
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Carbon-Aware Memory Placement
Anonymous Author(s)

ABSTRACT
The carbon footprint of software activities is determined by embod-
ied and operational emissions of hardware resources. This paper
presents carbon-FooBar1, a concept that enables operating sys-
tems to make carbon-aware memory placement decisions.

Main memory has become heterogeneous in today’s computer
systems. In addition to traditional (and volatile) main memory
(e.g. DRAM), novel memory technologies with persistent prop-
erties are often also available (e.g. PRAM, FRAM, MRAM). Com-
plementary, there are a large number of new memory interfaces
(e.g. high-bandwidth, graphics, and low-power memory) that have
to be additionally taken into account by the operating system when
allocating memory. The availability of new memory technologies
and interfaces enables systems with improved energy efficiency.
At the same time, the new memory interfaces have revealed ser-
ious flaws in the current state-of-the-art memory abstractions in
operating systems. Hence, moving away from the homogeneous
perspective of memory resources is a crucial step towards signific-
antly reducing the energy consumption and ultimately the carbon
footprint of today’s computer systems.

With carbon-FooBar, we propose an approach that combines
information on characteristics of (i) active workloads and (ii) avail-
able memory resources with a carbon model. carbon-FooBar trans-
forms the combined information into memory placement decisions
at operating system level. The placement decisions that are made
result in improved operating conditions (i.e. better energy efficiency
and lower carbon footprint) for the available storage resources at
the hardware level.

1 INTRODUCTION
Recent years have brought a rapid expansion of the range and
variety of available main-memory technologies and architectures.
When previously, evolutionary generations of DDR DRAM were
the staple in the main-memory tier, today, system integrators can
draw from a much-widened design space, including significant
interface variations (GDDR, LPDDR, HBM) to fundamentally the
same DRAM technology, up to completely new memory cell types
(PRAM, FRAM, MRAM). Under such conditions, the long-held tenet
of abstracting physical memory resources into a homogeneous
virtual memory space visible to the programmer is beginning to
show severe shortcomings [6, 19, 20].

Until now, memory subsystems received much less attention
from efforts to improve energy efficiency—and thus linked opera-
tional carbon-impact—than active compute resources, even though
memory chips and interconnects can easily draw power in the same
order of magnitude as a CPU [17]. Furthermore, the embodied car-
bon emissions, both for acquisition of novel memory technologies,
as well as their limited life-time like prominently in the case of
NVRAM, is not sufficiently captured by existing programming and
operating system abstractions. In light of the societal importance

1name changed for blind review

Workloads

Memory 
Resources

FooBar
Notation

Memory 
Charac-
teristics

Memory Governor

Placement 
Requirements

Carbon Model

Static Analysis

Profiling / Tracing
Explicit Requirements

Figure 1: Architecture of our carbon-aware memory place-
ment approach carbon-FooBar.
of economic and ecologic concerns in computing technology, it is
crucial to leverage each memory technology to its fullest potential
to meet both performance and carbon-efficiency objectives.

Thus, this paper presents carbon-FooBar, a concept that en-
ables operating systems to make carbon-aware memory place-
ment decisions. The operating system and system software offer
the necessary interfaces to improve and extend existing abstrac-
tions and mediate between programmer and hardware perspectives.
carbon-FooBar refrains from burdening programmers with an un-
filtered view of raw memory-resource characteristics. Instead, the
flow of information is inverted by giving systems software explicit
or implicit knowledge of workload in addition to memory resource
characteristics. This establishes a common point where carbon-
efficient memory placement decisions can be made.

This paper makes the following four main contributions:
(i) the carbon-FooBar approach to collect and apply necessary
information for carbon-aware memory placement decisions. This
includes analysis methods at development time, profiling at runtime,
as well as, characteristics of memory resources at system-setup time.
(ii) the design of a carbon model to determine the embodied and
operational carbon emissions of memory allocations.
(iii) the design of a operating-system component, Memory Gov-
ernor, for carbon-aware memory placements.
(iv) a case study for different types of memory allocations (i.e. dif-
ferent lifetime and access patterns) and types of memory resources.

The rest of this paper is structured as follows. Section 2 discusses
energy-FooBar, the underlying concept for carbon-FooBar. Sec-
tion 3 outlines the design of the Memory Governor and Section 4
discusses placement requirements for carbon-aware memory place-
ment. We discuss the carbon model of carbon-FooBar and a case
study of different memory types in Section 5 and Section 6, respect-
ively. Section 7 gives an outlook on future work, Section 8 discusses
related work, and Section 9 concludes this paper.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 THE ENERGY-FOOBAR APPROACH
The trend to compose machines from heterogeneous memory tech-
nologies poses new challenges to systems software. On the one
hand, overly generic placement policies fail to capture the optim-
isation potential. On the other hand, system operators can not be
expected to customise placement strategies for each machine under
their responsibility. However, existing placement strategies only
have limited means (e.g. NUMA domains) to cope with this new het-
erogeneity. In particular, they miss empirical analysis mechanisms
to adapt to evolving workload and resource conditions.

The scope of energy- and carbon-FooBar are machines with
one common physical address space and a heterogeneous set of
memory technologies. However, scenarios beyond this scope, for
example with disaggregated memory or RDMA, are discussed in
Section 7. One key design decision is the granularity at which place-
ment decisions are optimised. Optimising at a very fine-grained
level (e.g. single memory accesses) may theoretically yield the best
results but comes with high overheads. Vice versa, optimising only
at coarse granularity (e.g. virtual address spaces) has little overhead
but also limits the optimisation potential. We believe that optim-
ising at buffer granularity best fits existing programming paradigms.
As developers are experts in the dynamics of their applications, they
tend to organise their data into objects or buffers (either by manual
allocation or as part of the programming environment).

Our envisioned architecture is illustrated in Figure 1. The left
side shows the empirical analyses, which generate characterisa-
tions of workloads (top) and the memory resources (bottom). These
characterisations are used by the tools on the right side (i.e. carbon
model and placement requirements), which aid the Memory Gov-
ernor to make placement decisions. The characterisation of memory
resources includes their performance and energy behaviour during
representative access patterns. Once collected, this information is
utilised by the carbon model to predict the energy demand and
carbon emissions. Conceptually, the workload characterisation con-
sists of three parts: a) explicit requirements at development time, b)
static analysis ahead of runtime, and c) profiling/tracing at runtime.

Explicit Requirements. We believe it is beneficial to allow de-
velopers to share their specialised knowledge of workload beha-
viour. Therefore, we provide the possibility to explicitly state func-
tional (e.g. persistent vs. volatile) and non-functional (e.g. latency
bounds) requirements. In order to retain development efficiency
and backwards compatibility, this source of information is optional
and thought for especially critical application data structures.

Static Analysis. Although only capable of capturing memory
behaviour known ahead of runtime, static code analysis can yield
essential information about memory allocations. The analysis can
be conducted once and later reused for every workload start.

Profiling/Tracing. Workload behaviour at runtime is observed
by means of performance monitoring counters (PMCs). This allows
our system to respond to changing workload conditions.

The three different information sources are consolidated into a
unified workload characterisation using the energy-FooBar nota-
tion, which is designed to describe workload behaviour. This char-
acterisation is used to to determine possible placement locations
and the carbon footprint of a placement. Eventually, the Memory
Governor uses these information for memory placement decisions.

Figure 2: Memory Governor decision space.

3 CARBON-AWARE MEMORY GOVERNOR
TheMemory Governor is the core component of the carbon-FooBar
approach. It is part of the operating system and responsible to
automatically make efficient memory placement decisions. The
nameMemoryGovernor follows the example of similar components
managing global strategies for shared resources. For example Linux
implements a CPU frequency governor, which globally balances
the CPU-time demands of all running applications and optimises
the CPU frequency according to an optimisation goal (e.g. energy
efficiency). In the Memory Governor case that means, managing the
globally available memory resources and responding to memory
allocations in a carbon-efficient way.

Figure 2 visualises the underlying concept. The black rectangle
comprises all available memory resources. Thereby, each cross rep-
resents a single resource (or part of a resource). Due to placement
constraints (blue), only parts of the globally available memory
resources can be considered for a memory request. Placement con-
straints can be, for example, depending on functional properties
like non-volatile byte-addressable memory (NVRAM). The decision
space can be further restricted by administrative constraints (grey)
imposed by system operators.

In order to fulfil its task, the Memory Governor needs to keep
track of the available and free memory resources. For each memory
request it calculates the possible placements, that is, the intersec-
tion of placement and administrative constraints. The remaining
possible placements constitute the decision space for the Memory
Governor, in which it tries to satisfy its target (i.e. carbon efficiency)
in a best-effort approach. It can therefore utilise the sensitivity of a
workload to a specific hardware resource (see Section 4).

Due to this design and by implementing the Memory Governor
within the operating system, it can also limit the wear and tear of
memory resources with limited lifetimes (such as NVRAM). As the
carbon emissions to manufacture memory (embodied carbon) can
constitute a significant amount of the total carbon emissions, this
is necessary to be truly carbon aware. As the Memory Governor
has a system-wide view on all resources and the carbon intensity of
the current power supply, it can balance all of these constraints. A
second reason for implementing the Memory Governor within the
operating system is the observation that memory allocations occur
frequently. Hence, the Memory Governor requires an efficient im-
plementation. Existing implementations of model-based placement
strategies [21] show that efficient and practical implementations
are possible, and provide a starting point.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Carbon-Aware Memory Placement

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

4 PLACEMENT REQUIREMENTS
Communicating placement requirements from development time
to runtime requires a standardised exchange format. To interface
between workloads and the Memory Governor, we need to trans-
form workload behaviour and sensitivity to resource characteristics
into placement requirements. In this context, sensitivity stands
for how a workload will react to a memory resource with specific
functional and non-functional properties. Our proposed interface
is twofold: an Application Programming Interface (API) for explicit
specification on an allocation granularity for developers, as well as,
a mechanism to deduce implicit sensitivity from observed workload
behaviour.

Instead of mere library calls to an explicit API, we propose a
more accessible integration with existing programming language
features such as function decorators or scoped allocators to offer a
low-overhead specification on how to serve specific buffers. This
way, requirements and changing sensitivity can be denoted for a
limited section of the application source code. They can also be
inherited over source-code sections and can be lifted automatically
as the defined scope is left.

Listing 1 provides a brief example of the envisioned API usage
with scoped allocators in C++, where different memory require-
ments, such as latency and randomAccess, are expressed, reflect-
ing their performance impact on the respective buffer.
1 AllocCharacteristic LatencyNVSpec {

2 // uninitialised fields default to 0.f or false ,

3 weight_latency = 3.f,

4 weight_randomAccess = 1.f,

5 non_volatile = true

6 };

7
8 {

9 // all allocations in this scope are

10 // associated with LatencyNVSpec

11 MemGuard guard(LatencyNVSpec );

12 Index * jumpListA = new Index [4096];

13 }

Listing 1: Example of the proposed API for specifying desired
memory characteristics explicitly using scoped allocators.

By overwriting the standard memory-allocation functions, the
proposed API tracks each distinct memory allocation. The alloca-
tion is then identified as a logical buffer and associated with the
currently active memory requirement set. The identified buffers
and the per-buffer resource requirements are passed to the Memory
Governor using sensitivity weights to specify the priority for in-
dependent characteristics. In the early stages of the Memory Gov-
ernor implementation, the explicit API affords an early validation
point, as the applicability of the chosen requirements and sensitivity
format can be evaluated without relying on sophisticated automatic
mechanisms for an implicit deduction. The second step, however,
comprises the automatic transformation of the behavioural data
about workloads gathered during runtime. Said behaviour model is
build based on benchmarks, which are tailored to fill in the para-
meters like latencies and access granularities as well as the read
and write dynamics of memory technology and controller. Using
profiling, a previously unknown workload can be classified along
those parameters to match sensitivity classes. To that end, static
code analysis can be another ways to recognise pre-defined classes,
although the expected complexity is much higher.

5 MEMORY CARBON MODEL
The carbon footprint of memory accesses is the basis for carbon-
aware and carbon-efficient memory placement. Thememory carbon
model estimates the carbon emissions of memory placements de-
pending on the memory-access behaviour and utilised hardware.
We identify two use cases for these estimations relevant to this
work: a) as a tool for developers to analyse their software’s memory-
related carbon footprint ahead of runtime. b) as an integrated com-
ponent within the operating system at runtime whose estimations
are passed to the Memory Governor.

With the energy-FooBar notation and memory characteristics
as input, the model derives the carbon footprint of placement de-
cisions. Based on the model’s operational and embodied carbon
estimations for different options, the Memory Governor determ-
ines the most carbon-efficient placement. Central to the carbon
model are two parts: a) the carbon metric used for calculating the
carbon footprint associated of a memory placement and b) the en-
ergy model used for calculating operational emissions of memory
accesses. Section 5.1 introduces the carbonmetric utilised by the car-
bon model: the Software Carbon Intensity (SCI) specification [12].
The underlying energy model is presented in Section 5.2.

5.1 Carbon Metric
As a metric for assessing the carbon footprint of memory placement
decisions, the carbon model utilises the Software Carbon Intensity
(SCI) specification [12]. The SCI was suggested by the Greensoft-
ware Foundation as a standard metric for the carbon footprint of
software and is currently under review at ISO. The SCI takes into
account both operational carbon emissions (𝑂) and embodied emis-
sions of the hardware (𝑀). The carbon footprint is then derived per
application-specific units of work (𝑅):

𝑆𝐶𝐼 =
𝑂 +𝑀

𝑅
(1)

Operational Carbon. The operational carbon emissions of memory
placements are determined by the operational energy demand 𝐸 of
memory accesses and the carbon intensity 𝐼 of the energy supply.
The SCI, thus, expresses the operational carbon emissions as

𝑂 = 𝐸 · 𝐼 (2)
Deriving the operational energy of memory technologies under
different access patterns requires the use of a separate energymodel,
which is further discussed in Section 5.2. The carbon intensity
of the available energy mix has to be constantly monitored and
provided as input for the carbon model. These values can either be
obtained from the local energy providers or from providers such as
ElectricityMap [10] that analyse the carbon intensity per country.

Embodied Carbon. For a holistic view of the carbon footprint
of memory placement strategies, the carbon model also considers
emissions related to production and disposal of hardware. The SCI
proposes the following equation for embodied carbon emissions:

𝑀 = 𝑇𝐸 ·𝑇𝑆 · 𝑅𝑆 (3)
The embodied carbon emissions attributed to memory placements
are, thus, determined by the following factors: The memory’s total
embodied emissions (𝑇𝐸). The share of the memory’s lifespan taken
up by the memory placement (𝑇𝑆). The share of the available re-
sources (𝑅𝑆). The total embodied emissions of a given memory
component can be obtained from hardware vendors.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Considering both 𝑇𝑆 and 𝑅𝑆 , the carbon model differentiates
between two classes of memories: a) wear-sensitive memories and
b) wear-agnostic memories. Wear-sensitive memories show limited
endurance. Due to their physical characteristics, these memory tech-
nologies are expected to fail after a number of accesses. Thus, each
access can be attributed a proportional share of the total embod-
ied emissions. For example, flash-bashed and phase-change–based
memories such as Intel Optane can be classified as such memor-
ies [2, 5]. 𝑇𝑆 is, therefore, determined by the ratio of the memory
accesses related to a placement decision and the overall available
accesses until expected failure. The number of memory accesses re-
lated to the placement of a buffer is obtained from static or dynamic
analyses (see Section 4). As the wear affects the entire memory
resource (e.g. a DIMM) 𝑅𝑆 equals one.

The second class, wear-agnostic memories, is not limited in their
expected lifespan by individual memory accesses. Memories like
DRAM are typically expected to outlive their system. Therefore,
their expected lifespan is set to the system’s anticipated lifespan.
With this class of memories, 𝑅𝑆 equals the share of the memory
capacity in use for the memory placement.

5.2 Energy Model
An integral part of determining the operational carbon emissions is
evaluating the energy behaviour of the underlying hardware. This
behaviour is incorporated into our memory carbon model in form
of an energy model. The model’s input consists of the following:

Memory Access Behaviour. The energy demand of using memory
heavily depends on how the memory is accessed. Therefore, the en-
ergy model uses the energy-FooBar notation to represent a work-
load’s memory access behaviour (e.g. determined by the runtime-
behaviour monitoring as described in Section 2).

Allocation Granularity. The Memory Governor is required to
make carbon-efficient memory placement decisions at different
granularities. For example, what are the costs to place a huge
vs. small buffer in NVM memory? How do the costs change when
HBM memory is used? To account for the difference in scope and
granularity, the energy model retrieves the granularity as input.

Hardware. The energy demand, and therefore the energy model,
is highly hardware specific and receives hardware characteristics
as input. We use a top-down approach to combine general models
and precise hardware-specific models. Therefore, we create general
models for similar hardware, for example, one for NVRAM and
one for HBM. These general models can be refined into a specific
models (e.g. the NVRAM model into a PC-RAM model).

The implementation of resource models in general and energy
models in particular often utilises machine-learning techniques.
Both, simple linear [15] and ensemble models [26], as well as soph-
isticated techniques based on neural networks [16], have shown
great results for resource and energy models. These techniques
differ in expressiveness and accuracy on the one side and training
and execution costs on the other side.

6 CASE STUDY
To illustrate the decision space of the proposed Memory Governor,
we analyse an exemplary system that contains 3 different memory
2data based on flash memory

DRAM Viking NVDIMM Optane2
embodied CO2e/GB 313 g 386 g 73 g

Table 1: Embedded carbon cost for different memory classes.

Energy source DRAM Viking NVDIMM Optane2
Wind 44 pg 44 pg 16 pg

Natural Gas 1880 pg 1880 pg 685 pg
Coal 3920 pg 3920 pg 1428 pg
Mix 1472 pg 1472 pg 536 pg

Table 2: Operational carbon cost to access 4 kB of memory.

technologies: DRAM, Viking NVDIMMs, and Intel Optane. The
device is equipped with 256GBmemory of each type. We determine
how the carbon intensity of various workloads changes in environ-
ments with different energy supplies (𝐼 ). Table 1 and Table 2 lists
the operational and embodied emissions, respectively.

6.1 Carbon Emissions
Embodied Carbon. The embodied carbon in DRAM is well under-
stood. Both, the authors in [30] and [13] report around 5.0 kgCO2e
for 16GB DRAM. In contrast, only little information on the em-
bodied carbon of NVM is available. In the absence of any lifecycle
assessments of Intel Optane and Viking NVDIMMs, we estimate
their properties using related components. For Intel Optane, we use
an SSD as substitute. The embodied carbon for a 256GB SSD varies
between 50 kgCO2e [29], 18.7 kgCO2e [30], and 7.7 kgCO2 [13]3.
For this case study, we use the median of those sources, which is
18.7 kgCO2e. Viking NVDIMMs consist of DRAM that is written
to an SSD in case of an outage. As such, we estimate the embodied
carbon as the sum of the costs for the DRAM and SSD of equal size.

Operational Carbon. For DRAM, we assume an energy consump-
tion of 0.4W/GB. Since RAM needs to be constantly refreshed, we
attribute that amount of power consumption for the entire life-
time of the allocation. SSDs have a negligible power consumption
while they are not being accessed and thus we attribute operational
carbon to a workload on a per-access basis. The carbon emitted
by a single access is denoted in Table 2. Viking NVDIMMs only
access the DRAM during normal operation and only write to the
SSD in the event of a power failure. As a result, we treat this kind
of memory like DRAM when calculating operational carbon.

For our calculations we use four different energy sources. Wind
energy (11 gCO2e/kWh [8]), natural gas (470 gCO2e/kWh [22]),
coal (980 g CO2e/kWh [32]), and a mix consisting of half renewable
energy (wind) and half fossil fuels (25 % coal and 25 % gas).

6.2 Workload Analysis
Using the base emissions determined above, we study the emissions
of three different workloads. We show that the ideal placement for
allocations both depends on the type of workload and the current
carbon intensity of the energy supply. Each workload allocates
a resource share (𝑅𝑆) of 4 kB (𝑅𝑆 = 1.6 · 10−8 for all cases). The
workloads differ, however, in how long the memory is allocated
and their access pattern. DRAM is treated as wear-agnostic, while
Intel Optane is wear-sensitive. Viking NVDIMMs only write to the
SSD on a power failure, so they are treated as wear-agnostic. For
3no CO2 equivalent emissions are provided

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Carbon-Aware Memory Placement

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

wear-agnostic memory, we assume a lifetime of five years. For Intel
Optane, we assume an endurance of 150 TB written.

Scenario A: Short-Lived Allocation, Single Access: This workload
allocates the memory for 10 µs and accesses it only once. There
are no placement requirements for this allocation. This results in
a proportionate life span of 𝑇𝑆 = 6.3 · 10−14 for wear-agnostic
memory and 𝑇𝑆 = 2.7 · 10−11 for wear-sensitive devices. For this
type of allocation, putting the allocation into DRAM is the optimal
placement strategy for all energy types. In the energy mix the
allocation only emits 1.6 · 10−15 gCO2e when placed in DRAM,
while it would emit 5.4 · 10−10 gCO2e when placed in Intel Optane.

Scenario B: Medium-Lived Allocation, Many Accesses: This work-
load allocates the memory for 50ms and accesses it 100 000 times.
The placement is restricted to persistent memory. This results in
𝑇𝑆 = 3.2 · 10−10 for wear-agnostic memory and 𝑇𝑆 = 2.7 · 10−6 for
wear-sensitive devices. Since this allocation requires placement in
a non-volatile memory, placing it in DRAM is not an option. Due
to the wear-sensitive nature of Optane it is highly inefficient for
this kind of memory placement (5.3 gCO2e when using the energy
mix), making the Viking NVDIMM (8.2 · 10−12 gCO2e using the
energy mix) the best option across all energy sources.

Scenario C: Long-Lived Allocation, Few Accesses: This workload
allocates the memory for 5 s and accesses it five times. There are
no placement requirements for this allocation. This results in 𝑇𝑆 =

3.2 · 10−8 for wear-agnostic memory and𝑇𝑆 = 1.3 · 10−10 for wear-
sensitive devices. For this type of allocation, the ideal placement
depends on the current energy source. DRAM is the ideal placement
decision for this allocation when using wind energy with 6.4 ·
10−11 gCO2e (8.0 · 10−11 gCO2e for Optane). However, when using
more carbon-intense energy sources like the mix, natural gas, or
coal, the operational carbon outweighs the embodied carbon so
that Optane becomes more efficient (8.1 · 10−10 gCO2e for DRAM
and 2.7 · 10−9 gCO2e for Optane when using the mix).

7 OUTLOOK: PROVISIONING SYSTEMS
The components presented with the carbon-FooBar approach,
namely the carbonmodel, the collected memory characteristics, and
the analysis tools, serve the Memory Governor to make decisions
for a system at runtime. However, they can also be used to reason
about the carbon footprint of systems ahead of runtime, especially
for provisioning new installations. For a specific example: Recent
developments in coherent interconnects such as CXL [27] open the
design space beyond the choice of memory technologies to entirely
new system topologies. With CXL, physical memory transactions
that would have been handled by a local memory controller can
be forwarded to and handled by remote machines, providing an
efficient path for memory disaggregation schemes. Unused memory
on one machine can be donated to another machine that would
otherwise have exhausted its physical memory capacity, albeit with
a latency and bandwidth penalty shown to be slightly larger com-
pared to remote memory accesses in large NUMA systems [25, 28].

Multiple lean machines with low embodied carbon can offset
their interconnect overhead compared to a single complex machine.
This strongly depends on the workload, as high interconnect traffic
betweenmachinesmay cause a disproportionately large operational
carbon footprint. However, for a different workload, allocations

may rarely transition between the cache subsystem and physical
memory, so both performance losses and communication energy
costs will be low. In all three situations, the carbon-FooBar work-
load behaviour model combined with the carbon model can help to
anticipate the actual trade-off between embodied carbon savings
and operational costs. Additionally, it supports provisioning de-
cisions, complementing previous solutions [1], with performance
predictions to ensure operational objectives can be met.

8 RELATEDWORK
Research has shown the importance of incorporating system soft-
ware for effective system-wide energy management [11, 35]. At
the same time, advances in operating systems established sup-
port for new hardware properties such as non-volatile, persistent
memory [4] in embedded systems [9], data-centre systems [7], and
large-scale main-memory database systems [23, 24] as well as disag-
gregated memory systems [36]. The idea of carbon-aware workload
placement, based on application SLAs has been discussed before [3],
but with a stronger focus on compute jobs in a cluster compared to
the proposed carbon-FooBar approach with memory placements
within one system. In addition, our position paper also includes the
impact of endurance and embodied carbon, which allows for other
resources to be used, depending on the excess low-carbon energy
supply [31] and the production conditions [18]. However, the com-
bination and joint use of different memory technologies in a single,
composable system requires additional support. Special-purpose
solutions have been explored in individual cases [33, 34] but generic
approaches at the operating system level are still missing. To make
efficient use of different types of memory, the operating system
needs to adapt applications at runtime (i.e. depending on memory
access patterns) to the available hardware resources (i.e. type and
size). The idea of scoped allocators to denote requirements for spe-
cific buffers has been demonstrated previously in the context of
NUMA-aware data placement [14]. Although that work targeted
quantitative requirements like latency and throughput, it did so by
specifying the desired NUMA node (explicitly or implicitly) rather
than by weighted resource characteristics.

9 CONCLUSION
The carbon impact, both embodied and operational, is crucial in the
design and operation of computer systems. Heterogeneous systems,
composed of novel memory interfaces and cell types, require system
software and programming models to catch up to the opening gap
between existing abstractions and the underlying technologies.

In this paper, we proposed our carbon-FooBar approach to-
wards carbon-aware memory placements with novel memory tech-
nologies. carbon-FooBar builds on the notion of a Memory Gov-
ernor, an operating system component that combines knowledge
of workload behaviour and sensitivity with available hardware
characteristics for allocating memory resources energy-efficiently.
Our envisioned energy-FooBar notation forms a central vehicle
for exchanging and persisting this information. We outlined the
interactions and information flow between different components
in our architecture that help to tune and balance system energy
consumption, carbon-intensity, and modelled embodied carbon
through efficient memory placement.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

REFERENCES
[1] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj

Chakkaravarthy, David Brooks, and Carole-Jean Wu. 2023. Carbon Explorer: A
Holistic Framework for Designing Carbon Aware Datacenters. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 118–132.
https://doi.org/10.1145/3575693.3575754

[2] Shoaib Akram. 2021. Performance Evaluation of Intel Optane Memory for
Managed Workloads. ACM Transactions on Architecture and Code Optimization
18, 3, Article 29 (apr 2021), 26 pages. https://doi.org/10.1145/3451342

[3] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene
Zhang. 2022. Treehouse: A case for carbon-aware datacenter software. Proceed-
ings of HotCarbon 2022: First Workshop on Sustainable Computer System Design
and Implementation (2022).

[4] Katelin Bailey, Luis Ceze, Steven D Gribble, and Henry M Levy. 2011. Operating
System Implications of Fast, Cheap, Non-Volatile Memory. In Proceedings of the
2011 ACM SIGOPS Workshop on Hot Topics in Operating Systems (HotOS’11). 1–5.

[5] Writam Banerjee. 2020. Challenges and Applications of Emerging Nonvolatile
Memory Devices. Electronics 9, 6, Article 1029 (2020).

[6] Rishiraj A Bheda, Jason A Poovey, Jesse G Beu, and Thomas M Conte. 2011.
Energy efficient phase change memory based main memory for future high per-
formance systems. In Proceedings of the 2011 IEEE International Green Computing
Conference. 1–8.

[7] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell DE Long, and Ethan L Miller.
2020. Twizzler: a Data-Centric OS for Non-Volatile Memory. In Proceedings of
the 2020 USENIX Annual Technical Conference (ATC’20). 65–80.

[8] Stacey L. Dolan and Garvin A. Heath. 2012. Life Cycle Greenhouse Gas Emissions
of Utility-ScaleWind Power. Journal of Industrial Ecology 16, s1 (2012), S136–S154.
https://doi.org/10.1111/j.1530-9290.2012.00464.x

[9] Christian Eichler, Henriette Hofmeier, Stefan Reif, Timo Hönig, Jörg Nolte, and
Wolfgang Schröder-Preikschat. 2021. Neverlast: An NVM-centric operating
system for persistent edge systems. In Proceedings of the 12th ACM SIGOPS
Asia-Pacific Workshop on Systems (APSys’21).

[10] Electricity Maps ApS. 2022. Electricity Maps. Acc. 2023-05-16. https://app.
electricitymaps.com/map

[11] Carla Schlatter Ellis. 1999. The case for higher-level power management. In
Proceedings of the 1999 ACM SIGOPS Workshop on Hot Topics in Operating Systems
(HotOS’99). 162–167.

[12] Green Software Foundation. 2021. Software Carbon Intensity Stand-
ard. https://github.com/Green-Software-Foundation/sci/blob/main/Software_
Carbon_Intensity/Software_Carbon_Intensity_Specification.md

[13] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, and Carole-Jean Wu. 2022. ACT: Designing Sustainable Computer
Systems with an Architectural Carbon Modeling Tool. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (ISCA ’22). Association
for Computing Machinery, 784–799. https://doi.org/10.1145/3470496.3527408

[14] Wieland Hagen, Max Plauth, Felix Eberhardt, Frank Feinbube, and Andreas
Polze. 2016. PGASUS: a framework for C++ application development on NUMA
architectures. In Proceedings of the Fourth IEEE International Symposium on
Computing and Networking (CANDAR’16). 368–374. https://doi.org/10.1109/
CANDAR.2016.0071

[15] Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang Schröder-Preikschat, and
Timo Hönig. 2021. The Price of Meltdown and Spectre: Energy Overhead of
Mitigations at Operating System Level. In Proceedings of the 14th European Work-
shop on Systems Security (Online, United Kingdom) (EuroSec ’21). Association
for Computing Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/
3447852.3458721

[16] Timo Hönig, Benedict Herzog, and Wolfgang Schröder-Preikschat. 2019. Energy-
demand Estimation of Embedded Devices using Deep Artificial Neural Net-
works. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing
(SAC’19). 617–624.

[17] Mark Horowitz. 2014. Computing’s Energy Problem (and what can we do about
it). In Digest of Technical Papers-IEEE International Solid-State Circuits Conference,
Vol. 57.

[18] Donald Kline, Nikolas Parshook, Xiaoyu Ge, Erik Brunvand, Rami Melhem,
Panos K. Chrysanthis, and Alex K. Jones. 2019. GreenChip: A tool for evaluating
holistic sustainability of modern computing systems. Sustainable Computing:
Informatics and Systems 22 (2019), 322–332. https://doi.org/10.1016/j.suscom.
2017.10.001

[19] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating
STT-RAM as an energy-efficient main memory alternative. In Proceedings of
the 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS’13). 256–267. https://doi.org/10.1109/ISPASS.2013.6557176

[20] Edgar A. León, Brice Goglin, and Andres Rubio Proaño. 2019. M&MMs: Nav-
igating Complex Memory Spaces with Hwloc. In Proceedings of the ACM/IEEE
International Symposium on Memory Systems (MEMSYS’19). 149–155.

[21] Ingo Molnar, Morten Rasmussen, and Quentin Perret. 2019. Energy Aware
Scheduling. Acc. 2023-02-03. https://www.kernel.org/doc/html/latest/scheduler/
sched-energy.html

[22] Patrick R. O’Donoughue, Garvin A. Heath, Stacey L. Dolan, and Martin Vorum.
2014. Life Cycle Greenhouse Gas Emissions of Electricity Generated from Con-
ventionally Produced Natural Gas. Journal of Industrial Ecology 18, 1 (2014),
125–144. https://doi.org/10.1111/jiec.12084

[23] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Will-
halm, and Grégoire Gomes. 2017. Memory management techniques for large-
scale persistent-main-memory systems. In Proceedings of the Very Large Data
Base Endowment (VLDB’17). 1166–1177.

[24] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data. 371–386.

[25] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutsovasilis, Andrea
Reale, Kostas Katrinis, and H Peter Hofstee. 2020. Thymesisflow: A software-
defined, hw/sw co-designed interconnect stack for rack-scale memory disaggreg-
ation. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). IEEE, 868–880.

[26] Stefan Reif, Benedict Herzog, Judith Hemp, Timo Hönig, and Wolfgang Schröder-
Preikschat. 2020. Precious: Resource-Demand Estimation for Embedded Neural
Network Accelerators. In Proceedings of the 1st International Workshop on Bench-
marking Machine Learning Workloads on Emerging Hardware (CHALLENGE’20).
mlsys.org, 1–9.

[27] Debendra Das Sharma. 2022. Compute Express Link®: An open industry-
standard interconnect enabling heterogeneous data-centric computing. In 2022
IEEE Symposium on High-Performance Interconnects (HOTI). 5–12. https://doi.
org/10.1109/HOTI55740.2022.00017

[28] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, Ren Wang, and
Nam Sung Kim. 2023. Demystifying CXL Memory with Genuine CXL-Ready
Systems and Devices. arXiv preprint arXiv:2303.15375 (2023).

[29] Swamit Tannu and Prashant J. Nair. 2022. The Dirty Secret of SSDs: Embodied
Carbon. Proceedings of HotCarbon 2022: First Workshop on Sustainable Computer
System Design and Implementation (2022).

[30] thinkstep AG. 2019. Life Cycle Assessment of Dell Latitude 7300 25th An-
niversary Edition. Acc. 2023-05-19. https://www.delltechnologies.com/asset/en-
us/products/laptops-and-2-in-1s/technical-support/full-lca-latitude7300-
anniversary-edition.pdf

[31] Amanda Tomlinson and George Porter. 2022. Something Old, Something New:
Extending the Life of CPUs in Datacenters. Proceedings of HotCarbon 2022: First
Workshop on Sustainable Computer System Design and Implementation (2022).

[32] Michael Whitaker, Garvin A. Heath, Patrick O’Donoughue, and Martin Vorum.
2013. Second corrigendum to: Whitaker, M., G. A. Heath, P. O’Donoughue, and
M. Vorum. 2012. Life cycle greenhouse gas emissions of coal-fired electricity
generation: Systematic review and harmonization. Journal of Industrial Ecology
16(S1): S53–S72. Journal of Industrial Ecology 17, 5 (2013), 789–792. https:
//doi.org/10.1111/jiec.12060

[33] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A hybrid index
key-value store for DRAM-NVM memory systems. In Proceedings of the 2017
USENIX Annual Technical Conference (ATC’17). 349–362.

[34] Jian Xu and Steven Swanson. 2016. NOVA A log-structured file system for
hybrid volatile/non-volatile main memories. In Proceedings of the 2016 USENIX
Conference on File and Storage Technologies (FAST’16). 323–338.

[35] Heng Zeng, Carla S Ellis, Alvin R Lebeck, and Amin Vahdat. 2002. ECOSystem:
managing energy as a first class operating system resource. In Proceedings of
the 2002 ACM SIGPLAN International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’02). 123–132.

[36] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. 2021. One-
sided RDMA-Conscious Extendible Hashing for Disaggregated Memory. In Pro-
ceedings of the 2021 USENIX Annual Technical Conference (ATC’21). 15–29.

6

https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1145/3451342
https://doi.org/10.1111/j.1530-9290.2012.00464.x
https://app.electricitymaps.com/map
https://app.electricitymaps.com/map
https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://doi.org/10.1145/3470496.3527408
https://doi.org/10.1109/CANDAR.2016.0071
https://doi.org/10.1109/CANDAR.2016.0071
https://doi.org/10.1145/3447852.3458721
https://doi.org/10.1145/3447852.3458721
https://doi.org/10.1016/j.suscom.2017.10.001
https://doi.org/10.1016/j.suscom.2017.10.001
https://doi.org/10.1109/ISPASS.2013.6557176
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://doi.org/10.1111/jiec.12084
https://doi.org/10.1109/HOTI55740.2022.00017
https://doi.org/10.1109/HOTI55740.2022.00017
https://www.delltechnologies.com/asset/en-us/products/laptops-and-2-in-1s/technical-support/full-lca-latitude7300-anniversary-edition.pdf
https://www.delltechnologies.com/asset/en-us/products/laptops-and-2-in-1s/technical-support/full-lca-latitude7300-anniversary-edition.pdf
https://www.delltechnologies.com/asset/en-us/products/laptops-and-2-in-1s/technical-support/full-lca-latitude7300-anniversary-edition.pdf
https://doi.org/10.1111/jiec.12060
https://doi.org/10.1111/jiec.12060

	Abstract
	1 Introduction
	2 The energy-FooBar Approach
	3 Carbon-aware Memory Governor
	4 Placement Requirements
	5 Memory Carbon Model
	5.1 Carbon Metric
	5.2 Energy Model

	6 Case Study
	6.1 Carbon Emissions
	6.2 Workload Analysis

	7 Outlook: Provisioning Systems
	8 Related Work
	9 Conclusion
	References

