Recognizing HPC Workloads
Based on Power Draw Signatures

Sven Kohler!, Lukas Wenzel!, Max Plauth!,
Pawel Boning?, Philipp Gampe?, Leonard Geier?, and Andreas Polze!
Hasso Plattner Institute for Digital Engineering
Operating Systems and Middleware Group
University of Potsdam, Germany

1 {firstname.lastname}@hpi.uni-potsdam.de
2 {firstname.lastname}@student.hpi.uni-potsdam.de

Abstract—The power draw of computing infrastructure—
besides being a critical operating resource—can give valuable
insights into the type and behavior of workloads running on
it. In consequence, runtime power analysis can be a promising
non-invasive monitoring approach. Recent work has shown that
a system’s power draw can support reliable conclusions about
running workloads, which serves as a basis for runtime placement
decisions to adapt the system’s cumulative energy demand to the
available energy supply in a volatile electricity grid.

In this work, we reproduce earlier findings on the classification
of running workload from a set of previously known workloads
purely through external power measurements. Using a k-nearest
neighbors classifier, we identify workloads of the NAS bench-
mark suite with a macro F1-score of 98% for OpenMP-based
implementations and 85% for MPI-based implementations.

Index Terms—Power and Energy Measurements, Heteroge-
neous Systems, Machine Learning, System Software

I. INTRODUCTION

The power supply is a critical operating resource for all
types of computing systems, ranging from embedded devices
over desktop systems to high-performance supercomputers. In
consequence, understanding the power characteristics of the
executed workloads is of supreme importance when planning
and later operating a particular system. These characteristics
encompass both the peak power demand as well as the cumu-
lative energy demand over time. The upper limit to the power
draw is not only imposed by each of the system’s components’
power ratings—the operational costs of the power supply itself
can be subject to dynamic changes due to the increasing share
of renewable energy sources in the power grid [/1]].

With a given set of workloads with known characteristics
to be executed, a computing system’s job manager has three
options to adapt the power and energy demand to the currently
available resources: Firstly, it can work differently by changing,
for example, the clock frequency and supply voltage of the
processing units. Secondly, the computing system can work
another time, by deferring or picking a particular workload that
matches the current supply and cost. And lastly, the system can
work elsewhere by moving a workload between heterogeneous
processing units (i.e., accelerators) [2].

To make decisions based on any of those three approaches,
a job manager requires information about the power draw

profile for each workload in each of its program phases. These
profiles can be retrieved from a priori classification, or they
can be detected on-the-fly at runtime if no such classification is
provided beforehand with the job. While workload classifica-
tion can be achieved by static means like code analysis [3]] or
dynamic features like performance metrics [4]], [5] at runtime,
the system’s power draw itself can be a promising indicator
of the power profiles of running workloads, as it can be
ascertained using non-invasive measurement facilities that can
be completely external to the observed system.

The observable information in the time-series of a system’s
power draws is only an aggregate of a significantly more
complex system state, where effects on different layers of
abstraction overlap. On the hardware level, different units in
the system like CPUs, memory, accelerators, and intercon-
nects exhibit individual power draws. These are ultimately
a response to workload behavior, but advanced optimization
strategies such as caching or out-of-order execution introduce
a certain level of diversion, precluding a direct mapping
between executed operations and each unit’s power draw. On
the workload level, multiple independent workloads as well
as background processes can be executed concurrently and
are likely to interfere. Thus the combined power draw is not
necessarily the same as the sum of individual workload power
draws measured in isolation. Furthermore, workloads may
exhibit different behavior and consequently different power
draws in the course of different execution phases.

Taken together, these characteristics render approaches that
explicitly derive the system state from the power draw time-
series using fixed decoding rules impractical. Also, such a set
of rules would necessarily be specific to a particular hardware
platform. In contrast, an automatic classification mechanism
can be adapted to a particular system setting during a training
phase, and may be expected to produce more accurate results
in a broader range of situations.

Therefore, this work explores the feasibility of a system that
classifies a running workload from a set of previously known
and analyzed workload characteristics purely through external
power measurements of the observed system using a k-nearest
neighbors classifier with manual hyperparameter tuning. We
expect workloads of similar power draw characteristics to

respond similarly to placement decisions, as caused by the
utilization of different system resources. Hence, the mem-
bership in a particular characteristics class would be a good
indicator for the placement strategy choice by a job manager.
In our approach, the automatic classifier is trained to classify
a single running workload according to a predefined set of
placement classes, which are coupled with distinct sets of rules
for the job manager on how, where, and when to execute this
workload. After an initial recognition phase, a job manager
can use this classification to optimize the placement of the
workload among other workloads in the system. A complete
system must theoretically also involve on-going monitoring as
the characteristics may change with the program phases and
the placement must be updated.

In particular, our approach builds up on top of a pre-print
by Copos and Peisert [6], who investigate the feasibility of
detecting abuse of large-scale HPC computing resources based
on the overall power consumption of multi-node compute
racks. Like the authors, we limit our scope to recognizing
a single workload running at a time due to the frequently
encountered batch execution of HPC jobs. Though we are not
interested in the binary classification of legitimate and ille-
gitimate workloads, but rather a distinction between multiple
workload classes sharing similar placement and scheduling
guidelines, their results are still promising: From a set of
known legitimate workloads, they train a classifier based on
random forests achieving up to 97% precision and 95% recall,
which would be more than sufficient for our approach, where
the results are used for optimized placement of unknown work-
loads and have no consequences for correctness. Nevertheless,
as the only basis for the classification are the power draws and
placement classes regard workloads as equal up to their power
draw characteristics, their approach is likely applicable.

One important constraint on the classification mechanism is
that it needs to be lightweight and reproducible. The energy
cost of each classification as well as the amortized cost of
training and adaptation for new jobs may not exceed the po-
tential energy savings gained using a—yet to be investigated—
optimized placement strategy. Current deep learning meth-
ods, which require multiple network layers and considerable
amounts of training data (hence repeated runs of the test work-
load) are prone to high energy demands themselves [[7]], [8]]
and are thus not taken into closer consideration at this early
point in our scenario. Whether these assumptions hold true is
left to future analysis.

II. RELATED WORK

Identifying workloads based on non-intrusive side-channel
information—Ilike power signatures in particular—is of on-
going interest, ranging from mobile consumer devices [9]] to
HPC systems [[10], [[11]].

The techniques are commonly split up into two distinct
tasks: data collection and data analysis/transformation [11]),
[12]. Both are adjusted to the context in which they are going
to be used. For instance, during the collection step, systems
for energy-constrained environments (e.g. mobile) such as the

ones developed by Jacoby et al. [[13] and Kim et al. [[12] don’t
yield data for the entire runtime of a workload, but only for
periods of elevated power consumption that are considered
of particular interest. In a less constrained environment, it is
entirely possible to record and store complete power traces
(L1, [6l, (91, [10].

Data collection is typically followed by a data transfor-
mation step to aggregate statistical features. Which features
are most suited to a given context varies with the hard- and
software configuration [I1]—a set of features that delivers
good results for a mobile device does not necessarily do for
an HPC cluster. Interestingly enough, it seems like a small
number of features already allows the workload differentiation
in some cases. With HPC clusters, for instance, a feature
vector of the normalized maximum and the normalized median
(the respective value divided by the minimum value) results
in good clusterings of workloads for some authors [10],
while aforementioned Copos and Peisert [6] use larger feature
vectors as signatures. On an Intel Xeon-based rack, they aim to
detect anomalies—undesired workloads like mining electronic
currency—among other workloads considered benign.

In this work we re-evaluate the approach of Copos and
Peisert on an IBM OpenPower machine with the particular
objective to distinguish workloads for later placement deci-
sions rather than detecting an anomalous workload.

III. EXPERIMENTAL DESIGN

This section introduces details of our experiment’s design.
In addition to detailed description of the employed hardware
platform, the workflows employed for data collection, feature
extraction, and classification are documented hereinafter.

A. Hardware Platform

Our workload was executed on an IBM Power System
S824L [14], which features two POWERS8 CPUs with ten
cores, each configured with a Simultaneous Multithreading
(SMT) level of eight hardware threads per core. For this paper,
we limit our experiment to CPU-based workloads despite
available accelerator cards in this test machine and will not yet
investigate the energy impact of workload placement decisions
in a heterogeneous system.

The S824L platform provides system-wide power readings
through the Intelligent Platform Management Interface (IPMI),
which is accessible from within the system for example
using Linux’ hwmon sysfs interface. However, we found the
reported values too course-grained and thus not feasible for
any analysis, although on a newer generation IBM AC922—
unavailable for our experiments—these values looked more
promising. More reliable power measurement counters on
the OpenPower platform are available via its power and
thermal management unit, the On-Chip-Controller (OCC) [15].
Accessing those counters typically requires a custom-build
firmware. We ruled out this approach, as our lab’s computing
platform is a shared resource and other experiments relied on
reproducible environments.

Instead, we opted for external measurement devices, that
intercept the system’s power supply and measure the power
draw from the wall socket. We employed two Microchip
MCP39F511N [16] power meters, each allowing for two chan-
nels up to 15 A at a maximum of 230V, which is sufficient
for the four power supply units of the S824L system. An
MCP39F511N measures the power demand over a 2 m{2 shunt
with a 24-bit delta-sigma analog-to-digital converter (ADC).
This allows an accuracy of 0.5 %. The sampling rate is phase-
locked to the line frequency (50 Hz in our country) and allows
a configurable number of samples per line-frequency cycle.

B. Data Collection

In order to reduce self-interference on the S824L test ma-
chine for the data collection workflow, we spatially and tempo-
rally separated the workload execution from the measurement
and analysis. The USB data ports of the two MCP39F511N’s
are attached to an external measurement machine. This is
comparable to a future system where the functionality is
implemented, for example, in the OCC communicating with
the operating system using firmware calls.

On the measurement machine, the power samples are
captured using PINPOINT [17]], a tool that can report the
cumulative energy draw as well as the power time-series
for an executed process. File exchange, communication, and
synchronization between the test and the recording machine
are orchestrated using a reusable SSH connection and a custom
build controlle—implemented as a simple HTTP app. For
each workload the executable is transferred to the S824L,
started and after termination, the continuously recorded power
draw series is trimmed to the execution timestamps as reported
by the controller before being stored for further processing. All
recordings were taken with minimal other active processes to
reduce any noise in the training data.

C. Feature Extraction

The feature extraction workflow outlined in is
applied in this work and is comprised of the four stages
sensor fusion, segmentation, segment grouping and feature
calculation, which are explained in further detail hereinafter.

1) Sensor Fusion: Using a dedicated channel for each of
the four power supply units of the employed S824L system,
each power draw reading in our setup is a four-dimensional
data vector. To reduce the four-dimensional vector to a scalar
value, the sensor fusion stage applies one of the four simple
reduction functions sum, average, min, and max. Significantly
reduced processing times in later stages are the main mo-
tivation for reducing the four-dimensional vectors to scalar
values. The reduction is performed under the assumption that
all power supply units feed the same internal voltage rails and
therefore the individual load on each power supply should not
provide any additional information, e.g., on what particular
system components may be under load at any time.

2) Segmentation: The continuous time series of fused
power draw samples needs to be split into segments (some-
times also known as windows) for further processing. Most

¥ PP OV PP IV PR IV P

Al St Sl e, |
b M ot A | |3
Ak b A, 5
[N gL

N
w
&

Feature Calculation

=
)
o

o
~
@

L 0L J

Feature Vectors

Fig. 1. Workflow diagram of the feature extraction. The four feature extraction
stages are denoted on the right. The labels on the left stand for the type of
data being processed in each stage.

notable, the use of segmentation is crucial to enable on-the-fly
classification at runtime based on the continuous power draw
measurements. Furthermore, employing segments of consistent
size and value domain enables a broader range of classification
algorithms that can be applied to the data. Finally, dividing
the continuous time-series measured for a workload into short
individual segments enables us to capture different execution
phases. These phases can differ widely in their behavior and
thus might confuse a classification algorithm when applied to
the entire time series. This method leaves room for potential
workload-phase detection but also for determining the simi-
larities of workloads during different stages.

Segments have two parameters: size and stride. The size
defines how many continuous samples a segment is comprised
of, whereas the stride defines the offset of a segment relative
to its predecessor. Segments can overlap or have gaps between
them if the stride is chosen accordingly. The parameters need
to be tuned to group relevant information for a stretch of time.

The feature calculation stage can only capture patterns with
a period smaller than the segment size, so this parameter
should be large enough in order not to obscure potentially
relevant patterns. Choosing a too large segment size may ex-
ceed the expressive capacity of the feature vector the segment
is condensed into during the feature calculation stage. For
an excessively large stride, large gaps between segments and
a small number thereof are unlikely to facilitate adequate

classification. If the stride is too small, a lot of redundant
segments are generated, resulting in unreasonable resource
demand and processing times.

3) Segment Grouping: A potential disadvantage of calculat-
ing features solely based on single segments is that recurring
power draw patterns stretching across multiple segments are
potentially not captured by this approach. As a countermea-
sure, neighboring segments are combined into segment groups
to capture temporal locality across a longer stretch of time.
The segment grouping stage groups segments based on the
parameters group size and a group stride, analog to the
parameters used to generate segments. Similarly, both of these
parameters require careful tuning.

4) Feature Calculation: Based on the segment groups, the
feature calculation stage produces a feature vector for each
segment group, using relatively simple operations to restrict
the computational effort to a reasonable amount. The feature
vector is comprised of time-domain statistics such as absolute
energy, minimum, maximum, mean, standard deviation, and
quantiles. Furthermore, the power-spectral density is deter-
mined in the frequency-domain, yielding the strength of the
variations as a function of frequency. The three strongest fre-
quencies identified by this analysis as well as their amplitudes
are also part of the feature vector.

D. Classification

The classification workflow consists of the two stages
scaling and classification that the feature vectors have to go
through. While the scaling stage is optional, its omission is
very likely to negatively impact the accuracy of the classifica-
tion stage. Both stages are implemented using the scikit-learn
[18] library. After the feature extraction stage is finished, the
classification stage can use the resulting feature vectors for
training, validation, or prediction. The classification workflow
can be operated in one of the three modes training/testing,
validation and prediction.

1) Scaling Algorithm: Depending on the choice of the
scaling algorithm, each set of feature vectors is scaled to
one of the ranges [0,1] or [—1,1] as many classifiers are
designed with the assumption that values vary on comparable
scales. Our classification workflow can be configured to used
one of the scaling algorithms MinMaxScaler, StandardScaler,
and RobustScaler. The first two scaling algorithms require no
particular parameter adjustment and are particularly sensitive
to outliers which can be a desired feature to expose outliers
more strongly. The RobustScaler algorithm reduces outliers by
scaling the data according to a percentile range.

2) Classification Algorithm: Similarly to the scaler, the
selection of the classification algorithm can be considered as
the main parameter of this stage. The available classification
algorithms are LogisticRegression, DecisionTree, LinearDis-
criminantAnalysis, GaussianNB, SupportVector, and KNear-
estNeighbor.

3) Modes of Operation: In training/testing mode, a model
is created based on labeled feature vectors, with the labels
identifying the workload under test. The validation mode is

TABLE I
Accuracy and execution time for different fusion functions.
The one employed by us highlighted in italics.

Fusion Function | Run-time | Avg. Accuracy |

None 95.04 s 95.45 %
Sum 28.34 s 95.44 %
Average 27.56 s 95.51 %
Minimum 30.69 s 95.49 %
Maximum 31.60 s 95.43 %

used to validate a previously trained model in a separate
step, e.g. for fine-tuning of meta-parameters. In addition to
the model generated by the fraining/testing mode, the valida-
tion mode also operates on labeled feature vectors. Finally,
the prediction mode uses the trained model yielded by the
training/testing mode to assign unlabeled feature vectors to
one of the trained workloads.

IV. PARAMETER TUNING

In this section, we present how the meta-parameters are
tuned for evaluation. As mentioned in the work-
flows for data collection, feature extraction, and classification
require a certain degree of configuration. Choosing the optimal
configuration parameters is not trivial and requires experience
and testing, as meta-parameters can have a significant impact
on the quality of the results. As these meta-parameters need to
be set manually, this section explains how the meta-parameters
were chosen for the evaluation of our work.

A. Data Collection

For the workloads under test, the problem size for each
workload has been dimensioned to result in execution times
of roughly five minutes in order to yield sufficiently large
power draw recordings of comparable lengths. Furthermore,
the power draw recordings were performed for ten repeated
executions, allowing us to eliminate sporadic behavior during
training and validation. We configured our power meters to a
sampling rate of 200 Hz.

B. Feature Extraction

Trial and testing were done to determine a configuration for
the meta-parameters of the feature extraction workflow that
result in an adequate accuracy of the classification step. As de-
noted in the choice of the reduction operator employed
during the sensor fusion stage only has a marginal impact on
the accuracy. Not performing sensor fusion at all does not
have a significant impact on the classification accuracy, but
results in much longer processing times. For the evaluation,
the sum operator is used—reflecting our assumption that all
power supply units are feeding into the same power rails.

To identify decent values for the segmentation parameters
segment size, segment stride, group size, and group stride, var-
ious configurations and their respective accuracy were tested
as illustrated in As the accuracy is subject to vari-
ance due to the randomized train/test sets, all configurations
yielding accuracy scores below 95% were eliminated, resulting

S_Size G_Size Average Accuracy (%)
4[97,0 [96,1 | 948 [96,6 952 61]
4000 2| 95,9 | 94,9 957 954 93,5
1] 96,0 94,4 94,1
4] 959 [955 94,1 [96,0] 94,9
2000 2| 944 93,6 94,9 94,0 94,7
1] 91,7 91,0 90,4
4| 943 938 915 942 928
1000 2| 915 896 922 894
1] 87,1 85,5
1 2 | 4 [2] a 1] 2] 4 c_stride
500 1000 2000 S_Stride

Fig. 2. Accuracies in the NAS-OMP experiment averaged across all available
classifiers (higher is better). From the various configurations for size/stride of
segments/groups, first all configurations yielding accuracies above 95% were
identified as potential configuration candidates in a first step (highlighted
with red border). Configurations filtered due to low accuracy or a small
number of resulting feature vectors are shown in light grey. Cells in dark gray
correspond to invalid parameter configurations, i.e., where the stride exceeds
the segment/group size.

S_Size G_Size Runtime (s)
4[H97,00 97,2 96,4 | 501 513
4000 2| 1123 54,1
1] 63,8
411902 94,2 94,3 481
2000 2
1
4
1000 2
1
1t 2] a1] 2T]a] 1] 21 4 c_stide
500 1000 2000 S_Stride

Fig. 3. Required runtime of the feature extraction and classification (lower is
better) of the configurations chosen above. In a second step, the size/stride of
segments/groups yielding the shortest execution time was selected, with the
prospective usage as live classification during run-time in mind. The runtime
shown is the average of 20 measurements corresponding to 5 minutes of
workload execution.

in the final configuration candidates shown in With
only minor differences in their accuracy scores, execution time
was used as the deciding factor for picking the parameter
configuration documented in for our evaluation.

C. Classification

The selection of meta-parameters for the classification
workflow determines how the system organizes feature vectors
into categories and how well it behaves in the presence of edge
cases, outliers, and anomalies. As each scaling algorithm and
classification algorithm have particular strengths and weak-
nesses regarding different types of feature distributions, it can
be crucial to select them carefully.

To identify the scaling algorithm yielding the highest ac-
curacy scores for our scenario, the Standard, MinMax, and
Robust scaling algorithms as well as the omission of the
scaling stage were tested (see [Table TI). Omitting the scaling
stage results in a significantly lower accuracy compared to
configurations that use a scaling algorithm. Even though
both the MinMax and the Robust scaling algorithm provide
similarly high levels of accuracy, we have decided to use
the MinMax scaling algorithm in our evaluation as it is very
sensitive to outliers which could help expose anomalies.

Lastly, the classification algorithms LogisticRegression, De-
cisionTree, LinearDiscriminantAnalysis, GaussianNB, Sup-

TABLE II
Accuracy of different feature scaling algorithms.
The one employed by us highlighted in italics.

| Scaling Algorithm | Avg. Accuracy |

No Scaling 69.50 %

Standard 92.62 %

MinMax 95.44 %

Robust 95.40 %
TABLE III

Accuracy of different classification algorithms.
The one employed by us highlighted in italics.

Classification Algorithm | Avg. Accuracy |

Logistic Regression 95.67%
Decision Tree 94.63%
Linear Discriminant Analysis 97.36%
Gaussian Naive Bayes 92.37%
Support Vector 96.42%
K Nearest Neighbor 97.93%

portVector, and KNearestNeighbor were tested. The data doc-
umented in reveals that k-nearest neighbor achieves
the highest accuracy in our experiments.

The final summary of all meta-parameter that were identi-

fied in this section are denoted in

V. EVALUATION

In this section, several experiments are conducted based on
the experimental design detailed in The goal of
these experiments is to evaluate what accuracy our classifi-
cation approach can achieve for the task of identifying HPC
workloads running on our test system.

A. Workloads

With future placement decisions based on specific workload
characteristics in mind, good workloads for our experiments
should serve as instances of particular known problem classes
like, e.g., the Berkeley Dwarfs [|19]. Yet, due to implementation
differences workloads of the same class are likely to yield
different power signatures, just as with other performance
metrics. For our experiments, we thus first want to discriminate
between workloads of the same implementation strategy.

The NAS Parallel Benchmark (NPB) suite [20]—which
in turn influenced the definition of the Berkeley Dwarfs—

TABLE IV
Final selection of meta-parameters.

| Parameter | Value
Segment Size 4000 ms
Segment Stride 1000 ms
Group Size 2
Group Stride 2
Fusion Function Sum

MinMax Scaler
K Nearest Neighbor (k = 1)

Scaling Alg.
Classification Alg.

360
340 A
320
|
2
2 28 ‘]
2
o r 1
2 260 ‘ !
v
2
o
o 240 A
2204 —— Channel 1
—— Channel 2
2004 —— Channel 3
—— Channel 4
180 T

50 100 150 200 250 300 350
Time [Seconds]

o

(a) Power draw series of the Fourier transform benchmark

360

340 A

320
= 300 4
B
©
=
= 2801
o
2 260 1
v
2
o
o 2404

220 A —— Channel 1

—— Channel 2
200 - —— Channel 3
—— Channel 4
180 T T T T T T T
0 100 200 300 400 500 600

Time [Seconds]

(b) Power draw series of the Embarrassingly parallel benchmark

Fig. 4. Two exemplary four-channel power time-series as recorded by the
two Microchip MCP39F511N attached to our IBM S824L test machine. They
show the changing power draw signatures from the start of each workload to
its completion. No sensor fusion has been applied so far on this raw input
data. Note, that the y-axis is trimmed for better readability.

provides multiple implementation strategies for the same prob-
lem. We choose to investigate those using MPI and OpenMP,
as of version 3.4.1 of the NPB suite.

Each benchmark of the suite can be configured to use
different problem sizes that mainly affect execution time and
memory consumption. All OpenMP-based benchmarks used
160 hardware threads, or 64 MPI processes respectively. We
have selected problem size classes resulting in an execution
time of roughly five minutes (or 6000 samples) in order to
yield sufficiently large power draw recordings of comparable
lengths. Each recording was repeated ten times. Two examples
of the captured power time series can be found in

B. Experiments

For these experiments, the recorded data is always split into
a train set and a test set. Both sets consist of labeled files that
contain the power draw recordings of the measured workloads.
In this case, each file represents a separate run of a workload.
The train set is processed by the feature extraction workflow,
and the resulting feature vectors are randomly shuffled and

Idle bt.D cg.D ep.D ft.D is.D lu.D
idie [GO66%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
bt.D 0.00% S84 0.00% 0.00% 0.76% 0.00% 0.00%

cg.D 0.00% 000% 6984 0.00% 0.16% 0.00% 0.00%
ep.D 000% 000% 000%[G8I68% 6.38% 0.00% 0.00%
ft.D 0.00% 2.59% 0.29% 2.30% G889 0.29% 0.29%
is.D 0.00% 000% 870% 0.00% 0.00% [E6I96% 4.35%
wD 000% 000% 000% 000% 0.00% 0.00% 00604

Fig. 5. Confusion matrix of experiment 1 (NAS-OMP distinction). Each cell
corresponds to how likely the two workloads can be confused with each other
(macro Fl-score of 98%). The labels combine the NAS benchmark’s name
(e.g. BT for block tri-diagonal solver) and the problem size class (e.g. D for
the third-biggest problem size). The high recall rates show that a distinction
between different benchmarks of similar problem sizes is possible.

Idle bt.D cg.D ep.D ft.D is.D lu.D
Idle 0.00% 000% 0.00% 0.00% 0.00% 0.00%
bt.D 0.00% 0.00% 0.00% 2.31% 0.00% 0.00%
cg.D 000% 0.00% 0.18% 11.89% 000% 0.00%
ep.D 0.00% 0.00% 0.97%69107% 0.81% 29.156% 0.00%
ft.D 0.00% 3.94% 0.41% 1.04% S8I88% 062% 0.00%
is.D 0.00% 000% 0.16%[61.08% 0.79%| 48.01% 0.00%
wD 000% 000% 000% 0.00% 0.00% 0.00% G005
Fig. 6. Confusion matrix of experiment 2 (NAS-MPI distinction). The

entire experiment has a macro Fl-score of 84%. Although a distinction
between some workloads is possible, especially the integer sort (IS) and
embarrassingly parallel (EP) benchmarks suffer from a high confusion rate.
Further experiments indicate that the confusion rate can be reduced by limiting
the number of threads for this particular case.

fed into the classification workflow. During classification, a
portion of the train set (default: 25%) is used to validate the
model immediately after training. This step was primarily used
for meta-parameter tuning as it avoids over-fitting of the mera-
parameters on the final fest set. During the evaluation, this
validation step can be treated as a minor indicator of success—
the final evaluation is done on the fest set.

In each experiment, we perform six repeated runs of each
benchmark, where each recording is labeled with the bench-
mark executed during this particular run. Four recordings are
used for the frain set (25% validation), whereas the remaining
two are used for the fest set.

a) Experiment 1: Distinguishing OpenMP benchmarks:
For the first experiment, the OpenMP-based implementations
of the bt, cg, ep, ft, is, and lu benchmarks from the NPB
suite have been employed. This experiment tests if parallel
workloads with different computational tasks can be distin-
guished based on the resulting power draw. In this experiment,
no variation was introduced across the workloads regarding
problem size, parallelization, or implementation. The results

of the first experiment are documented in

b) Experiment 2: Distinguishing MPI benchmarks across
varying levels of parallelism: For the second experiment,
the MPI-based implementations of the bt, cg, ep, ft, is, and
lu benchmarks from the NPB suite have been employed. In
contrast to the first experiment, the benchmarks were executed
with varying thread counts. The goal of this experiment is to
test if specific workloads can be identified even across varying
degrees of parallelization. The results of the second experiment

are documented in

C. Discussion

The results of our first experiment (see confirm
that the approach presented in this paper can yield high accu-

racy for the task of distinguishing parallel workloads executed
on the IBM S824L test system. With a macro F1-score of 98%,
the first experiment demonstrates that performing workload
classification solely based on power draw is generally feasible
for a well-known set of workloads.

Varying thread counts in the second experiment still yielded
decent accuracy levels for distinguishing different workloads
(see [Figure 6). To verify if the classification errors might be
caused by the varying thread counts, additional tests have
yielded better accuracy when separate labels were used to
denote runs of the same benchmark but with different thread
counts (data not shown).

VI. CONCLUSION

In order to build a job scheduler that can improve the energy
efficiency of computing resources by placing workloads on the
hardware component most suited for the task at hand, an un-
intrusive, low-overhead mechanism for attributing workloads
to a certain class of characteristics is vital. As a first step
towards realizing this vision, we have evaluated the feasibility
of such an automated classification component in this work
by adapting the approach of Copos and Peisert [|6], who have
suggested the use of power draw signatures to detect anomalies
on a system. Instead of performing anomaly detection, we
have demonstrated that our approach can be used to identify
different benchmarks of the NAS Parallel Benchmark (NPB)
suite based solely on power draw measurement series, achiev-
ing a macro Fl-score of 98% for OpenMP-based benchmarks
and 85% for MPI-based benchmarks.

As we investigated these two implementation strategies
separately, the question remains if workloads of the same prob-
lem class but using different strategies should be considered
as one group or not. A preliminary experiment found that
using our approach we could distinguish OpenMP-based NAS
benchmarks from MPI-based with a macro Fl-score of 88%.
Whether this has to be accounted to overfitting to a specific
implementation or implies a more general distinction needs
further investigation. Likewise, the impact of noise or multiple
workloads running simultaneously on the same machine is left
for future work.

Even though this paper is focused on identifying bench-
marks based on pre-recorded power draw series, preliminary
experiments on applying the same approach for on-the-fly
detection of workloads have yielded very promising results.
To deliver similar levels of accuracy, however, on-the-fly
classification still remains subject to further investigations as
well as the empirical analysis what a energy-aware scheduler
can save with this classification and how it compares to other
classification approaches in terms of their initially required
energy budget. Further improving the discriminability of ex-
ecuted workloads, we wish to expand the evaluation of our

approach to include a wider range of workloads as well as to
incorporate the use of accelerator-based implementations that

leverage the heterogeneity of the used S824L test machine.

REFERENCES

[1] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and M. E.
Papka, “Integrating dynamic pricing of electricity into energy aware
scheduling for HPC systems,” in SC’/3. 1EEE, 2013, pp. 1-11.

[2] B. Herzog, T. Honig, W. Schroder-Preikschat, M. Plauth, S. Kohler,
and A. Polze, “Bridging the gap: Energy-efficient execution of software
workloads on heterogeneous hardware components,” in Proceedings of
the 2019 ACM International Conference on Future Energy Systems (e-
Energy ’19), 2019, p. 428-430.

[3] E. C. Inacio and M. A. Dantas, “A survey into performance and energy

efficiency in hpc, cloud and big data environments,” Int. Journal of

Networking and Virtual Organisations, vol. 14, no. 4, pp. 299-318, 2014.

M. Terai, R. Kashiwaki, and F. Shoji, “Workload classification and

performance analysis using job metrics in the k computer,” 2017.

[5] M. Genkin, F. Dehne, P. Navarro, and S. Zhou, “Machine-learning based
spark and hadoop workload classification using container performance
patterns,” in Benchmarking, Measuring, and Optimizing, C. Zheng and
J. Zhan, Eds. Cham: Springer Int. Publishing, 2019, pp. 118-130.

[6] B. Copos and S. Peisert, “Catch me if you can: Using power analysis

to identify HPC activity,” CoRR, vol. abs/2005.03135, 2020. [Online].

Auvailable: https://arxiv.org/abs/2005.03135

E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-

erations for deep learning in nlp,” preprint arXiv:1906.02243, 2019.

T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the

energy consumption of deep neural networks,” in 2017 51st Asilomar

Conference on Signals, Systems, and Computers. 1EEE, 2017, pp.

1916-1920.

[9] C. Cernazanu and M. Marcu, “Anomaly detection using power signature
of consumer electrical devices,” Advances in Electrical and Computer
Engineering, vol. 15, pp. 89-94, 02 2015.

[10] J. Combs, J. Nazor, R. Thysell, F. Santiago, M. Hardwick, L. Olson,
S. Rivoire, C. Hsu, and S. W. Poole, “Power signatures of high-
performance computing workloads,” in 2014 Energy Efficient Supercom-
puting Workshop, 2014, pp. 70-78.

[11] C.-H. Hsu, J. Combs, J. Nazor, F. Santiago, R. Thysell, S. Rivoire,
and S. Poole, “Application power signature analysis,” 2014 IEEE Inter-
national Parallel & Distributed Processing Symposium Workshops, pp.
782-789, 2014.

[12] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies
and mobile malware variants,” in Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services, ser. MobiSys
’08. New York, NY, USA: ACM, 2008, p. 239-252.

[13] G. Jacoby, N. Davis, and R. Marchany, “Detecting software at-
tacks by monitoring electric power consumption patterns,” Patent
US7877621B2, 2011.

[14] IBM. (2014) Power System S824L Technical Overview and Introduction.
Acc. 2021-06-24. [Online]. Available: https://www.redbooks.ibm.com/
redpapers/pdfs/redp5139.pdf

[15] T. Rosedahl, M. Broyles, C. Lefurgy, B. Christensen, and W. Feng,
“Power/performance controlling techniques in openpower,” in Int. Con-
ference on High Performance Computing. Springer, 2017, pp. 275-289.

[16] Microchip. (2018) MCP39F511N Datasheet. Acc. 2021-06-
24. [Online]. Available: |http://ww1.microchip.com/downloads/en/
DeviceDoc/20005473B.pdf

[17] S. Kohler, B. Herzog, T. Honig, L. Wenzel, M. Plauth, J. Nolte, A. Polze,
and W. Schroder-Preikschat, “Pinpoint the joules: Unifying runtime-
support for energy measurements on heterogeneous systems,” in 2020
IEEE/ACM International Workshop on Runtime and Operating Systems
for Supercomputers (ROSS). 1EEE, 2020, pp. 31-40.

[18] scikit-learn, “Machine Learning in Python,” https://scikit-learn.org, Ac-
cessed: 2021-04-07.

[19] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
berkeley,” 2006.

[20] Jill Dunbar, “NAS Parallel Benchmarks,” Acc. 2021-04-07. [Online].
Available: https://www.nas.nasa.gov/publications/npb.html

[4

=

[7

—

[8

https://arxiv.org/abs/2005.03135
https://www.redbooks.ibm.com/redpapers/pdfs/redp5139.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5139.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20005473B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20005473B.pdf
https://scikit-learn.org
https://www.nas.nasa.gov/publications/npb.html

	Introduction
	Related Work
	Experimental Design
	Hardware Platform
	Data Collection
	Feature Extraction
	Sensor Fusion
	Segmentation
	Segment Grouping
	Feature Calculation

	Classification
	Scaling Algorithm
	Classification Algorithm
	Modes of Operation

	Parameter Tuning
	Data Collection
	Feature Extraction
	Classification

	Evaluation
	Workloads
	Experiments
	Discussion

	Conclusion
	References

