
Highly-Available Applications on
Unreliable Infrastructure:
Microservice Architectures in Practice

Daniel Richter, Marcus Konrad, Katharina Utecht,
and Andreas Polze

Operating Systems & Middleware Group
Hasso Plattner Institute at University of Potsdam, Germany

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 20172

Motivation

▪ EPA – the legacy system
▪ reserve and book train seats operated by

Deutsche Bahn (German railway)

▪ 1 mio seat requests & 300,000 bookings

▪ first version: 1980s

▪ set of Pathway Services as part of HP NonStop system

▪ especially fault-tolerant and highly-available

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 20173

Motivation

but: difficult to adapt to new, unknown needs

▪ technological constraints
▪ programming languages: C, C++, Cobol, Java

▪ DBMS: Enscribe, SQL/MPm, SQL/MX

▪ specialized hardware
▪ tied to HP NonStop system

▪ long update cycles
▪ possibly multiple months

Highly-Available Applications on Unreliable
Infrastructure…

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 20174

Motivation

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 20175

Motivation

…Microservices in Practice

▪ small, independent, autonomous services

▪ small, specific range of features

▪ encapsulates all its functions and data

▪ cooperation with other microservices (usually
ReST & message queues)

▪DevOps

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 20176

Motivation

Aim: evaluate general properties of a microservice
and its dependability compared to the legacy
system

1. Benefits & Drawbacks of MSAs

2. Implementing a Seat Reservation System based
on Microservices
▪ Requirements, Definition of Domains

3. Operation of Microservice Architectures
▪ Containerization with Docker, Message-Driven

Communication Middleware

4. Evaluation: Dependability & Fault Tolerance

Benefits and Drawbacks of
Microservice Architectures
introduction of self-contained services that deliver,
combined, the same functionality as the original system

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter7

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 20178

Benefits and Drawbacks of Microservice Architectures

Advantages

▪ small and independent services
▪ classification of domains

▪ decoupling & explicit separation of features

▪ free choice of technology
▪ use the technology that fits the needs best

▪ functionality and data

▪ scalability
▪ designed for horizontal scaling – multiple instances

▪ requires stateless services

▪ hardware independence
▪ usually self-contained virtual machines

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 20179

Benefits and Drawbacks of Microservice Architectures

Advantages

▪ replaceability & versioning
▪ loose coupling among microservices

▪ independent testing & deployment

▪ redundancy: multiple versions at the same time

▪ automation
▪ many steps for operation only differ in some minor

configuration options

▪DevOps
▪ one single team involved in development (design,

implementation, testing, deployment, maintenance)
and architectural layers (frontend, backend, database)

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201710

Benefits and Drawbacks of Microservice Architectures

Disadvantages

▪ complexity
▪ from implementation to execution environment

▪ provisioning & orchestration of many services

▪monitoring
▪ service vs. container vs. infrastructure

▪ testing
▪ single service vs. combined services, communication

▪ communication overhead
▪ inter-process & remote

▪ consistency
▪ shared data across service boundaries

Implementing a
Seat Reservation System
based on Microservices
modularization into self-contained subsystems with
free choice of technology

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter11

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201712

Implementing a Seat Reservation System with Microservices

Requirements

▪ functional:
▪ display available seats, book a seat reservation,

overview of existing bookings

▪ non-functional
▪ consistency, scalability & efficiency, load balancing,

portability, deployment & maintainability,
changeability, replacement & versioning, interfaces

▪ fault tolerance
▪ tolerate failure of several service instances, virtual machines,

or infrastructure components

▪ asynchronous communication between services

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201713

Implementing a Seat Reservation System with Microservices

Definition of Domains

partitioning into functionally connected domains,
each domain contains self-contained services with
limited scope of operation

▪ Seat Management Domain

▪ Seat Overview Domain

▪ Booking Domain

▪ Customer Management Domain

▪ Price Computation Domain

▪ Front-end

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201714

Implementing a Seat Reservation System with Microservices

Definition of Domains

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201715

Implementing a Seat Reservation System with Microservices

Domains + Booking Process

Operation of
Microservice Architectures
after their implementation, the microservices, their
databases, and the front-end have to be deployed
into self-contained environments

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter16

Operation of Microservice Architectures

Execution Environment

requirements: portability, load balancing,
fault tolerance, maintainability

▪ virtualized infrastructure
▪ AWS/EC2 Ubuntu 14.4

▪ containerization with Docker 1.11

▪ Docker Compose

▪ Docker Swarm

▪ Overlay Network

▪message-driven communication middleware
▪ RabbitMQ 3.6.2

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201717

Operation of Microservice Architectures

Execution Environment

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201718

Operation of Microservice Architectures

Execution Environment

▪ services for seat reservation
▪ Java 8

▪ Spring Boot 1.3

▪ MySQL 5.7

▪ Redis 3.2

▪ Cassandra 3.4

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201719

Operation of Microservice Architectures

Basic Set-Up of a Microservice

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201720

Evaluation
modularized software system consisting of
self-contained services published as containers and
executed as multiple redundant instances

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter21

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201722

Evaluation

Recap: Requirements

▪ functional:
▪ display available seats, book a seat reservation,

overview of existing bookings

▪ non-functional
▪ consistency, scalability & efficiency, load balancing,

portability, deployment & maintainability,
changeability, replacement & versioning, interfaces

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201723

Evaluation

Dependability & Fault-Tolerance

▪ instead of relying on specialized (and expensive)
highly-available infrastructure:
modularize the software system into self-
contained services published as containers and
execution as multiple redundant instances

Redundancy

▪ replicas of services, containers, virtual machines

▪ communication middleware

▪ service logic and databases

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201724

Evaluation: Dependability & Fault Tolerance

Replicas of…

…services, containers, and virtual machines

▪Overlay Network
▪ uniform host name, arbitrary number of replicas

▪ if service instance, RabbitMQ server, or even EC2
instance fails – redirect to another instance

▪Docker Swarm
▪ “High Availability” feature: primary manager instance

+ multiple replica that will take over

▪ data storage (etcd, Consul) can be scaled and
connected

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201725

Evaluation: Dependability & Fault Tolerance

Replicas of…

…services, containers, and virtual machines

▪ services
▪ state-less (state is stored into domain’s database)

▪ can be replaced by other instances

▪messages
▪ distributed among all RabbitMQ servers

▪ conflict-free merging of message nodes (via master-
node)

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201726

Evaluation: Dependability & Fault Tolerance

Communication Middleware

▪message queue is one of the most important
parts of the architecture

▪ tolerated faults: network failure, RabbitMQ server
fault, infrastructure failure, malformed messages

▪ clients can connect do different RabbitMQ
servers

▪ virtual hosts, exchanges, and message queues are
synchronized between servers by default

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201727

Evaluation: Dependability & Fault Tolerance

Service Logic & Databases

▪ services are state-less – the critical part is the
database

▪ use relaxed consistency guarantees (e.g. NoSQL)
▪ Cassandra with multiple replicas

▪ MySQL in master-slave-replication mode

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201728

Conclusion

▪ prototypical architecture and implementation

▪ freedom to choose any technology is bigger than
before; several tools and frameworks for
execution environment. but: tied to Docker

▪ no hardware dependency – fully virtualized
infrastructure by AWS

▪ bring service modifications into production within
minutes; architectural changes last a few days

▪ experience for multiple tools have to be gained;
tools, libraries, and frameworks are still in
development and change quickly

Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 201729

Conclusion

The results show a potential for microservice
architectures and the possibility for flexible
implementation, deployment, and advancement of
services. In terms of non-functional requirements,
the is no evidence that the new solution perform
better, though.

We would like to thank Lena Feinbube, Maxi Fischer, Jonas
Bounama, Nils Hennings, Timo Traulsen, Henry Hübler, Dr.
Stephan Gerberding, Dr. Clements Gantert, Wolfgang
Schwab, and Ingo Schwarzer for their support and
assistance with this project.

