
Quick-and-Dirty Memory Access Tracing
with Instruction-Based Sampling∗

Lukas Wenzel1, Sven Köhler1, Henriette Hofmeier2, Felix Eberhardt1
1Hasso Plattner Institute, Potsdam 2Ruhr University Bochum

{firstname.lastname}@{hpi,rub}.de

ABSTRACT
With the increasing deployment of heterogeneous memory archi-
tectures, the efficient execution of a workload becomes more sen-
sitive to fine-grained memory placement decisions. To establish
a sound information base for such decisions, we must first under-
stand memory access behavior beyond the level of coarse-grained
statistics. However, collecting detailed memory traces is a costly
process. Therefore, we propose a low-overhead solution based on
instruction-based sampling [3] that provides incomplete yet infor-
mative access sequences. We showcase the practical value of such
sparse traces by analyzing the overhead and comparing workload
runs on two memory technologies with distinct characteristics.

Concept. There is an extensive body of prior work on obtain-
ing detailed memory traces: Running the workload in a full-system
simulator [1] provides accurate and detailed information about the
progress of memory instructions, at the cost of orders of magnitude
longer experiment durations, though no behavioral distortion due
to the application running in simulated time. Alternative techniques
rely on binary instrumentation [2], where accesses are tracked by
augmenting each relevant instruction with a call to a logging func-
tion. Because the workload runs natively on hardware, traces are
obtained at a lower cost compared to full system simulation, al-
though the added tracing overhead can distort workload behavior.

For our envisioned purposes, the aforementioned techniques’
focus on completeness is not required, opening different tradeoffs
in terms of overhead. We leverage the extensive performance mea-
surement infrastructure present in most hardware platforms to
collect only a subset of all memory accesses issued by the workload.
The underlying mechanism is instruction-based sampling, which is
generally used to identify sections of program code with a specific
performance impact. A hardware performance counter is set up to
track events that characterize this impact, and a threshold is set that,
when crossed, triggers an interrupt saving the architectural state at
the time of the last event. Usually, the instruction pointer is taken
from this state to derive a statistical distribution of the instructions
responsible for the event, but for memory tracing purposes, the
data address related to load or store events is recorded instead. The
threshold controls the proportion of memory accesses that can be
observed, with the assumption that frequently accessed addresses
have a higher probability of appearing in the final sparse trace.

In addition to the access trace, we are interested in the virtual
memory layout, to associate accesses with their semantic mem-
ory region and thus distinguish unrelated access patterns. Under
the goal of memory placement, dynamic heap allocations play an
important role and need to be traced as well. This is possible by in-
tercepting the library calls necessarily occurring every state change.

∗This poster abstract was accepted at the 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’23), Poster Session.

Showcase. To demonstrate the properties of the proposed
technique, we collect sparse traces for the five kernels and three
pseudo applications of the NAS Parallel Benchmarks suite (NPB)
version 3.4.1 as an exemplary workload. Observing relevant dif-
ferences in the collected traces between heterogeneous memory
resources showcases the technique’s value. In future work, we will
use these traces to optimize memory placement decisions.

We conducted our experiments on an IBM PowerSystem S924
in a dual-socket NUMA configuration running Linux. This system
features an IBM / BittWare Hybrid Memory Subsystem (HMS) card,
which attaches NVMe storage through a DRAM cache to the physi-
cal memory space via an OpenCAPI 3.0 link. HMS memory accesses
can have much longer and asymmetric read/write latencies com-
pared to regular system DRAM. Performance characteristics range
from 170GB/s at 65 ns latency for local NUMA accesses to 20GB/s
over OpenCAPI with microsecond NVMe latencies.

We have implemented an interposer library that is applied to
the workload binary via the LD_PRELOAD mechanism, which tracks
heap allocations and implements a common first-fit allocation algo-
rithm between anonymously mapped DRAM and explicitly mapped
HMS memory for comparable results. This suffices for the simple
behavior of the NPB suite (all allocations up front), but future work
can incorporate libmemkind, which offers more sophisticated place-
ment and allocation facilities. Access traces are collected using the
perf tool, which wraps both workload and interposer library and
configures the instruction-based sampling infrastructure.

We executed various memory and instrumentation configura-
tions four repetitions each and analyzed with the time tool both
with and without perf instrumentation, to gauge apparent pro-
cessor and wall-clock time overheads. The geometric mean of in-
strumentation slowdowns over all measured benchmarks was 6.0 %
processor time and introduced 30.5 % wall-clock time overhead at
maximum sampling precision and a rate of 250Hz. While not ac-
ceptable in all application scenarios, we believe these slowdowns
qualify the technique for online workload observation and place-
ment decision refinement.

The obtained series of traces—as shown in the poster—clearly in-
dicates varying patterns of memory traffic over different allocations,
execution phases and memory resources and form an invaluable
basis for our future work on memory placement strategies.

ACKNOWLEDGEMENTS
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 502228341 (“Memento”).
Hardware for the experiments was kindly provided by the IBM
Research & Development Lab, Böblingen.

Wenzel, et al.

REFERENCES
[1] Eduardo Henrique Molina da Cruz et al. 2011. Using memory access traces to

map threads and data on hierarchical multi-core platforms. In Proc. of the 2011
IEEE Int. Symp. on Parallel and Distributed Processing Workshops and Phd Forum.

[2] Mathias Payer, Enrico Kravina, and Thomas R Gross. 2013. Lightweight memory
tracing. In Proc. of the 2013 USENIX Annual Technical Conference (USENIX ATC’13).

[3] Vincent M Weaver. 2016. Advanced hardware profiling and sampling (PEBS, IBS,
etc.): creating a new PAPI sampling interface. Technical Report UMAINE-VMWTR-
PEBS-IBS-SAMPLING-2016-08. University of Maine, Tech. Rep. (2016).

Concept and Approach
§ Instruction-Based Sampling records architect-

ural state at randomized intervals of selected
hardware events [3]

§We record accessed data addresses, sampling
over memory read and write instruction events

§Trigger threshold controls proportion of
observed memory accesses, with frequently
accessed locations more likely to appear

References
1. Eduardo Henrique Molina da Cruz et al. 2011. Using memory

access traces to map threads and data on hierarchical multi-core
platforms. In Proc. of the 2011 IEEE Int. Symp. on Parallel and
Distributed Processing Workshops and Phd Forum.

2. Mathias Payer, Enrico Kravina, and Thomas R Gross. 2013.
Lightweight memory tracing. In Proc. of the 2013 USENIX Annual
Technical Conference (USENIX ATC’13).

3. Vincent M Weaver. 2016. Advanced hardware profiling and
sampling (PEBS, IBS, etc.): creating a new PAPI sampling
interface. Technical Report UMAINE-VMWTR- PEBS-IBS-SAMPLING-
2016-08. University of Maine, Tech. Rep. (2016).

Overhead Evaluation

Showcase

Capturing Allocations
§To understand workload dynamics and semantic

relations in the address space, we associate
memory accesses to allocated buffers

§We wrote tracealloc, a prototypical interposer
library that is injected via LD_PRELOAD

§ It intercepts and logs malloc(), free(),
calloc(), realloc(), memalign(), …

Quick-and-Dirty Memory Access Tracing
with Instruction-Based Sampling

Lukas Wenzel1, Sven Köhler1, Henriette Hofmeier2, Felix Eberhardt1

1 Hasso Plattner Institute, Potsdam 2 Ruhr University Bochum

Motivation
§Despite a homogenous address space,

heterogeneous memory resources have
substantially varying characteristics

§Applications often fail to leverage different
memory resources efficiently

§We propose low-overhead traces to understand
the dynamics of memory allocation and access
to understand performance and energy impact

In Relation To Alternative Approaches

Software
Only [2] PMC Support Hardware

Simulation [1]

Custom
Hardware

Instrumentation

§OS level:
mprotect+ptrace

§ Instrumentation
valgrind

§Virtual Machines
QEMU patching

§ Full coverage
§High overhead
§Distortion

according to
overhead

§ IBS with Linux’
perf interface

§ Sparse coverage
§ Low overhead
§ Distortion

according to
overhead

§ FPGA-based
memory con-
troller tracking
accesses

§ Full coverage
§ Low overhead
§ Trade higher

overhead for no
distortion (clock
slowdown)

§ System-level or
processor
simulator

gem5

§ Full coverage
§ High overhead
§ No distortion

(simulated time)

This poster

Experimental Setup & Hardware
§ IBM PowerSystem S924, dual

socket NUMA (2666 MHz DDR4)
§ IBM / BittWare Hybrid Memory

Subsystem card (OpenCAPI 3.0
attached NVMe storage)

§NAS Parallel Benchmarks suite
version 3.4.1 (OpenMP, C++)

{first.last}@{hpi,rub}.de
https://osm.hpi.de/energy

sampled eventsselected events

execution time

Experiment hardware kindly provided by
IBM Deutschland R&D Lab, Böblingen

funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 502228341

Precision Comparison Resource Type Comparison Interesting Effects

Local DRAM Perf @200Hz 4.46 (-0.03 - 23.75) 6.0% (-0.3% - 20.5%) 1.00 (0.53 - 1.37) 128.9% (44.6% - 706.3%)

Local DRAM Perf @1000Hz 3.96 (0.09 - 16.81) 8.3% (1.0% - 29.6%) 0.99 (0.53 - 1.37) 128.8% (44.6% - 706.3%)

Local DRAM Perf @5000Hz 9.92 (0.18 - 44.43) 11.3% (2.2% - 38.4%) 1.43 (0.78 - 2.38) 161.7% (64.2% - 706.3%)

Far DRAM Perf @200Hz 3.98 (-0.15 - 14.16) 5.1% (-1.8% - 11.6%) 0.94 (0.54 - 1.32) 115.1% (34.6% - 616.7%)

Far DRAM Perf @1000Hz 4.17 (0.01 - 13.64) 6.6% (0.1% - 22.5%) 1.01 (0.54 - 1.48) 118.5% (44.4% - 616.7%)

Far DRAM Perf @5000Hz 10.50 (0.15 - 35.20) 9.6% (1.8% - 28.9%) 1.38 (0.54 - 2.49) 138.1% (47.7% - 616.7%)

HMS Card Perf @200Hz 1.48 (-0.40 - 6.81) 2.2% (-3.7% - 6.0%) 0.90 (0.55 - 1.34) 101.5% (35.1% - 597.3%)

HMS Card Perf @1000Hz 2.35 (0.00 - 8.28) 4.1% (-0.1% - 8.0%) 0.90 (0.55 - 1.34) 101.5% (35.1% - 597.3%)

HMS Card Perf @5000Hz 6.89 (-0.10 - 20.13) 7.1% (-1.1% - 15.2%) 1.46 (0.72 - 2.35) 143.5% (64.6% - 597.3%)

All Runs Perf @200Hz 3.30 (-0.40 - 23.75) 4.4% (-3.7% - 20.5%) 0.94 (0.53 - 1.37) 114.9% (34.6% - 706.3%)

All Runs Perf @1000Hz 3.49 (0.00 - 16.81) 6.3% (-0.1% - 29.6%) 0.97 (0.53 - 1.48) 116.0% (35.1% - 706.3%)

All Runs Perf @5000Hz 9.10 (-0.10 - 44.43) 9.3% (-1.1% - 38.4%) 1.43 (0.54 - 2.49) 147.5% (47.7% - 706.3%)

All Runs 5.30 (-0.40 - 44.43) 6.7% (-3.7% - 38.4%) 1.11 (0.53 - 2.49) 125.6% (34.6% - 706.3%)

Every run was executed with each NPB (cg.A, ep.A, ft.A, is.A, mg.A, bt.A, lu.A, sp.A) and 8 repetitions.
Values are relative to respective configuration without perf instrumentation.

Processor Time Overhead Processor Time Slowdown Wall-Clock Time Overhead Wall-Clock Time Slowdown
(Arithmetic Mean in Seconds) (Geometric Mean minus 100%) (Arithmetic Mean in Seconds) (Geometric Mean minus 100%)

NPB cg.A on Local DRAM with Perf @5000Hz

NPB cg.A on Local DRAM with Perf @1000Hz

NPB cg.A on Local DRAM with Perf @200Hz

NPB ft.A on HMS Card with Perf @5000Hz

NPB ft.A on Far DRAM with Perf @5000Hz

NPB ft.A on Local DRAM with Perf @5000Hz

Phases scale disproportionately

Prefetcher?

260msec 160msec

18msec 27msec

NPB mg.A with Perf @5000Hz
HMS Card

Local DRAM

NPB sp.A with Perf @5000Hz
HMS Card

Local DRAM

140msec

6.1msec41msec

Different Phase Duration Variance

AllocationsExcluded Pages Only WritesOnly Reads Equal Reads and Writes

We
bs
it

e

