Intel VTune Amplifier XE

Seminar Software Profiling
Lena Herscheid
Supervisor: Dr. Peter Troger
May 27t 2013

Agenda

* Overview
* Sampling Approach

* Features
* Algorithm Analysis
* Hardware Profiling

e How It Works

* User mode Sampling
* Hardware Event Sampling

e Evaluation

Overview

 Commercial profiling tool

 part of Intel Parallel Studio or standalone
e provides CLI and GUI
* Visual Studio and Eclipse plugins

* Fortran, C, C++, Java, .NET, Assembly
e Linux and Windows

Intel VTune Lena Herscheid 3

The Sampling Approach

an ever-present trade-off: Overhead < Information

idea: collect information sporadically

e time-driven: uniform time period between samples

e event-driven: uniform number of events between samples

+ less intrusive = no side effects introduced by profiling
+ small impact on execution speed > detect timing issues accurately

+ low overhead

+ user-mode sampling: about 5% (default interval of 10ms)
+ hardware event-based sampling: about 2% (1ms sampling interval)

Sampling Mistakes

* the entire sampling interval before an event is attributed to the code
context

* 10-2000k events depending on sampling interval
* negligible for many samples and frequent events

 per-user filtering switched off by default
e (and cannot be switched on again after installation...)
* samples from all processes on the system are collected!

e call graphs are approximated and can be misleading
* with infrequently asymmetric call patterns

Profiling Workflow

applications are profiled under different configurations

e collects a subset of supported metrics in one analysis run

* re-configure and re-run multiple times

* to keep overhead low for each run

* debug symbols needed
 for source-code-line granularity

Intel VTune

Lena Herscheid

Choose target

(Re)Build target

X -

-- Optiona

Configure
target

Configure
analysis

¥

¥

Interpret and handle
results

Interpret results

Analyze source

Modify
predefined
configuration C

Create
custom
onfiguratio

J

"

Compare with
revious results

¥

Resolve issue

Agenda

* Overview
* Sampling Approach

* Features
* Algorithm Analysis
* Hardware Profiling

e How It Works

* User mode Sampling
* Hardware Event Sampling

e Evaluation

Algorithm Analysis
Choose viewpoint depending on profiling objective:

* Where are significant portions of time spent?
— Hotspot Analysis
e How well is CPU time utilized? How well are threads scheduled?

— Concurrency Analysis
]] . _ -1 Algorithm Analysis
 What are causes of ineffective CPU utilization? LA Lightweight Hotspots

- Waits and Locks Analysis {4 Hotspots

VTune Examples

* CPU/Memory benchmarks (http://www.roylongbottom.org.uk)
* Whetstone: floating point computations
 RandMem: memory read/write

 System configuration:

Processor Intel(F) Core(TM) 13-2310M CPU @ 2.10GHz 2.10 GHz
Installed memory (RAM): 6.00 GE (3.84 GB usable)
System type: B4-bit Operating System, x64-based processor

Intel VTune Lena Herscheid

http://www.roylongbottom.org.uk/

Hotspot Analysis (Whetstone

= Total

Call Stackw

= RtlUserThreadStart
=lBaseThreadInitThunk
Countloop
=l _tmainCRTStartup

=l main

pout
pa

H [Impeort thunk sgrif]
H[Import thunk cosf]

[+ getDetails

Selected 1 row(s):

‘ Function / Call Stack

Elwhetstones
main

[FHwhetstone

pout

pad

pa

main

CountlLoop

calculatelHz

[[Import thunk sgrtf]
[[Import thunk logf]

_tmainCRT5tartup BaseThreadl:

Selected 1 row(s):

CPU Time: Total by Utilization
Oidle B Poor O Ck B Ideal @ Cver

CPU Time: Self by Utilization
O idle @ Poor O Ck B Ideal @ Cwer

an.

an.

W gy, B gy B

11.631= 0s 100.0% Os
11.631= 0s 100.0% Os
11.631s 0= 100.0% Os
5.602< (D 0.010s 0.0% Os
5.022< [0s 100.0% Os
5.022< [0.012s 100.0% Os
100.0%| 0.010s
0.010s 0.010s 0.0% Os
0.370:) 0.370: [} 0.0% Os
0.010s 0.010s 0.0% Os
0.040s 0.040s 0.0% Os
0.071s 0= 0.0% Os
5939 5.509s| 100.0%| 0.010s
CPU Time by Utilization B o B Function (Full) =
@ idle @ Poor 0Ok [ideal [Over an.
5.509s (I 0.010s whets64MP.exe whetstones(void)
308 0.0105| whetsbdMP.exe i
5.192< (N 0Ds whets64MP.exe whetstone2(veid)
0.070= Oz whetsBdMP.exe pout{char * const,float,int, float, float, int, float)
1].3?1]5. Oz whetsBdMP.exe palifloat * const float float)
1].3?1]5. Os whetsBdMP.exe palfloat * const float float)
0.012s 0z whetsBdMP.exe main
0.070= Oz whetsBdMP.exe Countloop(void *)
'D.'I]Iﬁsl 0= whetsbdMP.exe calculatePHz
0.030s Os whetsBdMP.exe [Import thunk sgrif]
0.010s Oz whetsBdMP.exe [lmport thunk logf]
5.500s 0.010s
Intel VTune Lena Herscheid

(») Top Hotspots

This section lists the most active functions in your application.

Function CPU Time
whetstones 5.500s
whetstoned 5.1%3s
pal 0.370s
pa 0.370s
calculateMHz 0.07s
whe... Cou.. whe..| (4.,
whe... _tm.. criex.. 0xld ...
whe... main whe.. (4.,
whe... pout.. whe.. 0x14..
whe... paffl.. whe.. 0x14..
whe... [Imp.. 14 ..,
whe... [Imp.. 14 ..,
whe... getD.. asm.. 0x14..
Top-Down View
(Call Tree)
Source File Start Address
whetstdmp.cpp | (140002700
whetsBdmp.cpp | 0x140003cf0 |
whetsédmp.cpp | 0140001 bb0
whetsbdmp.cpp 140001760
whetstdmp.cpp Cx140001400
whetstdmp.cpp Cx140001170
whetstdmp.cpp Or140003c£0
whetsbdmp.cpp 14000370
O 1400059b6
(140003292
(140005286 .
Bottom-Up View

10

Hotspot Analysis (Whetstone

Sour.. Source CPU Time by Utilization w B gy B A
Line @idle @Poor [0k @Ideal §Over
574 I

575 if (calibrate == 0)

576 I

577 ResumeThread (hThreadHandle) ;

578 SetThreadPricrity (hThreadHandle, THEERD PRICRITY BELOW NORMRL) :

379 }

580 mainCount = mainCount + 1;

581 for{i=1; i<n5; i++)

582 i

583 x = (SPDP) (t*atan(t2*sin(x)*cos (x)/(cos (x+y)+cos (x-y)-1.0))): 0.650< (NG Os
584 y = (SPDP) (t*atan(t2*sin(y)*cos (y)/ (cos (x+y)+cos (x-y)-1.0))); 0.679< [INNEGN Os
583 }

536 t = (SPDB)1.0 - t:

587 if (calibrate == 0)

588 I

589 SuspendThread (hThreadHandle) ;

560 }

391 1

592 while ((mainCount + threadCount) < (xtra)):

393 t = tl;

584 end time():

595 timeb = secs;

Intel VTune Lena Herscheid 11

Elapsed Time

Concurrency Analysis

CPU Usage: threads consuming CPU time Thread Concurrency: threads in runnable state

3.5z 1 1 3.5s ' :
a4s : E": 445 ; E“;
1 1 w 1 1
3.3s & o E 33 & 2
i = [il =
L S T . 4 S
2.25 € 1 g o] o
1}5 - 1 1]5 L 1
0 1 2 3 4 5 0 1 2 2 4 5
BCTENE (deal Over BT deal Over
0 s 0 & s &

Simultaneously Utilized Logical CPUs Simultanecusly Running Threads

* thread concurrency > CPU usage: thread oversubscription
* CPU usage > thread concurrency: spinning threads

Intel VTune Lena Herscheid

Concurrency Analysis (Whetstone

Grouping:

Function / Call Stack

+whetstones
Hwhetstone2

Hpa

Hpal
+calculateMHz
Hmain

H[Import thunk legf]
H[lmport thunk sinf]

Highlighted 7 row(s):

{

Function / Call Stack

CPU Time by Utilization w B g, Bl Wait Time by Utilization Module st
D idle @ Poor [Ck W Ideal [Over M Didle @Poor [0k B Ideal [Over
5.376s 0.060= G.iﬁ?s. whetsGdMP.exe whetstones(void]
4.905s 0= whetsedMP.exe whetstoned (void)
0.200s [l 0= whetstdMP.exe palfloat * const float, float)
1].3?5;. 0= whetsBdMP.exe pa2(float * const float,float)
'D.'I]l'.l"'lllsl 0s whetsodMP.exe calculatebHz
0.020s 0s 1011 whets64MP.exe main
0.020s Os whetsGdMP.exe [Import thunk logf]
0.020s Os whetstdMP.exe [Import thunk sinf]
5.895s| 0.060s 1374
> || €

CPU FunctionfCPU Stack - CPU Time v

Viewing 4 Tof 8 b

selected stack(s)

86.6% (5.106s of 5.8955)

Falal ol

whetsGdMP. exelwhetstones - whetsBdmp.cpp

whetsBdMP. exelmain+ 0ed03 - whetsbdmp.c..

whetsBdMP.exel_trmainCRT Startup+ 0119 - ...

KERMEL3Z2.DLL!BazeThreadInitThunk+0x19 ...

ntdll.dIlRtiUserThreadStart+0x20 - [Unkn...

Q=24

mainCRTStartup ﬂ]uaaﬂ
)

CountLoop (Ced0d)

Thread

CPUUsage

Thread Concyrrency

-

_

Intel VTune Lena Herscheid

Thread
[Running
[Waits
duk CPU Time
duk Overhead an...
Transitions
CPU Usage
duk CPU Time
dudk Overhead an...
Thread Concurrency
Hud Concurrency

13

Concurrency Analysis (Whetstone

Sour...
Line
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
41
442

threadCount = 07

do

if {calikrate

{

Source

== 0)

BesumeThread (hThreadHandle) ;
JetThreadFriority (hThreadHandle, THRELZD FRICRITY BELOI

1

mainCount = mainCount + 1;

for{i=0; i<nl#*nlmult; i++)

{
el[d] =
el[l] =
el[2] =
el[3] =
}
t = (SPDPj1l.0
if {calibrate

{

{el[0] + el[1l] + el[2] - el[3]) * t:
{el[0] + el[1l] - el[2] + el[3]) * t:

{el[0] - e1[1] + el[2] + el[3]) * t: 0.060s
{-el[0] + el[l] + el[2] + el[3]} * t: 0.200s [
- tr

== I:I:l

SuspendThread (hThreadHandle) ;

tt = to;

Intel VTune Lena Herscheid

CPU Time by Utilization
O I!dle @ Poor OOk [Ideal [Over

w B gy, Wait Time by Utilization

an.

O!dle B Poor O Ck [Ideal [Over

0.298s [

0=
0=

] »

14

Thread

Locks and Waits Analysis (Whetstone)

Top Waiting Objects

This section lists the objects that spent the most time waiting in your application. Objects can wait on specific calls, such as sleep() or I/0, or on contended synchronizations. A significant
amount of Wait time associated with a synchronization object reflects high contention for that object and, thus, reduced parallelism.

Sync Object Wait Tirme Wait Count
Resume Thread 0,345
Stream Ow5772d95f 0.012s
Stream Whets.bd Thed3b 11362 0.000=
__Sleep 1.000s
QoQkC-Qe | 0s I s

mainCRTStartup (01530

)

Countloop (0x1d44)

CPU Usage

Thread Concurrency

Thread
8 Running
[Waits
A CPU Time
Transitions
CPU Usage
duk CPU Time
Thread Concurrency
il Concurrency

Intel VTune

Lena Herscheid

15

Locks and Waits Analysis (Whetstone

Source

Sour...
Line
370
EXR
372
373
374
375
376
3T
3ve
379
380
381
382
383
384
385
386
387
388
389
390
39

Assembly | | EFs) iﬁ| El
Source
if {errors == 0)
{
fprintf (outfile, ™ Humeric results were as expected\n™);
}

for

1

fprintf{outfile, "\n");
BesumeThread (hThreadHandle)
goThread = FRLSE;
CloseHandle(hThreadHandle);

{i=0; 1«97 i++)

fprintf{outfile, "%s\n", configdata[i]):

fprintf (ocutfile, "\n");

fclose (ocutfile);
Sleep (1000} 2
return 07

Intel VTune

Wait Time by Utilization * B wait

@ldle B Poor O Ck @ 1deal [l Owver

Spin
Count Time

0.004=s 1 0=

(0.000s 1 0=

1.000s | | 1 Os
Selected 1 row(s):

Lena Herscheid

16

Hardware Profiling

e CPU-specific events and metrics

* profiling mode defines presets for Sample After Value and Events

EI t_“,.f Sandy Bridge / vy Bridge / Haswell Analysis

. General Exploration
. Bandwidth

. Access Contention

. Branch Analysis

. Client Analysis

. Core Port Saturation
. Cycles and uOps

. Memory Access

. Port Saturation

General Exploration

Events configured for CPLU: Intel(R) Core(TM) Processor 2o Series

MOTE: For analysis purposes, Intel VTune Amplifier XE 2013 may adjust the Sample After values in the table below by a multiplier. The multiplier depends on the
value of the Duration time estimate option specified in the Project Properties dialeg.

Event Name Sample After | LBR Filter
_Em
BF‘._MISP_F‘.I:—I'IF‘.ED.ALL_BF‘.ANCHES_PS 400000 Mone Mispredicted macro branch instructions retired. (Precise Event - PEBS)
CPU_CLE_UNHALTED, REF_TSC 2000000 Reference cydes when the core is not in halt state,

CPU_CLE_UNHALTED, THREAD 2000000 Core cydes when the core is not in halt state,
DSE2ZMITE_SWITCHES.PEMALTY _CYCLES 2000000 Mone Decode Stream Buffer (DSE)-to-MITE switch true penalty cydes
DTLE_LOAD_MISSES.STLE_HIT 100000 Mone Load operations that miss the first OTLE level but hit the second and do not
DTLE_LOAD _MISSES.WALK_DURATION 2000000 Mone Cydes when PMH is busy with page walks

ICACHE.MISSES 200000 Mone “Instruction cache, streaming buffer and victim cache misses™
IDQ.M5_CYCLES 2000000 Mone Cydes when uops are being delivered to Instruction Decode Queue (IDQ) w

TH 1IN AT NC TUCEnRCcry Samne

£

Intel VTune

Lena Herscheid

lalalalalalyl

Bl =

e + Arlivimrmd by Hem Ermmbmemd bo Hem Dademmd A f Hem remcmimn il 4
>

17

Hardware Profiling : General Exploration
RandMem

Memory Latency
LLC Miss: 0.045
LLC Hit: 0.293

A significant proportion of cycles is being spent on data fetches that miss in the L2 but hit in the LLC, This metric includes coherence penalties for shared data. If

contested accesses or data sharing are indicated as likely issues, address them first. Otherwise, consider the same performance tuning as you would apply for an..
DTLE Owerhead: 0.103

A significant proportion of cycles is being spent handling first-level data TLE misses. As with ordinary data caching, focus on improving data locality and reducing

working-set size to reduce DTLE overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the same page. Try...
Contested Accesses: 0.083

There is a high number of contested accesses to cachelines moedified by another core, Consider either using techniques suggested for other long latency load events

(for example, LLC Miss) or reducing the contested accesses, To reduce contested accesses, first identify the cause, If it is synchronization, try increasing...

Data Sharing: boaz Pipeline { ~ srlWiewing 4 1of 8 b select
o CPI Back-end Bound |Loading data. Pleaze wait.....
Function / Call Stack CPU CLE IMST_RET... Bad et
= Rate
THREAD ANV Re. Spec... Memory Latency Memory Replacernents
LLC Miss LLCHit DTLE Owverh.. Contested .. DataSharing L'ID Replace... L?_ Replace.. LLC Replace...
FrunTests 12,315,353,293| 16,971,401,939| 0.726 0.062 0.575

 thread 1 TestRD 12,578500.337| 13.417.639.464) 0937 0. : 0 _____

Elthread 1TestRW A significant proportion of cydes is being spent on data fetches that miss in thE L2 but hit in the LLC. This metric indudes cuherence penalties for shared data. If contested accesses or data sharing are indicated as likely issues, address
[FthreadZ TestRD them first. Otherwise, consider the same performance tuning as you would apply for an LLC-missing workload - reduce the data working set size, improve data access locality, consider blocking or otherwise partiioning your working set so
SthreadITestRW that it fits in the L2, or better exploit hardware prefetchers. Consider using software prefetchers, but note that they can interfere with normal loads, potentially increasing latency, and that they increase pressure on the memory system.

F. threadTestZRW < BaseT|Thresheld: {{{ (({25 * MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS) + (43 *MEM_LOAD_UCOPS_LLC_HIT_RETIRED.XSMP_HIT_PS)) + (60 * MEM_LOAD _UCPS_LLC_HIT_RETIRED.XSNP_HITM_PS)) / CPU_CLK_UNHALTED, THREAD] = 0.

. [Unknown stack frame(42.)~ { CPU_CLK_UNHALTED. THREAD / query al CPU_CLK_UNHALTED. THREAD >0.05))

Hinitptd 80,916,502 480,636,595 0.168 1.000 0.000
[FlsGetValue 95,051,238 378,870,881 0.251 1.000 0.000 [
#rand 57421589 303,842,475 0.189 1.000 0.000
calculateMHz 137,536,008 246,991,954 0.557 0.262 0.000
[getptd 57,820,967 233,064,764 0.248 1.000 0.000
FWindowProc 151660191 135197.944 1,122 0.018 1.000 M
Selected 1 row(s):| 12,578,500,337 13,417,639,464 0.837 0.177 0.053 0.056 0.248 0.194 0.000 0.002 0.349 0.250 0.000 w

Intel VTune Lena Herscheid 18

Hardware Profiling : Memory Analysis
RandMem

() Hardware Events

Hardware Event Type

Hardware Event Count

Hardware Event Sample Count

Events Per Sample

CPU_CLE_UMHALTED.THREAD 52,524,000,000 26,262 2000000
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSMP_HITM_PS 129,340,000 2,164 20000
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT_PS 14,100,000 235 20000
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSMP_MISS_PS 9,480,000 158 20000
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NOME_PS 374,100,000 1,247 100000
MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS 126,210,000 4227 10000
MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS 2,698,800,000 8,996 100000
MEM_LOAD_UOPS_RETIRED.L1_HIT_PS 22 740,000,000 3,790 2000000
MEM_LOAD_UOPS_RETIRED.LZ_HIT_PS 633,600,000 2,112 100000
MEM_UOPS_RETIREDLALL_LOADS_PS 27,210,000,000 4535 2000000
MEM_UOPS_RETIREDLALL_STORES PS 4,992,000,000 232 2000000

Call Stack
CPU_CLK_UMNHALTED.THREADw MEM_LOAD_UOPS_LLC_HIT_RETIRE.. MEM_LOAD_UOPS LLC_HIT_RETI.. MEM_LOAD UOPS_LLC_HIT_RETIRED.X.. MEM_LOAD_UQOPS_LLC_HIT_...

Fthread1TestRW 12,600,000,000 [40,740,000 (D 7,140,000 4,020,000 72 600,000 [

thread1TestRD 11.472,000,000 [35,820,000 (R 420,000 2 400,000 (R 186,600,000 NN

[#thread2TestRW 7.486,000,000 I 32,100,000 (D) 6,120,000 [1,860,000 () 25,200,000

#thread2TestRD 5,278,000,000 [17,700,000 [360,000 1,140,000 [23,400,000 [

runTests 4 040,000,000 . 0 0 0 0

Hinitptd 1,848,000,000) 0 0 0 0

[FlsGetValue 1,718,000,000 0 0 0 0

rand 1,496,000,000 0 0 0 0

[getptd 1,136,000,000 | 0 0 0 0

Intel VTune

Lena Herscheid

19

Other Features

 graphical tool for comparing analysis results

e user task API
e annotate source code with user tasks

* remote agents for Linux
* profile Linux applications remotely, using Windows GUI

* MPI Profiling (with Intel’s MPIl implementation)
* JIT Profiling

» application must link against jitprofiling library and issue special events
* LLVM supports the VTune API

* GPU Profiling (for OpenCL running on Intel GPUs)

Agenda

* Overview
* Sampling Approach

* Features
* Algorithm Analysis
* Hardware Profiling

e How It Works

* User mode Sampling
* Hardware Event Sampling

e Evaluation

User Mode Sampling

* time-driven approach

* embeds sampling library using LD PRELOAD
* setup timer for each thread
* upon timer expiration, issue SIGPROF
* interrupt process, collector handles signal by sampling stack information

Correlating Event-based sampling with thread quanta

Timestamp
Wall-clock reference

] Event counter wvalues
Timestamp
Wall-clock reference s
Event counter values Syne | . Switched out because of.
Siack Il"'" . WaitPorSingleldbject| Hamndle] ;

= ¥ =
samplimg intervals

active time

thread 1 e imEcfive time— thread 1

b e

sampling intervals

{:— Cluanitum E'I'Id}

Timestamp
Event counter values

Stacks processElement() === getMexiltern() === doTheJcb(}

Collected information (depending on configuration)

Registers and Memory | ["AD [ras + rbec™2 + 85]", "TAD + rox"8]"

e call stack information

Branches * branching information
I—LI * event counter values
i | ; 100 .
[__}zo * timestamp

* power consumption values

il
—@ 20 Intel VTune Lena Herscheid 23

Hardware Event Based Sampling

* event-driven
* implemented in a driver

* Performance Monitoring Unit (PMU) periodically interrupts processor

 collect information after SAV (Sample After Value) events
* automatic SAV calibration: needs additional run

* “If you set the Sample After value, specify a number that is sufficiently large. A value that
is too low increases the sample rate causing unpredictable results.”

* hardware limit on the number of simultaneously sampled events (4)
* for more events: round-robin multiplexing

* one PMU per core
* one PMU in uncore region

* uncore bound

* QPI events

* L3 cache events

* memory controller
events

* elapsed cycles

L1, L2 cache events

e processed
instructions , , |

. .. " L3 cache

L
inte

® e
QP Clock

Intel VTune Lena Herscheid 25

Sandy Bridge

ITLB misses

branch mispredictions

6 instructions

front-end bound
cannot fetch & decode
fast enough

| 4Hops
32 Bytes

(168 Entry Reorder Buffer (ROB))

4 pops

(144 Entry FP Physical Register File) (160 Entry Physical Register File)

back-end bound
no more operations
accepted by back-end

L1/L2-cache bound

FP assists stalls due to cache misses

denormal values

Intel VTune oig 26

Agenda

* Overview
* Sampling Approach

* Features
* Algorithm Analysis
* Hardware Profiling

e How It Works

* User mode Sampling
* Hardware Event Sampling

* Evaluation

A . .
“ Finalizing results

Evaluation

Loading 'ths29524.thE" file

+ detailed Hardware information

+ tool-supported low-level performance tuning
+ low overhead during application run

+ good visualizations

—long post-processing

—the absolute numbers are not reliable (sampling errors)
— influenced by system state and randomness

—single user license: 9005
—confusingly many features

Cancel

Evaluation (ctd.)

6.2 Intel® Software Development Products

In the course of optimization for Intel architecture, the SAP
HANA development team benefited dramatically from the

Use VTune... use of Intel® Software Development Products and guidance
+ if you ta rget an Intel architecture from their colleagues at Intel. The following tools played

+ and are willing to optimize for it particularty key roles:
+ if the application is compute-intensive * Intel® VTune™ Performance Analyzer helps

. take advantage of hardware counters to identify

+ |f ha rdwa re awareness counts microarchitectural events, such as cache misses, and

+ strict performance requirements tie them back to specific code locations. This capability

+ low-level programming language has played an essential role in optimizing the code for

the out-of-order engine and cache hierarchy.
Otherwise, use a simpler alternative

e Sampling Profilers:
Very Sleepy for Windows, OProfile/gprof for Linux, AMD CodeAnalyst

* for just accessing PMUs: Intel Performance Counter (BSD license)
* http://software.intel.com/en-us/articles/intel-performance-counter-monitor/#license

Intel VTune Lena Herscheid 29

http://software.intel.com/en-us/articles/intel-performance-counter-monitor/#license

Sources

Intel Materials: Documentation, Forum, Architecture Manual
* http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-2011-documentation
* http://software.intel.com/en-us/forums/intel-vtune-amplifier-xe-and-vtune-performance-

analyzer

* http://www.intel.de/content/dam/doc/manual/64-ia-32-architectures-optimization-
manual.pdf

Benchmarks: http://www.roylongbottom.org.uk

http://www.realworldtech.com/vtune/

Survey of Software Monitoring and Profiling Tools
http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw monitors2.pdf

Intel VTune Lena Herscheid

30

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-2011-documentation
http://software.intel.com/en-us/forums/intel-vtune-amplifier-xe-and-vtune-performance-analyzer
http://www.intel.de/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.roylongbottom.org.uk/
http://www.realworldtech.com/vtune/
http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors2.pdf

