Claud:
Coordination, Locality And Universal
Distribution

Jossekin BEILHARZ and Frank FEINBUBE ! and Felix EBERHARDT and
Max PLAUTH and Andreas POLZE

Hasso Plattner Institute for Software Systems Engineering
University of Potsdam, Germany

Abstract. Due to the increasing heterogeneity of parallel and distributed systems,
coordination of data (placement) and tasks (scheduling) becomes increasingly com-
plex. Many traditional solutions do not take into account the details of modern
system topologies and consequently experience unacceptable performance penal-
ties with modern hierarchical interconnect technologies and memory architectures.
Others offload the coordination of tasks and data to the programmer by requiring
explicit information about thread and data creation and placement. While allowing
full control of the system, explicit coordination severely decreases programming
productivity and disallows implementing best practices in a reusable layer.

In this paper we introduce Claud, a locality-preserving latency-aware hierarchi-
cal object space. Claud is based on the understanding that productivity-oriented
programmers prefer simple programming constructs for data access (like key-value
stores) and task coordination (like parallel loops). Instead of providing explicit fa-
cilities for coordination, our approach places and moves data and tasks implicitly
based on a detailed topology model of the system relying on best performance prac-
tices like hierarchical task queues, concurrent data structures, and similarity-based
placement.

Keywords. Distributed Object Space, Hierarchical NUMA, Federated Cloud

Introduction

With the introduction of clouds and cloud federations, computer systems have reached a
new layer of complexity. Globally distributed, clouds offer easy access to vast resources
at low cost enabling all kinds of parallel and distributed applications. Moreover, cloud
federations promise adaptive region-aware service execution policies and load balancing,
specialization, strong replication and fault-tolerance, vendor-independence, and much
more [1]. In order to make good use of these resources, applications running in a cloud
environment need to be capable of scaling from a single compute node to several thou-
sands. Cloud-ready scaling can only be achieved by putting a strong focus on parallelism
and locality: data and threads need to be placed in such a way that access latencies are
minimal. In contrast to classical HPC-clusters, federated clouds can have arbitrary inter-
and intra-connection networks of nodes resulting in heavy latency and bandwidth varia-
tions. Since these characteristics are load-sensitive and thus can change during runtime,
a static mapping as described by a programmer has limited feasibility. Competitive ap-
plications need to utilize sophisticated thread and data placement strategies that dynam-
ically adapt the resource usage to their needs and the system topology.

!Frank Feinbube @hpi.de

The severe performance impact of threads and data coordination with respect to
latencies and locality can be found in all layers of state-of-the-art system topologies.

A prominent example are non-uniform memory access (NUMA) systems that are
the foundation of modern server systems, especially the ones that are tailored for Big
Data Analytics. Built around sophisticated interconnect technologies, NUMA systems
can be regarded as a mix of parallel and distributed shared memory systems. There-
fore, they share many similarities with cluster and cloud architectures: in modern hierar-
chical NUMA systems, access latencies vary severely depending on the distance of the
NUMA nodes and the current load on the interconnects [2]. The performance impacts
have become so predominant, that a parallel implementation that regards a NUMA sys-
tem as a conventional shared memory system will experience longer runtimes with more
resources [3] than a serial implementation. Purely distributed implementations perform
very well, but do not benefit from the shared access capabilities of NUMA. As of to-
day, it is not clear which programming model will be best suited for parallel-distributed
hybrids such as hierarchical NUMA systems. The de facto standard is a combination of
message passing with MPI [4] for distribution and OpenMP [5] constructs for intra-node
parallelization.

If a developer wants to write an application that runs in a federated cloud, she would
not only have to consider all the layers of it, but also use separate technologies to express
and coordinate tasks and data on each level. We find that that the distinction between
distributed and parallel systems is neither realistic nor helpful when applied to modern
computer architectures, where even single processors are essentially networks-on-chip.

In this paper we introduce our approach for a framework that allows developers
to express tasks and data of their algorithms in a consistent way without the need for
a detailed understanding of the underlying system topology. As in Google’s MapRe-
duce framework, the fundamental idea is to provide a programming model that is simple
enough to allow for productivity while being powerful enough to allow for large-scale
parallelism. We are convinced that the metaphor of a Tuple / Object Space combined
with the application of performance optimization best practices to preserve locality and
hide latencies provide us with a rich basis for our approach. Following the tradition of
Ada and Linda, we name our framework after Claud Lovelace.

1. Related Work
1.1. Coordination Languages

As described in the introduction, the intelligent coordination of tasks and data is crucial
for application performance and scalability. Consequently the effort that is required from
developers to instruct the coordination frame to make good use of the topology of the tar-
get system, is a major productivity factor. When we studied different approaches to cre-
ate a framework that has a concise interface while providing enough information for ef-
ficient placements, we identified Tuple Spaces [6] as one of the most promising designs.
The applicability of tuple spaces all the way up to large-scale architectures such as cloud
was already emphasized in the vision of Mirror Worlds by Gelernter [7]. Furthermore,
the interface required to work with a tuple space is focussed, easy to understand and can
almost effortlessly be adapted to reflect the expectations of contemporary programmers.
Before we provide further information on our application of tuple space concepts in the
design of Claud in Section 2, we discuss interesting tuple space implementations and
their characteristics as depicted in Figure 1.

1.1.1. Tuple Space Classification
We classified the tuple space implementations by the following characteristics:

Target Architecture The computer system architecture that the tuple space was de-
signed for or is predominantly being used with. We distinguish between: Shared-Memory

Placement Strategy|
[] []

JavaSpaces
GigaSpaces XAP
TupleWare
DTuples
MTS-Linda
PageSpace
C2AS

WCL

Jada

GridTS
SwarmlLinda
LIME ° ° .

Figure 1. An overview of the landscape of existing Tuple Space research. The selection is not intended to
be complete, but rather to demonstrate the variety of existing implementations. We classify implementations
based on our understanding of the system architecture they target, the placement strategy that they employ and
the main motivation for their development. ("NOW” stands for “network of workstations”, "WA” for "wide
area”, "HPC” for high performance computing”)

if the system is optimized for local accesses; NUMA-aware if the system is taking into
account the non-uniform topology of hierarchical shared memory systems. Systems that
would benefit from the topology-awareness of the underlying execution system (such as
a NUMA-aware Java Virtual Machine) are not considered NUMA-aware; Cluster/Net-
work of Workstations if the system mainly aims at (homogeneous) clusters with a fast
network; Cloud/Grid/Wide Area if the system aims at multiple computers with a slow
network; Mobile if the system is designed for mobile devices with sporadic connections.

Placement Strategy The strategy that is applied to place the tuples within the system.
We distinguish between: Central where the tuple space is placed on a single node and all
the other nodes are accessing it remotely; Local where tuples are placed on the node of
the process that created them; Round-Robin where tuples are distributed evenly around
the system; Hash where tuples are placed using a hash based algorithm on either the
full tuple or parts of the tuple; Access Pattern where the run-time system monitors the
tuple access patterns and migrates them accordingly. We found the access pattern place-
ment strategy only in WCL where it is applied not to the placement of tuples, but to the
placement of tuple spaces. Nevertheless it is an interesting approach.

One of the hardest challenges placement strategies have to face is the overhead that
is required for tuple retrieval. While the Central and the Hash placement strategies allow
for straight-forward tuple identification, the other three strategies have to either use mul-
ticast or implement a more sophisticated tuple retrieval mechanism as discussed for the
respective implementations. There are two variations of tuple hashing: Cryptographic
Hashing, Random Hashing, or Avalanche Effect Hashing produce a balanced distribution
throughout the network and are therefore beneficial for systems that experience a high
rate of random tuple reads. The alternative of Similarity Preserving Hashing algorithms
are a powerful strategy to ensure that tuples with similar characteristics reside on the
same node. If an application is structured in such a way that computations are focussed
on closely related tuples, similarity preserving hashing is an efficient means to ensure
locality and thus circumvent the access penalties in high-latency system topologies.

Motivation The main driving factor for the tuple space implementation as emphasized
in the original paper and the envisioned use cases. We distinguish between: Fault Tol-

erance for tuple spaces that explicitly replicate data to tolerate node failures; HPC for
tuple spaces that are designed for applications in high performance computing; Scala-
bility for tuple spaces that are designed to improve scalability regarding their respective
target architecture. The investigated systems achieve this by either distributing the tuple
space across the nodes or by explicitly distinguishing between multiple tuple spaces and
requiring programmers to address them correctly.

1.1.2. Coordination Language Implementations

Each implementation and the relationships between them are described as follows:

A prominent representative of the Tuple Space landscape is JavaSpaces [8], where
tuple space concepts were applied to objects, coining the term Object Spaces, and the
interface was enriched with the concept of transactions. It was integrated with Sun Jini,
which is now named Apache River. GigaSpaces XAP [9] is a commercialized version
of JavaSpaces that offers a distributed object space with tuple redundancy that supports
different placement strategies including hash-based tuple distribution. Tupleware [10] is
an implementation aimed at computationally intensive applications running in a cluster.
It includes a decentralized search algorithm where each node asks other nodes one by
one based on a success factor of previous searches. DTuples [11] uses a distributed hash
table for tuple placement and retrieval. Each tuple has to begin with a name which is then
used for the hashing, resembling a key-value-store. MTS-Linda [12] was of the earliest
attempts using multiple tuple spaces. It uses a tuple-to-node hash for placement.

There have been different attempts to scale the tuple space model to what we would
today call a cloud architecture. PageSpace [13] is using a tuple space to coordinate dis-
tributed applications on the web. Rowstron et al. extended this notion first with C2AS
[14], adding multiple tuple spaces, later with WCL [15] where a “control system” that
monitors tuple space usage and migrates tuple spaces to the right location was added.
Analogous to Linda, C2AS and WCL can be embedded in any host language. Jada
(Java+Linda) [16] similarly implements multiple distributed but disjoint tuple spaces for
Java. GridTS [17] uses a replicated tuple space for fault-tolerant scheduling.

In addition to these cloud-scale implementations still relying on the programmer to
specify which tuple space (and thus which node) she wants to access, there are two in-
teresting implementations providing one distributed, or transparently shared tuple space.

SwarmLinda [18] is an attempt to transfer the ideas from the field of swarm intelli-
gence to distributed tuple spaces. Natural multi-agent systems — such as ant colonies —
show intelligent behavior, while coordinating only with local interactions in their neigh-
borhood. This transfer results in an adaptive system that can react to changes in topology
and is highly scalable while retaining some locality of similar tuples.

LIME: Linda in a mobile environment [19] implements “transiently shared tuple
spaces” that span multiple physical ones. The disconnection of nodes is viewed as a nor-
mal operation which results in the tuples on that node being removed from the transiently
shared tuple space. The placement strategy defaults to local but can also be specified by
the programmer.

CnC [20] is a coordination model that was strongly influenced by Linda, but goes
further by giving the programmer a way to declaratively express data and control depen-
dences between computational steps.

There are two things we are missing from the systems described above, which we
will describe in greater detail in section 1.3 Research Gap. Firstly, we want to investigate
the implementation of tuple spaces at the two ends of the hierarchy: NUMA-awareness
and federated clouds. Secondly, we want to be guided by the minimal set of information
from a programmer needed to achieve good performance, keeping as close as possible to
the programming model of today’s programmers.

1.2. Hierarchical NUMA systems

In response to the increasing need for performance, more and more cores and memory
are integrated with modern business servers. The additional cores are either introduced
by increasing the amount of cores per processor or by adding additional processors. In
both cases all cores need to have access to other cores, processors and the memory. These
interconnects constitute the von-Neumann bottleneck, and have therefore become one of
the most crucial performance design challenges of recent time.

Modern processor architectures, such as Intel’s Haswell processors, facilitate an on-
chip ring interconnection network with two opposing rings to connect cores, memory
controller and processor interconnect. [21] One level higher, the reference architecture
for processor interconnects provided by the processor vendors is usually a point-to-point
interconnect between all processor sockets that is designed to support systems up to a
certain size. (Intel for example supports up to eight processor sockets.) These systems
are called glue-less systems, because the processors and the interconnection technology
are provided by the same vendor. The alternative are glued systems, where third party
interconnection technologies are used to build systems that support more sockets than
the reference architecture. [2,22,23] In addition to the increased processor count, glued
systems usually also facilitate special caching and pre-fetching solutions to compensate
for the latencies and improve the overall system performance. Besides all-to-all inter-
connects between the processor sockets, glued architectures can be configured to realize
various other popular topologies such as hypercubes and cross-bar switches.

Hierarchical NUMA systems combining multiple layers of interconnect technolo-
gies are programmed using a combination of message passing (usually with MPI [4])
and shared memory task parallelism (usually with OpenMP [5]). The application of both
programming models allows programmers to account for the distributed as well as the
parallel nature of hierarchical NUMA systems. Shared memory task parallelism is used
on the intra-processor level where performance bottlenecks are often introduced by task
and data access synchronization. Due to the significant latencies on the inter-processor
level, considering the system a fully distributed one and using the message passing pro-
gramming model for task and data coordination excels. The message passing model re-
quires developers to structure their algorithm in a way that allows for the computation of
independent tasks on local data and the explicit exchange of data updates via messages.
The application of local data access and data duplication in form of messages reduces the
load on the interconnect, while the explicit distribution ensures that the characteristics of
the interconnect can be respected by the message passing framework implementation.

While allowing to achieve close to optimal application performance, the current ap-
proach restricts productivity due to the fact that programmers need to develop a detailed
understanding of two programming models and their complex interplay with the sys-
tems hardware. Learning from both approaches, we designed Claud to encapsulate the
best practices for parallel and distributed models into a layer that allows programmers to
reuse them, while simplifying the programming model to improve productivity without
sacrificing much of the performance.

1.3. Research Gap

When we set out to evaluate the design space for programming models that would allow
us to coordinate task and data from the core of parallel systems up to distributed cloud
federations, we assessed possible approaches based on the following question: What is
the minimal set of constructs, that we need the programmer to use to express the algo-
rithm in a way that allows for correct and efficient execution? We found tuple spaces to
be a promising answer to that question. No only do they provide a very concise interface,
their suitability has also been proven for both, the parallel and the distributed domain.
To apply tuple space concepts to our objective of a coherent performance framework

for the whole system topology we identified some research gaps to be filled (Figure 1):

While existing tuple space implementations have a strong focus on scalability and
fault tolerance, we want to evaluate how best practices for performance can be incorpo-
rated into a framework to make them reusable. Since different problems demand differ-
ent optimization strategies, we want to start with a limited subset and extend our frame-
work iteratively to support techniques for additional problem classes. The problem class
of graph based algorithms possesses inherent locality characteristics which is why it is
particularly well suited for a mapping onto the hierarchical system topology of modern
computer systems. In this paper we describe how Claud can support developers with the
coordination of tasks and data of graph problems. The outcome of a use case study of
Claud, using the Barnes-Hut algorithm [24], has been published. [25] In the future, we
want to study other graph based algorithms from the business process analysis domain
in the sHiFT [26] project.

Existing tuple space implementations mastered parallel shared memory systems,
clusters and cloud systems. While they are probably also very well suited for both, hi-
erarchical NUMA systems (Section 1.2) and federated clouds [27], we find that it is im-
portant to evaluate this with a number of real-world examples. We intend to study the
potential and possible opportunities for improvement in the SSICLOPS [27] project.

Finally, we want to identify a minimal set of programming constructs that is required
to allow a coordination framework like Claud to perform efficient data placement and
task scheduling. We hope to find that the programmer does not need to acquire a deep
understanding of the target system topology. Instead we hope that we can identify pro-
gramming constructs that allow programmers to express parallelism and locality of their
algorithm in the logical domain while enabling us to achieve portable performance with
adaptive mappings.

2. Approach

The objective of Claud is to allow task and data coordination throughout the whole sys-
tem topology (from core to cloud federation) with a single coherent programming model.
The overhead that the programming model imposes to realize this objective is supposed
to be low enough to allow productive development while allowing Claud to enable ac-
ceptable performance.

2.1. Assumptions and Design Decisions

We assume that programmers do not know the hardware topology upfront. Furthermore
we assume that the characteristics of the topology are changing during runtime. These
assumptions are based on the fact that there is such a huge variety of possible topolo-
gies and the fact that the characteristics of the topology are load dependent. Since the
programmer does not know the topology, she cannot specify the data placement and task
distribution statically beforehand. Since the topology is changing, Claud needs to adapt
to the current system characteristics by utilizing auto-balancing and fault-tolerance tech-
niques to provide portable performance.

We assume that programmers are more productive, if they do not need to explic-
itly specify coordination and dependence. Consequently, coordination should be inferred
from the system topology and the logical representation of the algorithm and its data
structures to make coordination as implicit as possible.

We assume that besides homogeneous tasks of similar compute intensity, there are
also task sets containing a mix of compute intensive and light-weight tasks. Furthermore,
we assume that programmers do not want to specify which of the tasks are compute
intensive and which are not. In contrast to the common approach of either distributing all
tasks or none, we want to integrate heuristics that account for varying task profiles. The
heuristics will be based on the computation to communication ratio of a task and result
in appropriate task coordination. One extreme coordination decision would be to execute

a set of tasks serially on one processor if the computer is very cheap and the distribution
would be relative expensive.

From our experience we assume that programmers have a better intuition for the read
and write programming constructs than the notion of in and out as proposed by Linda.
Based on this assumption, we decided to provide primitives like barriers and NUMA-
aware reader-writer locks as a means for data access synchronization. This decision al-
lows programmers to see Claud as a distributed shared memory framework mimicking a
familiar execution environment.

We assume that the communication overhead (latency and bandwidth limitations)
are the predominant bottleneck and that as a consequence locality is beneficial to achieve
acceptable performance results. Preserving locality means that a task working on data
should executed at the subgraph of the topology (preferably on the same node) where the
respective memory is located.

Due to the fact that the various layers of the topology have differing characteristics,
we do not assume that there is a single simple solution to derive an optimal distribution
based on the programmer’s input. Instead we want to incorporate multiple distribution
modules in Claud as described in Section 2.2. These modules allow us add tailored con-
structs to Claud’s interface that present a concise and familiar interface to programmers
while providing Claud with all the information that is required to create an effective co-
ordination. As we evaluate Claud with real-life applications, we will iteratively integrate
additional distribution modules.

2.2. Architecture and Implementation

Figure 2 shows the interfaces that Claud provides to algorithm programmers as well as
the associated techniques that are used for the coordination of task and data on the present
system. As a basis for the coordination of data and tasks, Claud comprises an extensible
set of Distribution Modules. Each module may imply an extension of the interface for
the programmer, as well as, a more sophisticated mapping strategy to the topology. Dis-
tribution Modules have to be designed so that they can be used in unison with the other
modules or so that a module is explicitly overwriting the policies of another module.
As an example, the Concurrent Data Structures Module (number III in the picture) may
overwrite the policies of the Hierarchical Task Queues Module (number I), but can still
be improved by the Run-Time-Analysis Module (number II).

T Algorithm
U

Concurrent
Data
Structures

Similarity
Preserving
Hash

Object/Data
Access

Implicit Task
Creation

Objects and
References

Claud Space

Hierarchical
Task
Queues

Topology
Model

Figure 2. Architecture Overview: Claud acts as a mediator between the logical domain of the programmer and
the topology model derived from the current system configuration. Currently Claud comprises five Distribution
Models, each providing a distinct set of programming constructs and extended mechanisms for coordination.

Data
Structure
Mapping

Similarity-
based
Placement

Object
Graph
Mapping

Run-Time
Analysis

Distributed Module I Object/Data access is presented using the usual shared memory
metaphor: memory can be read and written. Write accesses automatically allocate or up-

date data in the Object Space, read accesses retrieve data from the Object Space. The
mental model of the Object Space that the programmer can use is similar to a Key-Value
Store. As our objective is to support all topology levels, we need to provide a software-
managed cache for distributed levels, that integrates with the hardware caches on the
parallel levels. Since reading will basically result in a local copy of the data, coherency
needs to be guaranteed by invalidating all copies if data is written. The coherency re-
quirements of the algorithm can be enforced by either by implicit synchronization bar-
riers or by explicit synchronization with synchronization primitives like Reader/Writer
Locks. Internally we have a hierarchical structure that keeps track of the data locations
and is closely modeled after the system topology allowing us to assess the distance to
the data. We employ Run-Time Analysis methods to assess data access patterns, which
allows us to prefetch data and migrate tuple responsibility based on auto-tuned heuristics.

Distributed Module Il Claud offers several ways to create tasks implicitly such as par-
allel loops and recursive task creation. [5] If no other module provides a more intelli-
gent algorithm for the task distribution, we utilize hierarchical task queues and work-
stealing. [5] Each core in the topology will have its own local queue and can also access
an additional queue that it shares with its neighbors. Hierarchical task queues with work
stealing provide a pretty good distribution scheme for average algorithms, but can easily
be outperformed by modules exploiting additional information about the data and the
algorithm like III and IV.

Distribution Module III ~ Another module provides Concurrent Data Structures. If pro-
grammers use our arrays, lists, trees, etc. they provide us with insight about the way their
data is supposed to be structured and accessed. From this information, Claud can infer
the inherent notion of locality and distribute data and tasks accordingly. As described be-
fore this module can benefit from other modules like the run-time analysis. Furthermore,
if the tasks have varying complexities, work stealing can help to balance the work.

Distribution Module IV~ Similarity (or Bonding-) preserving multi-dimensional hash-
ing allows the programmer to provide a similarity measure for the data in form of a
multi-dimensional vector. In a two dimensional index space (think matrix-matrix multi-
plication) this could be a vector describing the horizontal and vertical coordinate of the
cell. Based on these vectors, Claud can determine the similarity of tuples and put similar
tuples in the same place or closely together.

Distribution Module V. Another way to gather information about the data structures
and presumed access patterns is by looking at the object graph. If this module is used,
we map the graph that is accessible from the current context (e.g. loop body) onto the
topology at the beginning of each code block and transfer data and tasks if necessary.

As with all the other modules, this can improve the performance significantly or
produce an additional overhead. Consequently, using heuristics and auto-tuning to find
the right balance between the modules is essential.

Further discussion of the Distribution Modules can be found as part of the use case
study in the extended version of this paper. [25]

2.3. Restrictions

If programs are executed in large scale scenarios like federated clouds, some functional-
ities that are usually provided by the local operating system become increasingly chal-
lenging to facilitate. This is why cloud providers are usually implementing these fea-
tures as a part of their Infrastructure as a Service offer. The same restrictions apply to
Claud: an application being executed in a distributed fashion using Claud is expected not
to work with its own operating system handles. This means: no access to file handles,
socket, I/O, operating system synchronization primitives, etc. To compensate for this,
Claud provides its own synchronization primitives such as barriers and NUMA-aware

reader-writer locks. Currently the set of features is very restricted, but will be extended
to meet the requirements of further use cases.

3. Conclusion

In this paper we have shown that the modular design of Claud is a suitable approach to
coordinate complex graph problems on hierachical system topologies. We have demon-
strated several techniques that are integrated into our hierarchical object space, to coor-
dinate data and tasks in a way that maximizes locality and thus minimizes latency penal-
ties. We found that the set of additional programming construct to realize such a coor-
dination is not only very concise, but can also be tailored to fit the expectations of the
programmer.

In the future, we want to implement all ideas we have described for Claud and
thoroughly evaluate Claud on hierarchical NUMA systems and in federated clouds. To
demonstrate the applicability of the approach to real-world scenarios, we plan to evaluate
it in the context of the SSICLOPS [27] project and the sHiFT [26] project.

The Scalable and Secure Infrastructures for Cloud Operations (SSICLOPS) [27]
project is situated around the challenge of managing federated private cloud infrastruc-
tures. One objective of the project we are particularly interested in is the aspect of work-
load scheduling. On the scale of cloud computing, data required by certain workloads
might be scattered across different datacenters. Since even modern wide area datacen-
ter interconnections such as rented dark fibers or the public internet come with severely
constrained connectivity compared to intra-datacenter connectivity, ignoring the lack of
locality results in severely degraded performance and is not an economic option. As a
consequence thereof, proper decisions have to be made to either move data close to the
processing resources or vice versa. At a much lower level on the intra-system scale, the
very same issues apply to modern NUMA architectures, where remote memory access
caused by improper workload placement results in severely limited performance. Hence,
our goal for Claud is to develop a method that enables developers to easily benefit from
versatile workload placement strategies that apply on various scales ranging from groups
of CPU cores to entire federations of datacenters.

The objective of the sHiFT [26] project is to create a high performance framework
for business process analysis. Business processes can be represented as graphs that are
annotated with natural language artifacts. A variety of algorithms is working with these
graphs to extract business information: process matching, reference model mining and
process mining, identification of isomorphic subgraphs, and natural language processing.
Most of these algorithms offer adequate parallelization potential making the mapping
of the process graphs to the system topology and the efficient coordination of the com-
putations the core performance challenges of the project. We designed Claud precisely
to support the development in such scenarios and see this project as an opportunity to
identify potential for further improvements in Claud’s capabilities.

Acknowledgement

This paper has received funding from the European Union’s Horizon 2020 research and
innovation programme 2014-2018 under grant agreement No. 644866.

Disclaimer

This paper reflects only the authors’ views and the European Commission is not respon-
sible for any use that may be made of the information it contains.

References

[1] J. Costa-Requena, M. Kimmerlin, F. Eberhardt, M. Plauth, A. Polze, S. Klauck, and M. Uflacker, “Use-
case scenarios for the evaluation of federated private clouds,” Scalable and Secure Infrastructures for
Cloud Operations, Tech. Rep., 2015, to be published.

(2]
(3]

(4]

[3]
(6]

(71
(8]

[9]
[10]
[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

Silicon Graphics International Corp., “Technical Advances in the SGI® UV™ Architecture,” Tech.
Rep., June 2012.

F. Eberhardt, F. Feinbube, M. Plauth, and A. Polze, “Performance analysis of large-scale hierarchical
NUMA systems,” Operating Systems and Middleware Group, Hasso Plattner Institute, Tech. Rep., 2015,
to be published.

Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard Version 3.1,” June
2015.

OpenMP Architecture Review Board, “OpenMP Application Program Interface Version 4.0,” July 2013.
D. Gelernter, “Generative communication in Linda,” ACM Transactions on Programming Languages
and Systems, vol. 7, no. 1, pp. 80-112, 1985.

——, Mirror worlds: Or the day software puts the universe in a shoebox... How it will happen and what
it will mean. Oxford University Press, 1992.

E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces principles, patterns, and practice. Addison-Wesley
Professional, 1999.

Gigaspaces. (2015, Jun.) Gigaspaces xap. [Online]. Available: http://www.gigaspaces.com/xap

A. Atkinson, “Tupleware: A distributed tuple space for cluster computing,” Parallel and Distributed
Computing, Applications and Technologies, PDCAT Proceedings, pp. 121-126, 2008.

Y. Jiang, G. Xue, Z. Jia, and J. You, “DTuples: A distributed hash table based tuple space service for
distributed coordination,” Proceedings - Fifth International Conference on Grid and Cooperative Com-
puting, GCC 2006, pp. 101-106, 2006.

B. Nielsen and T. S?rensen, “Distributed Programming with Multiple Tuple Space Linda,” 1994.

P. Ciancarini, A. Knoche, R. Tolksdorf, and F. Vitali, “PageSpace: An architecture to coordinate dis-
tributed applications on the Web,” Computer Networks and ISDN Systems, vol. 28, no. 7-11, pp. 941-
952, 1996.

A. Rowstron, S. Li, and R. Stefanova, “C2AS: a system supporting distributed Web applications com-
posed of collaborating agents,” Journal of Engineering and Applied Science, pp. 127-132, 1997.

A. Rowstron, “WCL: A co-ordination language for geographically distributed agents,”
World Wide Web, vol. 1, mno. 3, pp. 167-179-179, 1998. [Online]. Available:
http://www.springerlink.com/content/k50x5m3p73w25080/

P. Ciancarini and D. Rossi, “Jada: Coordination and Communication for Java Agents,” Mobile Object
Systems Towards the Programmable Internet, vol. 1222, pp. 213-228, 1997. [Online]. Available:
ftp://ftp.cs.unibo.it/pub/cianca/jada_mo.ps.gz

F. Favarim, J. Fraga, L. C. Lung, M. Correia, and J. a. F. Santos, “GridTS: Tuple spaces to
support fault tolerant scheduling on computational grids,” pp. 1-24, 2006. [Online]. Available:
http://www.das.ufsc.br/ fabio/reports/2006-2.pdf

R. Tolksdorf and R. Tolksdorf, “A New Approach to Scalable Linda-systems Based on Swarms,” Com-
puting, no. March, pp. 375-379, 2003.

G. Picco, a.L. Murphy, and G.-C. Roman, “LIME: Linda meets mobility,” Proceedings of the 1999
International Conference on Software Engineering (IEEE Cat. No.99CB37002), pp. 368-377, 1999.

Z. Budimli¢, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg, D. Peixotto, V. Sarkar,
F. Schlimbach, and S. Ta?irlar, “Concurrent collections,” Scientific Programming, vol. 18, no. 3-4, pp.
203-217, 2010.

P. Hammarlund, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik,
S. Chennupaty, S. Jourdan et al., “Haswell: The fourth-generation Intel core processor,” IEEE Micro,
no. 2, pp. 620, 2014.

Hewlett-Packard Development Company, L.P, “HP Integrity Superdome 2 - The ultimate mission-
critical platform,” Tech. Rep., July 2013.

T. P. Morgan, “Balancing Scale And Simplicity In Shared Mem-
ory Systems,” http://www.theplatform.net, March 2015. [Online]. Available:
http://www.theplatform.net/2015/03/05/balancing-scale-and-simplicity-in-shared-memory-systems/

J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation algorithm,” Nature, vol. 324, no.
6096, pp. 446-449, 1986.

J. Beilharz, F. Feinbube, F. Eberhardt, M. Plauth, and A. Polze, “Claud: Coordination, Locality and
Universal Distribution.” [Online]. Available: http://hpi.de/blablabla

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH, Hasso-Plattner-Institut fiir Soft-
waresystemtechnik GmbH and Software AG. (2015) sHiFT - HPC-Framework fiir rechenintensive
BPM-Analysen auf natiirlichsprachlich annotierten Graphen. In German, application to an advertised
bidding, unpublished. [Online]. Available: http://www.bmbf.de/foerderungen/26683.php

Scalable and Secure Infrastructures for Cloud Operations (SSICLOPS) Project. [Online]. Available:
https://ssiclops.eu/

