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Motivation

▪ EPA – the legacy system
▪ reserve and book train seats operated by

Deutsche Bahn (German railway)

▪ 1 mio seat requests & 300,000 bookings

▪ first version: 1980s

▪ set of Pathway Services as part of HP NonStop system

▪ especially fault-tolerant and highly-available
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Motivation

but: difficult to adapt to new, unknown needs

▪ technological constraints
▪ programming languages: C, C++, Cobol, Java

▪ DBMS: Enscribe, SQL/MPm, SQL/MX

▪ specialized hardware
▪ tied to HP NonStop system

▪ long update cycles
▪ possibly multiple months

Highly-Available Applications on Unreliable 
Infrastructure…
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Motivation
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Motivation

…Microservices in Practice

▪ small, independent, autonomous services

▪ small, specific range of features

▪ encapsulates all its functions and data

▪ cooperation with other microservices (usually 
ReST & message queues)

▪DevOps



Highly-Available Applications on Unreliable Infrastructure: Microservices in Practice | QRS 2017 | Daniel Richter | 28. Aug 20176

Motivation

Aim: evaluate general properties of a microservice 
and its dependability compared to the legacy 
system

1. Benefits & Drawbacks of MSAs

2. Implementing a Seat Reservation System based 
on Microservices
▪ Requirements, Definition of Domains

3. Operation of Microservice Architectures
▪ Containerization with Docker, Message-Driven 

Communication Middleware

4. Evaluation: Dependability & Fault Tolerance



Benefits and Drawbacks of 
Microservice Architectures
introduction of self-contained services that deliver, 
combined, the same functionality as the original system
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Benefits and Drawbacks of Microservice Architectures

Advantages

▪ small and independent services
▪ classification of domains

▪ decoupling & explicit separation of features

▪ free choice of technology
▪ use the technology that fits the needs best

▪ functionality and data

▪ scalability
▪ designed for horizontal scaling – multiple instances

▪ requires stateless services

▪ hardware independence
▪ usually self-contained virtual machines
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Benefits and Drawbacks of Microservice Architectures

Advantages

▪ replaceability & versioning
▪ loose coupling among microservices

▪ independent testing & deployment

▪ redundancy: multiple versions at the same time

▪ automation
▪ many steps for operation only differ in some minor 

configuration options

▪DevOps
▪ one single team involved in development (design, 

implementation, testing, deployment, maintenance)
and architectural layers (frontend, backend, database)
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Benefits and Drawbacks of Microservice Architectures

Disadvantages

▪ complexity
▪ from implementation to execution environment

▪ provisioning & orchestration of many services

▪monitoring
▪ service vs. container vs. infrastructure

▪ testing
▪ single service vs. combined services, communication

▪ communication overhead
▪ inter-process & remote

▪ consistency
▪ shared data across service boundaries



Implementing a 
Seat Reservation System 
based on Microservices
modularization into self-contained subsystems with 
free choice of technology
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Implementing a Seat Reservation System with Microservices

Requirements

▪ functional:
▪ display available seats, book a seat reservation, 

overview of existing bookings

▪ non-functional
▪ consistency, scalability & efficiency, load balancing, 

portability, deployment & maintainability, 
changeability, replacement & versioning, interfaces

▪ fault tolerance
▪ tolerate failure of several service instances, virtual machines, 

or infrastructure components

▪ asynchronous communication between services
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Implementing a Seat Reservation System with Microservices

Definition of Domains

partitioning into functionally connected domains,
each domain contains self-contained services with 
limited scope of operation

▪ Seat Management Domain

▪ Seat Overview Domain

▪ Booking Domain

▪ Customer Management Domain

▪ Price Computation Domain

▪ Front-end
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Implementing a Seat Reservation System with Microservices

Definition of Domains
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Implementing a Seat Reservation System with Microservices

Domains + Booking Process



Operation of 
Microservice Architectures
after their implementation, the microservices, their 
databases, and the front-end have to be deployed 
into self-contained environments
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Operation of Microservice Architectures

Execution Environment

requirements: portability, load balancing, 
fault tolerance, maintainability

▪ virtualized infrastructure
▪ AWS/EC2 Ubuntu 14.4

▪ containerization with Docker 1.11

▪ Docker Compose

▪ Docker Swarm

▪ Overlay Network 

▪message-driven communication middleware
▪ RabbitMQ 3.6.2
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Operation of Microservice Architectures

Execution Environment
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Operation of Microservice Architectures

Execution Environment

▪ services for seat reservation
▪ Java 8

▪ Spring Boot 1.3

▪ MySQL 5.7

▪ Redis 3.2

▪ Cassandra 3.4
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Operation of Microservice Architectures

Basic Set-Up of a Microservice 
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Evaluation
modularized software system consisting of 
self-contained services published as containers and 
executed as multiple redundant instances
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Evaluation

Recap: Requirements

▪ functional:
▪ display available seats, book a seat reservation, 

overview of existing bookings

▪ non-functional
▪ consistency, scalability & efficiency, load balancing, 

portability, deployment & maintainability, 
changeability, replacement & versioning, interfaces
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Evaluation

Dependability & Fault-Tolerance

▪ instead of relying on specialized (and expensive) 
highly-available infrastructure:
modularize the software system into self-
contained services published as containers and 
execution as multiple redundant instances

Redundancy

▪ replicas of services, containers, virtual machines

▪ communication middleware

▪ service logic and databases
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Evaluation: Dependability & Fault Tolerance

Replicas of…

…services, containers, and virtual machines

▪Overlay Network
▪ uniform host name, arbitrary number of replicas

▪ if service instance, RabbitMQ server, or even EC2 
instance fails – redirect to another instance

▪Docker Swarm
▪ “High Availability” feature: primary manager instance 

+ multiple replica that will take over

▪ data storage (etcd, Consul) can be scaled and 
connected
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Evaluation: Dependability & Fault Tolerance

Replicas of…

…services, containers, and virtual machines

▪ services
▪ state-less (state is stored into domain’s database)

▪ can be replaced by other instances

▪messages
▪ distributed among all RabbitMQ servers

▪ conflict-free merging of message nodes (via master-
node)
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Evaluation: Dependability & Fault Tolerance

Communication Middleware

▪message queue is one of the most important 
parts of the architecture

▪ tolerated faults: network failure, RabbitMQ server 
fault, infrastructure failure, malformed messages

▪ clients can connect do different RabbitMQ
servers

▪ virtual hosts, exchanges, and message queues are 
synchronized between servers by default
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Evaluation: Dependability & Fault Tolerance

Service Logic & Databases

▪ services are state-less – the critical part is the 
database

▪ use relaxed consistency guarantees (e.g. NoSQL)
▪ Cassandra with multiple replicas

▪ MySQL in master-slave-replication mode
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Conclusion

▪ prototypical architecture and implementation

▪ freedom to choose any technology is bigger than 
before; several tools and frameworks for 
execution environment. but: tied to Docker

▪ no hardware dependency – fully virtualized 
infrastructure by AWS

▪ bring service modifications into production within 
minutes; architectural changes last a few days

▪ experience for multiple tools have to be gained; 
tools, libraries, and frameworks are still in 
development and change quickly
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Conclusion

The results show a potential for microservice 
architectures and the possibility for flexible 
implementation, deployment, and advancement of 
services. In terms of non-functional requirements, 
the is no evidence that the new solution perform 
better, though.
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