Simulating Digital Rail
From PlanPro railway plannings to SUMO simulations

Arne Boockmeyer, Robert Schmid, Prof. Dr. Andreas Polze
Professorship for Operating Systems and Middleware
Hasso Plattner Institute, University of Potsdam
Contact: arne.boockmeyer@hpi.de
Professorship Operating Systems and Middleware
Prof. Dr. Andreas Polze - osm.hpi.de

Research:

Digital Rail
- mFund Researchprojects with DB Systel, DB Netz (and others): Rail2X, DiAK, RailChain, FlexiDug
- Distributed IoT-Lab for Testautomation

Telemed5000 (Charité)

Teaching:
- Operating Systems
- Parallel and Distributed Systems
- Embedded Systems
- Digital Rail Summer School (2019-22, hpi.de/drss)
The railway domain is getting more and more digital, with new digital devices, processes and open standards.

But introducing new devices is a complex process to guarantee interoperability and conformity with existing systems.

This so far contains several manual steps, this does not scale.

Our Idea: Use digital plannings of railway networks to operate/simulate the railway network, containing the new device and several existing ones.

Therefore we need:

Motivation

- Digital Testcase-Catalog
- Realistic Test-Environments
- Test-Execution System
- Evaluation
- Automatable Configuration

Simulating Digital Rail: From PlanPro railway plannings to SUMO simulations

Arne Boockmeyer, Robert Schmid, Andreas Polze

Chart 3
PlanPro

- A data format, that contains all details about a planned railway network
- Core-part of a full digital planning process – away from paper-based towards digital processes
- XML-based: (but in German)

```xml
<Container>
  <Fstr_Fahrweg/></Fstr_Fahrweg>
  <GEO_Knoten/></GEO_Knoten>
  <Signal/></Signal>
  <TOP_Kante/></TOP_Kante>
  <TOP_Knoten/></TOP_Knoten>
</Container>
```

- Verbose format – already small examples creates massiv file sizes

(Picture shows the PlanPro Werkzeugkoffer (toolbox), a software to display and analyse PlanPro files)
PlanPro Network Creation

<table>
<thead>
<tr>
<th>ProSig 7 / ProVi</th>
<th>PlanPro Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Typical planning tools of DB can already export to PlanPro files</td>
<td>• Create small PlanPro examples</td>
</tr>
<tr>
<td>• Contains many details about infrastructure, geography and more</td>
<td>• Only contains the most relevant aspects of a planning</td>
</tr>
<tr>
<td>• Extensive to create, so only a few railway networks are exported to PlanPro through ProSig 7 / ProVi</td>
<td>• Strong abstraction with large focus on test automation</td>
</tr>
<tr>
<td>• Closed-source, expensive</td>
<td>• Allows us to create many different scenarios</td>
</tr>
</tbody>
</table>

Simulating Digital Rail: From PlanPro railway plannings to SUMO simulations

Arne Boockmeyer, Robert Schmid, Andreas Polze
Chart 5

Available on GitLab: https://gitlab.hpi.de/arne.boockmeyer/planpro-generator
To simulate the railway networks in SUMO, a transformation between the two file formats is necessary.

SUMO-Plain-XML is used as a step in between:

Available auf GitLab: https://gitlab.hpi.de/arne.boockmeyer/planpro-sumo-converter
PlanPro to SUMO Dictionary

- Every TOP_Kante can cover multiple GEO_Kanten
- A GEO_Kante is a function defining the pathway of the rails (Straight, Arc, Clothoid, …) – right now all interpreted as straights
Challenges during Development

In PlanPro, Signals are annotations to TOP_Kanten

SUMO uses nodes as signals

Separating TOP_Kanten causes a lot of confusion during the processing of routes

The position of signals is defined by the distance from the start of the TOP_Kante

SUMO needs exact coordinates

Since every TOP_Kante can cover multiple GEO_Kanten, the related GEO_Kante needs to be determined

The position of the signal than was estimated by the remaining distance
Generation of Routes

- Every route starts at a signal, ends at a signal and covers (multiple) edges
- To generate the routes, a Python-package was developed:
 - The algorithm is a DFS on the topology with a modified neighbor-function
 - Available on GitLab: https://gitlab.hpi.de/arne.boockmeyer/planpro-running-track-generator

Topology as:
- PlanPro (.ppxml)
- JSON*

Routes as:
- JSON
- PlanPro (.ppxml)*

(*: planned)
The Test Controller is a console application that allows the test manager to:

- Print details about the setup of the railway network (incl. routes)
- Show conflicts between routes
- Create trains on routes
- Run all routes (and their combinations)

It contains a basic interlocking

- Manage state of network
- Orchestrating the signals
- Detect conflicts

... and run the SUMO-Simulation!
Demo
Marvis is a hybrid IoT-Testbed, containing:
- Co-Simulation of SUMO and ns-3
- Simulated Nodes and Hardware-in-the-loop
- Fault injection capabilities

Research-Paper:
- Beilharz et. al., “Towards a Staging Environment for the Internet of Things.”, PerCom Workshops, 2021

Available on GitHub: https://github.com/diselab/marvis
The EULYNX-Live-Lab orchestrates connected tests with several devices at different locations.

- Allows to exchange devices and protocols with Kubernetes.
- Contains a generic interlocking as central component.

Simulating Digital Rail: From PlanPro railway plannings to SUMO simulations
Arne Boockmeyer, Robert Schmid, Andreas Polze
Chart 13
Next Steps

Take more details from the PlanPro-file to enrich the SUMO-network (e.g. more types of signals, train detection systems, ...)

- Get geography more precise (solve functions to get more points in between)
- Connect to execution environments to have full test environment (to Marvis or the EULYNX-Live lab)

(if anybody has further ideas, knowledge on some of these points, or anything else, please contact us under arne.boockmeyer@hpi.de)
The PlanPro-Format should be the standard for future full-digital plannings.

It contains many details about infrastructure, geography, ...

The transformation process transforms it to a SUMO network:

The test controller allows the test manager to operate trains in the SUMO network to achieve test automation.
Image Sources

Other images:
Manufactures-Logos from their organizations and company’s
Icons by Microsoft Office
Graphics from our research group
Screenshots from PlanPro tools and plannings
Screenshots of SUMO (https://sumo.dlr.de)