
A Cache-Stall Driven CPU Frequency Governor for Linux∗

Erik Griese1, Leon Matthes1, Maximilian Stiede1, Sven Köhler2, Lukas Wenzel2
Hasso Plattner Institute, Potsdam

1{firstname.lastname}@student.hpi.de 2{firstname.lastname}@hpi.de

ABSTRACT
Energy efficiency is a key concern in the operation of today’s com-
puter systems. An operating system needs to carefully control the
CPU frequencies over several clock domains. The default Linux
frequency governor SchedUtil [1] can be found to enforce the high-
est possible frequency for systems at full load. However, previous
research has shown a strong relationship between data dependency
and wasted energy [3], as ever faster clocked processing units tend
to idle at high clock rates, while data is not yet available from the
slower memory subsystem. Deep cache hierarchies and prefetchers
mitigate these effects, but only for access patterns with sufficient
locality and predictability.

To improve the energy efficiency, we propose StallGov, a Linux
CPU frequency governor based on hardware performance measure-
ment counters (PMCs). These counters are special purpose registers
providing low-overhead runtime measurements of microarchitec-
tural hardware events. StallGov estimates the data throughput of the
cache hierarchy resulting from the access patterns of the currently
running CPU process. In response, it makes dynamic voltage and
frequency scaling decisions to minimize the energy consumption
during cycles when the CPU experiences a memory stall. Earlier
approaches to adapt the CPU clock speed for different workloads
typically required a priori knowledge about the executed programs.
We investigate which PMCs best serve as heuristics at runtime and
evaluate the impact of our implementation on both energy demand
and execution time.

Implementation. Wewrote StallGov, a CPUFreq governor for
Linux, tested with kernel version 5.15 and above on recent Intel and
AMD CPUs. While our implementation is a self-contained module,
we require a minor change to the vanilla Linux kernel: namely,
the export of the perf_read_local function to allow access to
hardware counters from anywhere in the kernel. For now, our
prototype features a local copy of this function.

We provide normal (with an update thread) and fast frequency
switching (without), with the prospect of p-state switching, although
this would currently limit us to Intel CPUs at the time of writing.
An update hook, called periodically by the kernel scheduler every 5
to 10 ms, polls the PMCs and uses a simple linear interpolation of
the observed min/max values to scale the frequency. The advantage
of linear scaling is that it allows for a very lightweight and simple
implementation, compared to SchedUtil.

PMC Selection. To answer which hardware counters provide
a heuristic for which tasks might benefit from a reduced clock
speed, we first need to capture PMCs for later investigation and to
determine the min/max values. To that end, we record PMC events
at 5 ms resolution into a ring buffer, which is exposed through the
Linux debugfs to and logged from userspace every 10 s.

∗This poster abstract was accepted at the 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’23), Poster Session.

On our three test systems (Intel Core 6700HQ, 10510U, and AMD
Ryzen 9 5900X) we compared 12 combinations of 21 counters—
captured with both, one core only, and all cores. The five NAS
Parallel Benchmark suite kernels (NPB), version 3.4.1 with OpenMP,
serve as workload. We found an increased core frequency no longer
improves performance when the core waits for the shared L3 or
RAM. Therefore, counters related to L2 cache misses provide a
good distinction: the number of L2 stalls per cycle (only available
on Intel) and the instructions per cycle (also available on AMD).

These findings are in line with other research, suggesting the
same correlation [2].We thus shift the categorization from compute-
bound vs. memory-bound to core-bound vs. uncore-bound, as latter
is conveniently a different clock domain on our test systems.

Evaluation. Using our StallGov prototype we compared the
impact of our approach on energy (RAPL, pkg-domain) and total
execution-time (wall-clock) with the default Linux frequency gov-
ernor SchedUtil while running aforementioned NPB suite, with
workload sizes chosen to take 60 seconds on our systems. Note, that
StallGov does not choose a fixed frequency, but rather changes over
the course of our experiments as the workload phases change. For
a more complete picture of the possible headroom, we additionally
ran each benchmark at a fixed frequency, ranging from the lowest
to the highest supported CPU frequency (in steps of 100 MHz).

In total, we increase energy efficiency by 13.3 % compared to
SchedUtil while being 6% slower (geometric means, 3 runs per
benchmark, additional warm-up). In terms of the Energy-Delay-
Squared Product (𝐸𝐷2𝑃 , a metric that counterbalances the quadratic
influence of the voltage on the energy demand) StallGov outper-
forms SchedUtil for the mg and ft benchmarks (-18.9 % and -3.2 %),
stays in the same range for ep and is (-0.1 % and +0.2 %), and wors-
ens the 𝐸𝐷2𝑃 only for cg (+12.9 %), with 𝜎 < 1 % for all.

Future Work. We plan to investigate whether found clock-
domain split at the L2 cache always serves as a good heuristic, or if
other PMC combinations prove more suitable. At the same time, our
simplistic linear interpolation can be extended. Better statistical
methods and (e.g. statistical learning) may prove useful. In this
context, we could incorporate usage statistics from SchedUtil.

In addition, we will evaluate the time overhead for each fre-
quency switch, as well as the behavior with multiple, dynamically
switching processes (and simultaneous multithreading), since we
have only run single NPB workloads exclusively. However, it is
reasonable to assume that our process-agnostic implementation
yields good results as PMCs are collected per-core.

ACKNOWLEDGEMENTS
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 502228341 (“Memento”)
and a stipend granted by the IBM Research & Development Lab,
Böblingen.



Griese, et al.

REFERENCES
[1] Redha Gouicem, Damien Carver, Jean-Pierre Lozi, Julien Sopena, Baptiste Lepers,

Willy Zwaenepoel, Nicolas Palix, Julia Lawall, and Gilles Muller. 2020. Fewer
Cores, More Hertz: Leveraging High-Frequency Cores in the OS Scheduler for
Improved Application Performance. In Proc. of the 2020 USENIX Annual Technical
Conference (USENIX ATC’20). USENIX Association, 435–448.

[2] Benedict Herzog, Stefan Reif, Fabian Hügel, Wolfgang Schröder-Preikschat, and
Timo Hönig. 2022. Bears: Building Energy-Aware Reconfigurable Systems. In Proc.
of the XII Brazilian Symp. on Computing Systems Engineering (SBESC). 1–8.

[3] Andreas Weissel and Frank Bellosa. 2002. Process Cruise Control: Event-Driven
Clock Scaling for Dynamic Power Management. In Proc. of the 2002 Int. Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (Grenoble, France)
(CASES ’02). New York, NY, USA, 238–246.



PMC Selection for Heuristic
§ Compared 12 combinations of 21 hardware counters
§ Recorded counters with threads pinned to single core,

and run on every core
§ Found that an increased core frequency no longer improves 

performance when the core waits for shared L3 cache or RAM
§ Assumption: Core/uncore clock domain boundary is relevant feature
§ Found two promising heuristics:

o L2 cache stalls per cycle (only available on Intel)
o Instructions per cycle (also available on AMD)

§ Findings consistent with other research suggesting same correlation [2]
§ Allows for adaptive frequency selection as workload changes phases

Evaluation
§ In total 13.3 % more energy-efficient than SchedUtil, but 6 % slower
§ ED2P improvement for mg, ft, no changes with ep, is, worse for cg

Motivation
§ For energy efficiency, processing units should not idle at high clock rates 

while waiting for data from the slower memory subsystem [3]
§ Linux’ default frequency governor SchedUtil often maximizes clock [1]
§ Hardware performance counters can give insight on how much (+ where) 

the CPU is stalled and provide hints on a better clock rate and voltage
§ Our implementation should work for unknown workloads at run-time

Implementation
§ StallGov, a Linux kernel module (~1700 loc) using the CpuFreq API
§ Implements normal and fast frequency switching
§ Update hook is called regularly (5-10ms) by scheduler
§ Queries hardware counters from (custom exported) kernel perf API
§ Uses simple linear interpolation of observed min/max counter and 

allowed min/max clock frequency

§ Logs hardware counters in ring-buffer, exposed to userspace via debugfs

StallGov
Erik Griese, Leon Matthes, Maximilian Stiede, Sven Köhler, Lukas Wenzel

References
1. Redha Gouicem, Damien Carver, Jean-Pierre Lozi, Julien Sopena, Baptiste Lepers, Willy 

Zwaenepoel, Nicolas Palix, Julia Lawall, and Gilles Muller. 2020. Fewer Cores, More Hertz: 
Leveraging High-Frequency Cores in the OS Scheduler for Improved Application 
Performance. In Proc. of the 2020 USENIX Annual Technical Conference (USENIX ATC’20). 
USENIX Association, 435–448.

2. Benedict Herzog, Stefan Reif, Fabian Hügel, Wolfgang Schröder-Preikschat, and Timo 
Hönig. 2022. Bears: Building Energy-Aware Reconfigurable Systems. In Proc. of the XII 
Brazilian Symp. on Computing Systems Engineering (SBESC). 1–8.

3. Andreas Weissel and Frank Bellosa. 2002. Process Cruise Control: Event-Driven Clock 
Scaling for Dynamic Power Management. In Proc. of the 2002 Int. Conference on Compilers, 
Architecture, and Synthesis for Embedded Systems (Grenoble, France) (CASES ’02).
New York, NY, USA, 238–246.

Hasso Plattner Institute, Potsdam
{firstname.lastname}@{student.}hpi.de

A Cache-Stall Driven CPU Frequency Governor for Linux

Future Work
§ Better Heuristics? Other PMCs? Non-linear interpolation?
§ Include usage statistics from SchedUtil
§ Investigate workloads other than the NPB suite
§ Evaluate interference with multiple, dynamically switching processes 

and simultaneous multithreading

Test Workloads and Setup
§ Using the NAS Parallel Benchmark suite, version 3.4.1 with OpenMP
§ Evaluated on three machines, Linux 5.15+, problem sizes to run ~60s

updates 
limits

requests
frequency

calls
Update Hook

schedules update

Scheduler CpuFreq Driver

Debug Log

Update Thread

debugfsKernel

StallGov
Kernel module

perf API

PMCs

readswrites

useswrites

Update Hook + Heuristic

https://github.com
/osmhpi/stallgov

co
de
+w
ik
i

Intel Core i7-6700HQ Intel Core i7-10510U AMD Ryzen 9 5900X

ACPI CpuFreq-driver ACPI CpuFreq-driver amd-pstate CpuFreq-driver

10ms update interval 10ms update interval 5ms update interval

0.8 - 2.6 (3.5 turbo) GHz 0.4 - 1.8 (4.9 turbo) GHz 0.55 - 3.7 (4.9 turbo) GHz

NAS {cg,fp,ft}.B, {is,mg}.C NAS {cg,fp,ft}.B, {is,mg}.C NAS {cg,fp,ft,is,mg}.C

≈

≈
observed average,

actual frequency changes
with workload phases

+6 %

-29 %

+26 %

-14 %

-20 %

±0 %

L2 Stalls per Cycle for the Five NPB Kernels

funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 502228341

funded with a stipend granted by
IBM Deutschland R&D Lab, Böblingen


