
Memento—Energy-Aware Memory Placement in Operating Systems∗

Sven Köhler1, Benedict Herzog2, Henriette Hofmeier2, Manuel Vögele2, Lukas Wenzel1
1Hasso Plattner Institute, Potsdam 2Ruhr University Bochum (RUB)

{firstname.lastname}@{hpi,rub}.de

ABSTRACT
Today’s availability of new memory technologies requires radical
re-thinking of memory management in general-purpose operating
systems. Main-memory technologies (e.g. NVM), completely new
cell types (e.g. PCRAM), and coherent interconnects (e.g. CXL) chal-
lenge existing programming and system abstractions (e.g. POSIX).
At the same time, memory subsystems received much less attention
from energy efficiency efforts, compared to compute resources, in
part because of these outdated abstractions. We therefore need new
interfaces at operating system level that not only communicate
functional (e.g. persistent vs. volatile) and non-functional (e.g. la-
tency bounds) memory properties to application developers, but
also take energy efficiency into account.

We propose Memento, a new concept for efficient memory man-
agement at the operating system level. Memento addresses the
shortcomings of the current state-of-the-art withmethods for analys-
ing program code at development time, its operational characteris-
tics at runtime, along with characteristics of memory resources at
system setup time. Figure 1 visualises the design of our approach.
The core component is the Memory Governor, implemented within
the operating system, which makes automatic and energy-efficient
memory placement decisions. It handles buffer-allocation requests
considering placement requirements, hardware characteristics, and
administrative constraints with the memory resource promising
the lowest energy demand for that workload.

Energy Efficiency. For energy considerations we implement
a memory energy model for workloads and hardware components
on the following inputs: (a) memory access behaviour of the work-
load, (b) allocation granularity (e.g. costs of large vs. small buffers in
NVM vs. HBM memory), and (c) the actual hardware. Since it is not
feasible to create energy models for every type of memory, we rely
on models for general memory technologies, and only specialise
in product-specific models where necessary. We utilise different
machine-learning techniques—from simple linear or ensemble mod-
els up to sophisticated neural networks—to trade-off expressiveness
and accuracy for training and execution costs.

Interfacing explicitly with the Memory Governor from a pro-
grammer’s side, requires an API, which we build around the notion
of workload-sensitivity weights. Workload sensitivity describes how
domain experts expect their workloads to react to a memory re-
source with specific functional and non-functional properties. The
implementation of workload sensitivity is based on scoped alloca-
tors valid for limited sections of the application source code and
lifted as soon as the scope is left.

However, not all placement requirements can be explicitly stated—
either due to the lack of domain experts and development time, or
because theMemoryGovernor has to handle legacy software. In this

∗This poster abstract was accepted at the 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’23), Poster Session.
Parts of this work have been published at the 2nd Workshop on Sustainable Computer
Systems (HotCarbon’23).

Workloads

Memory
Resources

Memento

Notation

Memory
Charac-
teristics

Memory Governor

Placement
Requirements

Energy Model

Static Analysis

Profiling / Tracing
Explicit Requirements

Figure 1: Design of the Memento approach for OS-level mem-
ory management. Core component is theMemory Governor
for efficient placements based on hardware and workload
characteristics, as well as, placement requirements.
case, our approach relies on an implicit deduction of a workload’s
requirements and sensitivities, based on static code analysis [2]
ahead of time, as well as, profiling/tracing at runtime by means of
of performance measurement counters (PMCs). The implicitly and
explicitly collected knowledge about a workload is persisted and
exchanged in the form of theMemento Notation. It can be embedded,
for example, in ELF sections within the binary and later be refined
and reused each time the application is started.

CarbonEfficiency. The tools, notation, andmicrobenchmarks
build as part of Memento can find also applicability in other fields.
Prominently, despite energy savings being a worthwhile econom-
ical goal in itself, societal efforts are directed at limiting carbon
emissions to limit global warming. Following the Software Carbon
Intensity (SCI) specification [1], Memento may contribute to this
objective in two ways: (i) by providing an estimate of the opera-
tional carbon costs by means of the energy model and energy grid’s
carbon footprint and (ii) by optimising placements with respect to
total carbon costs (i.e. operational and embodied costs). Thereby,
the embodied costs are costs for manufacturing, lifespan and wear
and tear, and disposal. Considering both types of carbon costs leads
to new trade-offs. For example, the most carbon-efficient placement
for a 4 kB buffer with 10 s lifetime and few accesses depends on
the memory technology and energy grid’s carbon footprint (in this
example DRAM/NVM and coal/wind). We assume 980 gCO2e/kW
for the carbon footprint of coal and 11 gCO2e/kW for wind. In
case of the wind-powered grid, the placement in NVM is more car-
bon efficient (0.08 ng and 0.13 ng). Whereas for the coal-powered
grid, the placement in DRAM causes less carbon emissions (7.1 ng
and 4.2 ng). With the tools developed in Memento, such decisions
for energy or carbon efficiency can be made within the operating
system and therefore made usable for many types of applications.

Köhler, et al.

ACKNOWLEDGEMENTS
This work was partially funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – 502228341 (“Me-
mento”) and 465958100 (“NEON”) and from the Bundesministerium
für Bildung and Forschung (BMBF, Federal Ministry of Educa-
tion and Research) in Germany for the project AI-NET-ANTILLAS
16KIS1315.

REFERENCES
[1] Green Software Foundation. 2021. Software Carbon Intensity Stan-

dard. https://github.com/Green-Software-Foundation/sci/blob/main/Software_
Carbon_Intensity/Software_Carbon_Intensity_Specification.md

[2] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated Evolution
in the Linux Kernel. In Annual Technical Conference (ATC’18). USENIX, 601–614.

https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md

Carbon-Efficient Placement
§ Memento tools, notation and benchmarks also applicable in other fields,

e.g. a carbon-efficient placement following the SCI specification [1]:

§ case study
(gCO2e/alloc)
best highlighted

Operational Carbon + Embodied Carbon
Unit of Work

The Memento Approach
§ The central Memory Governor

matches allocation requests with the
best available memory resource

§ Using an energy model we try to
minimize the entire system’s energy
demand at runtime

§ We determine a workload’s
sensitivity, i.e. how it reacts to
different memory types’ bandwidth,
latencies, or volatility

§ Workload classification from code
analysis, tailored micro benchmarks,
and profiling at run-time [2]

§ Deduced requirements are denoted in
an exchangeable format, the
Memento Notation (e.g. persisted
across runs in dedicated ELF sections)

Memory Energy Model
§ Model of potential placement impact, based on:

§ Approaches with ML techniques, i.e. linear, ensemble, neural networks
§ We will evaluate expressiveness and accuracy for each, and additional

costs for training and inference at runtime

Placement Requirements
§ Developers are experts on the dynamics of their application, not on

available system resources
§ Legacy applications do not necessarily make (good) placement decisions

for new memory resource types

§ First, offer explicit API with
manually annotated sensiti-
vity as starting point, e.g.
with scoped allocators

§ For legacy workloads,
use the implicit knowledge
persisted in the Memento
Notation

Memory Governor
§ Part of the OS (service + module)
§ Keeps track of available / free

memory hardware resources
§ Chooses most energy-efficient

buffer location, considering
availability, placement
requirements, and administrative
constraints

§ Inspired by current frequency
governors for compute devices

§ Works on allocation granularity
(not threads or processes)

Choosing The Right Granularity

Memento
Energy-Aware Memory Placement in Operating Systems
Sven Köhler1*, Benedict Herzog2*, Henriette Hofmeier2, Manuel Vögele2, Lukas Wenzel1
*both authors contributed equally to this work

1 Hasso Plattner Institute, Potsdam 2 Ruhr University Bochum

Hardware

Hypervisor

Operating System

Programming Environment

Programming Language

Application Code

Buffers
(allocations)

Objects
(data structures)

Pages

TreeMap

Memory Resources
({LP,G,}DDR, HBM, CXL; DRAM, NVM)

Firmware

Motivation
§ New memory technologies (NVM, HBM, …), cell-types (e.g. PCRAM),

and coherent interconnects (e.g. CXL) challenge existing system and
programming abstractions of a homogenous memory space

§ Like functional and non-functional properties, all memory technologies
highly differ in their energy demand

§ The OS community needs to react and enable optimisation strategies,
while leveraging energy saving potentials

References

1. Green Software Foundation. 2021. Software Carbon Intensity Standard.
https://github.com/Green-Software-Foundation/sci/blob/main/Soft
ware_Carbon_Intensity/Software_Carbon_Intensity_Specification.md

2. Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated
Evolution in the Linux Kernel. In Annual Technical Conference (ATC’18).
USENIX, 601–614

Workloads

Memory
Resources

Memento
Notation

Memory
Charac-
teristics

Memory
Governor

Placement
Requirements

Energy Model

Static Analysis

Profiling / Tracing
Explicit Requirements

§ High-level appli-
cations structure
memory in objects,
rather than pages

§ A buffer view on
OS-level breaks the
abstraction and
allows for
optimisation

Memory Access
Behaviour

Allocation
Granularity

Top-Down
Hardware Model

AllocCharacteristic LatencyNVSpec {
 // uninitialised fields default to 0
 weight_latency = 3.f,
 weight_randomAccess = 1.f,
 non_volatile = true
};
{
 // all allocations in this scope are
 // associated with LatencyNVSpec
 MemGuard guard(LatencyNVSpec);
 Index * jumpListA = new Index[4096];
}

{firstname.lastname}@{hpi,rub}.de
informatik.rub.de/boss/research/memento

Wind
Mix

10 µs allocation
1 access
volatile

DRAM
NVDIMM

Optane

50 ns allocation
100,000 acesses

persistent

DRAM
NVDIMM

Optane

10 s allocation
5 acesses
volatile

DRAM
NVDIMM

Optane

Gas
Coal 7.1e-94.2e-94.2e-91.4e-42.1e-111.4e-94.2e-154.2e-15

3.4e-92.1e-92.0e-96.9e-51.0e-116.9e-102.1e-152.0e-15
2.7e-91.6e-91.6e-95.4e-58.2e-125.4e-101.6e-151.6e-15
8.0e-111.5e-101.3e-101.6e-67.3e-131.6e-111.5e-161.3e-16

funded by the Deutsche Forschungsgemeinschaft
(German Research Foundation) – 502228341, 465958100

funded by the Federal Ministry of Education and
Research in Germany – AI-NET-ANTILLAS 16KIS1315

We
bs

it
e

Software Carbon Intensity =

