Claud: Coordination, Locality And Universal Distribution

Jossekin BEILHARZ and Frank FEINBUBE and Felix EBERHARDT and Max PLAUTH and Andreas POLZE
Hasso Plattner Institute for Software Systems Engineering
University of Potsdam, Germany

Abstract. Due to the increasing heterogeneity of parallel and distributed systems, coordination of data (placement) and tasks (scheduling) becomes increasingly complex. Many traditional solutions do not take into account the details of modern system topologies and consequently experience unacceptable performance penalties with modern hierarchical interconnect technologies and memory architectures. Others offload the coordination of tasks and data to the programmer by requiring explicit information about thread and data creation and placement. While allowing full control of the system, explicit coordination severely decreases programming productivity and disallows implementing best practices in a reusable layer.

In this paper we introduce Claud, a locality-preserving latency-aware hierarchical object space. Claud is based on the understanding that productivity-oriented programmers prefer simple programming constructs for data access (like key-value stores) and task coordination (like parallel loops). Instead of providing explicit facilities for coordination, our approach places and moves data and tasks implicitly based on a detailed topology model of the system relying on best performance practices like hierarchical task queues, concurrent data structures, and similarity-based placement.

Keywords. Distributed Object Space, Hierarchical NUMA, Federated Cloud

Introduction

With the introduction of clouds and cloud federations, computer systems have reached a new layer of complexity. Globally distributed, clouds offer easy access to vast resources at low cost enabling all kinds of parallel and distributed applications. Moreover, cloud federations promise adaptive region-aware service execution policies and load balancing, specialization, strong replication and fault-tolerance, vendor-independence, and much more [1]. In order to make good use of these resources, applications running in a cloud environment need to be capable of scaling from a single compute node to several thousands. Cloud-ready scaling can only be achieved by putting a strong focus on parallelism and locality: data and threads need to be placed in such a way that access latencies are minimal. In contrast to classical HPC-clusters, federated clouds can have arbitrary inter- and intra-connection networks of nodes resulting in heavy latency and bandwidth variations. Since these characteristics are load-sensitive and thus can change during runtime, a static mapping as described by a programmer has limited feasibility. Competitive applications need to utilize sophisticated thread and data placement strategies that dynamically adapt the resource usage to their needs and the system topology.

1Frank.Feinbube@hpi.de
The severe performance impact of threads and data coordination with respect to latencies and locality can be found in all layers of state-of-the-art system topologies. A prominent example are non-uniform memory access (NUMA) systems that are the foundation of modern server systems, especially the ones that are tailored for Big Data Analytics. Built around sophisticated interconnect technologies, NUMA systems can be regarded as a mix of parallel and distributed shared memory systems. Therefore, they share many similarities with cluster and cloud architectures: in modern hierarchical NUMA systems, access latencies vary severely depending on the distance of the NUMA nodes and the current load on the interconnects [2]. The performance impacts have become so predominant, that a parallel implementation that regards a NUMA system as a conventional shared memory system will experience longer runtimes with more resources [3] than a serial implementation. Purely distributed implementations perform very well, but do not benefit from the shared access capabilities of NUMA. As of today, it is not clear which programming model will be best suited for parallel-distributed hybrids such as hierarchical NUMA systems. The de facto standard is a combination of message passing with MPI [4] for distribution and OpenMP [5] constructs for intra-node parallelization.

If a developer wants to write an application that runs in a federated cloud, she would not only have to consider all the layers of it, but also use separate technologies to express and coordinate tasks and data on each level. We find that the distinction between distributed and parallel systems is neither realistic nor helpful when applied to modern computer architectures, where even single processors are essentially networks-on-chip.

In this paper we introduce our approach for a framework that allows developers to express tasks and data of their algorithms in a consistent way without the need for a detailed understanding of the underlying system topology. As in Google’s MapReduce framework, the fundamental idea is to provide a programming model that is simple enough to allow for productivity while being powerful enough to allow for large-scale parallelism. We are convinced that the metaphor of a Tuple / Object Space combined with the application of performance optimization best practices to preserve locality and hide latencies provide us with a rich basis for our approach. Following the tradition of Ada and Linda, we name our framework after Claud Lovelace.

1. Related Work

1.1. Coordination Languages

As described in the introduction, the intelligent coordination of tasks and data is crucial for application performance and scalability. Consequently the effort that is required from developers to instruct the coordination frame to make good use of the topology of the target system, is a major productivity factor. When we studied different approaches to create a framework that has a concise interface while providing enough information for efficient placements, we identified Tuple Spaces [6] as one of the most promising designs. The applicability of tuple spaces all the way up to large-scale architectures such as cloud was already emphasized in the vision of Mirror Worlds by Gelernter [7]. Furthermore, the interface required to work with a tuple space is focussed, easy to understand and can almost effortlessly be adapted to reflect the expectations of contemporary programmers. Before we provide further information on our application of tuple space concepts in the design of Claud in Section 2, we discuss interesting tuple space implementations and their characteristics as depicted in Figure 1.

1.1.1. Tuple Space Classification

We classified the tuple space implementations by the following characteristics:

Target Architecture The computer system architecture that the tuple space was designed for or is predominantly being used with. We distinguish between: Shared-Memory
if the system is optimized for local accesses; NUMA-aware if the system is taking into account the non-uniform topology of hierarchical shared memory systems. Systems that would benefit from the topology-awareness of the underlying execution system (such as a NUMA-aware Java Virtual Machine) are not considered NUMA-aware; Cluster/Network of Workstations if the system mainly aims at (homogeneous) clusters with a fast network; Cloud/Grid/Wide Area if the system aims at multiple computers with a slow network; Mobile if the system is designed for mobile devices with sporadic connections.

Placement Strategy The strategy that is applied to place the tuples within the system. We distinguish between: Central where the tuple space is placed on a single node and all the other nodes are accessing it remotely; Local where tuples are placed on the node of the process that created them; Round-Robin where tuples are distributed evenly around the system; Hash where tuples are placed using a hash based algorithm on either the full tuple or parts of the tuple; Access Pattern where the run-time system monitors the tuple access patterns and migrates them accordingly. We found the access pattern placement strategy only in WCL where it is applied not to the placement of tuples, but to the placement of tuple spaces. Nevertheless it is an interesting approach.

One of the hardest challenges placement strategies have to face is the overhead that is required for tuple retrieval. While the Central and the Hash placement strategies allow for straight-forward tuple identification, the other three strategies have to either use multicast or implement a more sophisticated tuple retrieval mechanism as discussed for the respective implementations. There are two variations of tuple hashing: Cryptographic Hashing, Random Hashing, or Avalanche Effect Hashing produce a balanced distribution throughout the network and are therefore beneficial for systems that experience a high rate of random tuple reads. The alternative of Similarity Preserving Hashing algorithms are a powerful strategy to ensure that tuples with similar characteristics reside on the same node. If an application is structured in such a way that computations are focussed on closely related tuples, similarity preserving hashing is an efficient means to ensure locality and thus circumvent the access penalties in high-latency system topologies.

Motivation The main driving factor for the tuple space implementation as emphasized in the original paper and the envisioned use cases. We distinguish between: Fault Tol-
erance for tuple spaces that explicitly replicate data to tolerate node failures; HPC for tuple spaces that are designed for applications in high performance computing; Scalability for tuple spaces that are designed to improve scalability regarding their respective target architecture. The investigated systems achieve this by either distributing the tuple space across the nodes or by explicitly distinguishing between multiple tuple spaces and requiring programmers to address them correctly.

1.1.2. Coordination Language Implementations

Each implementation and the relationships between them are described as follows:

A prominent representative of the Tuple Space landscape is JavaSpaces [8], where tuple space concepts were applied to objects, coining the term Object Spaces, and the interface was enriched with the concept of transactions. It was integrated with Sun Jini, which is now named Apache River. GigaSpaces XAP [9] is a commercialized version of JavaSpaces that offers a distributed object space with tuple redundancy that supports different placement strategies including hash-based tuple distribution. Tupleware [10] is an implementation aimed at computationally intensive applications running in a cluster. It includes a decentralized search algorithm where each node asks other nodes one by one based on a success factor of previous searches. DTuples [11] uses a distributed hash table for tuple placement and retrieval. Each tuple has to begin with a name which is then used for the hashing, resembling a key-value-store. MTS-Linda [12] was of the earliest attempts using multiple tuple spaces. It uses a tuple-to-node hash for placement.

There have been different attempts to scale the tuple space model to what we would today call a cloud architecture. PageSpace [13] is using a tuple space to coordinate distributed applications on the web. Rowstron et al. extended this notion first with C2AS [14], adding multiple tuple spaces, later with WCL [15] where a “control system” that monitors tuple space usage and migrates tuple spaces to the right location was added. Analogous to Linda, C2AS and WCL can be embedded in any host language. Jada (Java+Linda) [16] similarly implements multiple distributed but disjoint tuple spaces for Java. GridTS [17] uses a replicated tuple space for fault-tolerant scheduling.

In addition to these cloud-scale implementations still relying on the programmer to specify which tuple space (and thus which node) she wants to access, there are two interesting implementations providing one distributed, or transparently shared tuple space. SwarmLinda [18] is an attempt to transfer the ideas from the field of swarm intelligence to distributed tuple spaces. Natural multi-agent systems – such as ant colonies – show intelligent behavior, while coordinating only with local interactions in their neighborhood. This transfer results in an adaptive system that can react to changes in topology and is highly scalable while retaining some locality of similar tuples.

LIME: Linda in a mobile environment [19] implements “transiently shared tuple spaces” that span multiple physical ones. The disconnection of nodes is viewed as a normal operation which results in the tuples on that node being removed from the transiently shared tuple space. The placement strategy defaults to local but can also be specified by the programmer.

CnC [20] is a coordination model that was strongly influenced by Linda, but goes further by giving the programmer a way to declaratively express data and control dependencies between computational steps.

There are two things we are missing from the systems described above, which we will describe in greater detail in section 1.3 Research Gap. Firstly, we want to investigate the implementation of tuple spaces at the two ends of the hierarchy: NUMA-awareness and federated clouds. Secondly, we want to be guided by the minimal set of information from a programmer needed to achieve good performance, keeping as close as possible to the programming model of today’s programmers.
1.2. Hierarchical NUMA systems

In response to the increasing need for performance, more and more cores and memory are integrated with modern business servers. The additional cores are either introduced by increasing the amount of cores per processor or by adding additional processors. In both cases all cores need to have access to other cores, processors and the memory. These interconnects constitute the von-Neumann bottleneck, and have therefore become one of the most crucial performance design challenges of recent time.

Modern processor architectures, such as Intel’s Haswell processors, facilitate an on-chip ring interconnection network with two opposing rings to connect cores, memory controller and processor interconnect. [21] One level higher, the reference architecture for processor interconnects provided by the processor vendors is usually a point-to-point interconnect between all processor sockets that is designed to support systems up to a certain size. (Intel for example supports up to eight processor sockets.) These systems are called glue-less systems, because the processors and the interconnection technology are provided by the same vendor. The alternative are glued systems, where third party interconnection technologies are used to build systems that support more sockets than the reference architecture. [2,22,23] In addition to the increased processor count, glued systems usually also facilitate special caching and pre-fetching solutions to compensate for the latencies and improve the overall system performance. Besides all-to-all interconnects between the processor sockets, glued architectures can be configured to realize various other popular topologies such as hypercubes and cross-bar switches.

Hierarchical NUMA systems combining multiple layers of interconnect technologies are programmed using a combination of message passing (usually with MPI [4]) and shared memory task parallelism (usually with OpenMP [5]). The application of both programming models allows programmers to account for the distributed as well as the parallel nature of hierarchical NUMA systems. Shared memory task parallelism is used on the intra-processor level where performance bottlenecks are often introduced by task and data access synchronization. Due to the significant latencies on the inter-processor level, considering the system a fully distributed one and using the message passing programming model for task and data coordination excels. The message passing model requires developers to structure their algorithm in a way that allows for the computation of independent tasks on local data and the explicit exchange of data updates via messages. The application of local data access and data duplication in form of messages reduces the load on the interconnect, while the explicit distribution ensures that the characteristics of the interconnect can be respected by the message passing framework implementation.

While allowing to achieve close to optimal application performance, the current approach restricts productivity due to the fact that programmers need to develop a detailed understanding of two programming models and their complex interplay with the systems hardware. Learning from both approaches, we designed Claud to encapsulate the best practices for parallel and distributed models into a layer that allows programmers to reuse them, while simplifying the programming model to improve productivity without sacrificing much of the performance.

1.3. Research Gap

When we set out to evaluate the design space for programming models that would allow us to coordinate task and data from the core of parallel systems up to distributed cloud federations, we assessed possible approaches based on the following question: What is the minimal set of constructs, that we need the programmer to use to express the algorithm in a way that allows for correct and efficient execution? We found tuple spaces to be a promising answer to that question. No only do they provide a very concise interface, their suitability has also been proven for both, the parallel and the distributed domain.

To apply tuple space concepts to our objective of a coherent performance framework
for the whole system topology we identified some research gaps to be filled (Figure 1):

While existing tuple space implementations have a strong focus on scalability and fault tolerance, we want to evaluate how best practices for performance can be incorporated into a framework to make them reusable. Since different problems demand different optimization strategies, we want to start with a limited subset and extend our framework iteratively to support techniques for additional problem classes. The problem class of graph based algorithms possesses inherent locality characteristics which is why it is particularly well suited for a mapping onto the hierarchical system topology of modern computer systems. In this paper we describe how Claud can support developers with the coordination of tasks and data of graph problems. The outcome of a use case study of Claud, using the Barnes-Hut algorithm [24], has been published. [25] In the future, we want to study other graph based algorithms from the business process analysis domain in the sHiFT [26] project.

Existing tuple space implementations mastered parallel shared memory systems, clusters and cloud systems. While they are probably also very well suited for both, hierarchical NUMA systems (Section 1.2) and federated clouds [27], we find that it is important to evaluate this with a number of real-world examples. We intend to study the potential and possible opportunities for improvement in the SSICLOPS [27] project.

Finally, we want to identify a minimal set of programming constructs that is required to allow a coordination framework like Claud to perform efficient data placement and task scheduling. We hope to find that the programmer does not need to acquire a deep understanding of the target system topology. Instead we hope that we can identify programming constructs that allow programmers to express parallelism and locality of their algorithm in the logical domain while enabling us to achieve portable performance with adaptive mappings.

2. Approach

The objective of Claud is to allow task and data coordination throughout the whole system topology (from core to cloud federation) with a single coherent programming model. The overhead that the programming model imposes to realize this objective is supposed to be low enough to allow productive development while allowing Claud to enable acceptable performance.

2.1. Assumptions and Design Decisions

We assume that programmers do not know the hardware topology upfront. Furthermore we assume that the characteristics of the topology are changing during runtime. These assumptions are based on the fact that there is such a huge variety of possible topologies and the fact that the characteristics of the topology are load dependent. Since the programmer does not know the topology, she cannot specify the data placement and task distribution statically beforehand. Since the topology is changing, Claud needs to adapt to the current system characteristics by utilizing auto-balancing and fault-tolerance techniques to provide portable performance.

We assume that programmers are more productive, if they do not need to explicitly specify coordination and dependence. Consequently, coordination should be inferred from the system topology and the logical representation of the algorithm and its data structures to make coordination as implicit as possible.

We assume that besides homogeneous tasks of similar compute intensity, there are also task sets containing a mix of compute intensive and light-weight tasks. Furthermore, we assume that programmers do not want to specify which of the tasks are compute intensive and which are not. In contrast to the common approach of either distributing all tasks or none, we want to integrate heuristics that account for varying task profiles. The heuristics will be based on the computation to communication ratio of a task and result in appropriate task coordination. One extreme coordination decision would be to execute
a set of tasks serially on one processor if the computer is very cheap and the distribution would be relative expensive.

From our experience we assume that programmers have a better intuition for the read and write programming constructs than the notion of in and out as proposed by Linda. Based on this assumption, we decided to provide primitives like barriers and NUMA-aware reader-writer locks as a means for data access synchronization. This decision allows programmers to see Claud as a distributed shared memory framework mimicking a familiar execution environment.

We assume that the communication overhead (latency and bandwidth limitations) are the predominant bottleneck and that as a consequence locality is beneficial to achieve acceptable performance results. Preserving locality means that a task working on data should executed at the subgraph of the topology (preferably on the same node) where the respective memory is located.

Due to the fact that the various layers of the topology have differing characteristics, we do not assume that there is a single simple solution to derive an optimal distribution based on the programmer’s input. Instead we want to incorporate multiple distribution modules in Claud as described in Section 2.2. These modules allow us add tailored constructs to Claud’s interface that present a concise and familiar interface to programmers while providing Claud with all the information that is required to create an effective coordination. As we evaluate Claud with real-life applications, we will iteratively integrate additional distribution modules.

2.2. Architecture and Implementation

Figure 2 shows the interfaces that Claud provides to algorithm programmers as well as the associated techniques that are used for the coordination of task and data on the present system. As a basis for the coordination of data and tasks, Claud comprises an extensible set of Distribution Modules. Each module may imply an extension of the interface for the programmer, as well as, a more sophisticated mapping strategy to the topology. Distribution Modules have to be designed so that they can be used in unison with the other modules or so that a module is explicitly overwriting the policies of another module. As an example, the Concurrent Data Structures Module (number III in the picture) may overwrite the policies of the Hierarchical Task Queues Module (number I), but can still be improved by the Run-Time-Analysis Module (number II).

Figure 2. Architecture Overview: Claud acts as a mediator between the logical domain of the programmer and the topology model derived from the current system configuration. Currently Claud comprises five Distribution Modules, each providing a distinct set of programming constructs and extended mechanisms for coordination.

Distributed Module I Object/Data access is presented using the usual shared memory metaphor: memory can be read and written. Write accesses automatically allocate or up-
date data in the Object Space, read accesses retrieve data from the Object Space. The mental model of the Object Space that the programmer can use is similar to a Key-Value Store. As our objective is to support all topology levels, we need to provide a software-managed cache for distributed levels, that integrates with the hardware caches on the parallel levels. Since reading will basically result in a local copy of the data, coherency needs to be guaranteed by invalidating all copies if data is written. The coherency requirements of the algorithm can be enforced by either by implicit synchronization barriers or by explicit synchronization with synchronization primitives like Reader/Writer Locks. Internally we have a hierarchical structure that keeps track of the data locations and is closely modeled after the system topology allowing us to assess the distance to the data. We employ Run-Time Analysis methods to assess data access patterns, which allows us to prefetch data and migrate tuple responsibility based on auto-tuned heuristics.

Distributed Module II Claud offers several ways to create tasks implicitly such as parallel loops and recursive task creation. [5] If no other module provides a more intelligent algorithm for the task distribution, we utilize hierarchical task queues and work-stealing. [5] Each core in the topology will have its own local queue and can also access an additional queue that it shares with its neighbors. Hierarchical task queues with work stealing provide a pretty good distribution scheme for average algorithms, but can easily be outperformed by modules exploiting additional information about the data and the algorithm like III and IV.

Distribution Module III Another module provides Concurrent Data Structures. If programmers use our arrays, lists, trees, etc. they provide us with insight about the way their data is supposed to be structured and accessed. From this information, Claud can infer the inherent notion of locality and distribute data and tasks accordingly. As described before this module can benefit from other modules like the run-time analysis. Furthermore, if the tasks have varying complexities, work stealing can help to balance the work.

Distribution Module IV Similarity (or Bonding-) preserving multi-dimensional hashing allows the programmer to provide a similarity measure for the data in form of a multi-dimensional vector. In a two dimensional index space (think matrix-matrix multiplication) this could be a vector describing the horizontal and vertical coordinate of the cell. Based on these vectors, Claud can determine the similarity of tuples and put similar tuples in the same place or closely together.

Distribution Module V Another way to gather information about the data structures and presumed access patterns is by looking at the object graph. If this module is used, we map the graph that is accessible from the current context (e.g. loop body) onto the topology at the beginning of each code block and transfer data and tasks if necessary. As with all the other modules, this can improve the performance significantly or produce an additional overhead. Consequently, using heuristics and auto-tuning to find the right balance between the modules is essential.

Further discussion of the Distribution Modules can be found as part of the use case study in the extended version of this paper. [25]

2.3. Restrictions

If programs are executed in large scale scenarios like federated clouds, some functionalities that are usually provided by the local operating system become increasingly challenging to facilitate. This is why cloud providers are usually implementing these features as a part of their Infrastructure as a Service offer. The same restrictions apply to Claud: an application being executed in a distributed fashion using Claud is expected not to work with its own operating system handles. This means: no access to file handles, socket, I/O, operating system synchronization primitives, etc. To compensate for this, Claud provides its own synchronization primitives such as barriers and NUMA-aware
reader-writer locks. Currently the set of features is very restricted, but will be extended to meet the requirements of further use cases.

3. Conclusion

In this paper we have shown that the modular design of Claud is a suitable approach to coordinate complex graph problems on hierarchical system topologies. We have demonstrated several techniques that are integrated into our hierarchical object space, to coordinate data and tasks in a way that maximizes locality and thus minimizes latency penalties. We found that the set of additional programming construct to realize such a coordination is not only very concise, but can also be tailored to fit the expectations of the programmer.

In the future, we want to implement all ideas we have described for Claud and thoroughly evaluate Claud on hierarchical NUMA systems and in federated clouds. To demonstrate the applicability of the approach to real-world scenarios, we plan to evaluate it in the context of the SSICLOPS [27] project and the sHiFT [26] project.

The Scalable and Secure Infrastructures for Cloud Operations (SSICLOPS) [27] project is situated around the challenge of managing federated private cloud infrastructures. One objective of the project we are particularly interested in is the aspect of workload scheduling. On the scale of cloud computing, data required by certain workloads might be scattered across different datacenters. Since even modern wide area datacenter interconnections such as rented dark fibers or the public internet come with severely constrained connectivity compared to intra-datacenter connectivity, ignoring the lack of locality results in severely degraded performance and is not an economic option. As a consequence thereof, proper decisions have to be made to either move data close to the processing resources or vice versa. At a much lower level on the intra-system scale, the very same issues apply to modern NUMA architectures, where remote memory access caused by improper workload placement results in severely limited performance. Hence, our goal for Claud is to develop a method that enables developers to easily benefit from versatile workload placement strategies that apply on various scales ranging from groups of CPU cores to entire federations of datacenters.

The objective of the sHiFT [26] project is to create a high performance framework for business process analysis. Business processes can be represented as graphs that are annotated with natural language artifacts. A variety of algorithms is working with these graphs to extract business information: process matching, reference model mining and process mining, identification of isomorphic subgraphs, and natural language processing. Most of these algorithms offer adequate parallelization potential making the mapping of the process graphs to the system topology and the efficient coordination of the computations the core performance challenges of the project. We designed Claud precisely to support the development in such scenarios and see this project as an opportunity to identify potential for further improvements in Claud’s capabilities.

Acknowledgement

This paper has received funding from the European Union’s Horizon 2020 research and innovation programme 2014-2018 under grant agreement No. 644866.

Disclaimer

This paper reflects only the authors’ views and the European Commission is not responsible for any use that may be made of the information it contains.

References

[7] ——, Mirror worlds: Or the day software puts the universe in a shoebox... How it will happen and what it will mean. Oxford University Press, 1992.