed a new approa
h
alled "dynami

weaving" whi
h allows for late binding (weaving) of

aspe
t
ode and fun
tional
ode. Using our approa
h,

it is possible to de
ide at runtime whether a
ompo-

nent should be instantiated with support for a par-

ti
ular aspe
t or not. We have implemented our ap-

proa
h in
ontext of the language C# and the .NET

environment. Relying on the .NET support for a va-

riety of programming languages, our approa
h is not

restri
ted to C#, but works for all of the .NET lan-

guages.

Our
urrent implementation has some
onstraints

for the programmer of a
omponent. Currently, only

virtual methods
an be interwoven dynami
ally. The

reason for this lies in our implementation of late bind-

ing of the fun
tion
alls. Currently the Weaver "over-

rides" the fun
tion so that the virtual method table

maintained inside the .NET virtual ma
hine points

to the woven fun
tion (the version enri
hed with as-

pe
t information). Other members of a
lass, su
h as

�elds, properties, stati
, and
lass fun
tions
urrently

annot be a

essed this way. However, re
ursively ap-

plying the AOP te
hniques des
ribed here and in [11℄,

it is a simple task to generate proxy
lasses whi
h sub-

stitute non virtual member fun
tions and �elds with

their virtual
ounterparts.

Referen
es

[1℄ M. Aksit and L. Bergmans. Composing multible

on
erns using
omposition �lters. Communi
a-

tions of the ACM, 44, Issue 10:51{57, Oktober

2001.

[2℄ M. Aksit and B. Tekinerdogan. Solving the mod-

eling problems of obje
t-oriented languages by

omposing multiple aspe
ts using
omposition

�lters. AOP'98 workshop position paper, 1998.

[3℄ T. Ar
her. Inside Mi
rosoft C#. Mi
rosoft

Press, 1 edition, 2001.

[4℄ Aspe
tJ Hompage. http://www.aspe
tj.org/,

2002.

[5℄ K. Gybels. Using a logi
 language to express

ross-
utting through dynami
 joinpoints. In

Se
ond Workshop on Aspe
t-Oriented Software

Development, Bonn, Germany, February 21-22

2002.

[6℄ G. Ki
zales, E. Hilsdale, J. Hugunin, M. Ker-

sten, J. Palm, and W. G. Griswold. Getting

started with aspe
tj. Communi
ations of the

ACM, 44, Issue 10:59{65, O
tober 2001.

[7℄ G. Ki
zales, J. Lamping, A. Mendhekar,

C. Maeda, C. V. Lopes, J.-M. Loingtier, and

J. Irwin. Aspe
t oriented programming. In Eu-

ropean Conferen
e on Obje
t-Oriented Program-

ming (ECOOP), Finnland, June 1997. Springer

Verlag LNCS 1241.

[8℄ J. Lam. http://www.iunknown.
om, 2002.

[9℄ B. Mandelbrot. The Fra
tal Geometry of Nature.

Freeman, San Fran
is
o, 1982.

[10℄ Mi
rosoft. Common Language Infrastru
ture.

Internal Working Do
ument.

[11℄ W. S
hult and A. Polze. Aspe
t-oriented pro-

gramming with C# and .NET. In Interna-

tional Symposium on Obje
t-oriented Real-time

distributed Computing (ISORC), pages 241{248,

Crystal City, VA, USA, April 29 - May 1 2002.

8

