

 P a g e 1

SNAP Framework built on Power™ CAPI technology September 11th, 2018

IBM CAPI SNAP framework
Version 1.1

Quick Start Guide on a General environment.

The Quick Start Guide describes how to log to SuperVessel and use SNAP environment.

Product Overview

The CAPI SNAP Framework is an open source enablement environment developed by members of the

OpenPOWER Accelerator Work Group. SNAP, which is an acronym for Storage, Network, Analytics and

Programming, indicates the dual thrusts of the framework:

• Enabling application programmers to embrace FPGA acceleration and all of CAPI’s technology

benefits.

• Placing the accelerated compute engines, or FPGA “actions”, closer to the data to provide higher

performance

SNAP hides the complexity of porting an function/action to an external card. By integrating together the

following 4 components, you will get the best you can to port and offload or even accelerate your code.

Once called by your main software application, the function running in FPGA hardware is able to

access by itself not only to all hardware present on the FPGA card, but also to the main host

memory using the same address space as any other cores. Only a set of parameters including input

and output memory addresses is exchanged between application and hardware function.

This document will succesfully go through the following items:

- General documentation to understand SNAP and the hls_helloworld example

- Process to install tools and set your environement.

- Configure SNAP for the card and the action

- Go through the 3 steps of the SNAP flow :

 1) application + CPU executed action, application

 2) modelisation of the FPGA executed action,

 3) application + FPGA executed action

https://openpowerfoundation.org/technical/working-groups/?cm_mc_uid=11241689934314769727595&cm_mc_sid_50200000=1486386840#wg_accelerator

 P a g e 2

SNAP Framework built on Power™ CAPI technology September 11th, 2018

Contents

Product Overview ... 1

Contents .. 2

1. Access the software and documentation .. 3

2. Supported development and deployment environment .. 3

3. Setup your environment on your x86 development server ... 3

4. Setup your environment on your Power8/9 deployment server ... 4

5. Choose the card that will fit your requirements ... 5

6. Understand how data are exchanged with FPGA ... 5

7. Understand the HLS helloworld example .. 6

8. Preliminary Step : configure SNAP environment .. 7

9. Step 1: Run your application with your CPU-executable action ... 9

10. Step 2: run your application with a simulated model of your FPGA-executable action.............. 11

11. Step 3: Run your application with your FPGA-excutable action ... 13

12. Conclusion .. 16

 P a g e 3

SNAP Framework built on Power™ CAPI technology September 11th, 2018

1. Access the software and documentation

The SNAP framework can be downloaded from github at: https://github.com/open-power/snap.

Follow the instructions in https://github.com/open-

power/snap/blob/master/README.md#dependencies to find all you need to run the whole flow. This

means downloading:

- the libraries (libcxl),

- the hardware component for the card you intend to use (Processor Service Layer checkpoint file

“b_route_design.dcp” for Power8 cards, or CAPI_BSP Board Support Package for Power9 cards),

- the simulation model (PSLSE: PSL Simulation Engine) and tools to synthesize your design (Xilinx

Vivado with the Ultrascale family chips)

- and the scripts to configure your FPGA with the binary file you created (capi-utils) on your

deployment Power CPU system.

We will go through these different steps later in section 3

All education documentation can also be found at: https://developer.ibm.com/linuxonpower/capi/snap/

or direct link http://ibm.biz/powercapi_snap

2. Supported development and deployment environment

Development and deployment environments are described with examples at : https://github.com/open-

power/snap/tree/master/doc/README.md

This documentation provides hardware examples as well as minimum software required configurations.

3. Setup your environment on your x86 development server

Important: We will call ~snap and ~pslse the directories in which you have installed snap, and pslse.

Please adapt your paths accordingly. Having them in the same directory may be simpler for user.

1) Clone the snap github and then the pslse and prepare libraries.

git clone https://github.com/open-power/snap.git

git clone https://github.com/ibm-capi/pslse

2) Follow instructions on https://github.com/open-

power/snap/blob/master/README.md#dependencies to have your x86 development

environment installed

a. No need to install “libcxl” as this library is already included in the “pslse”. However this
will be required in Power8/9 environment, as we use the actual PSL.

b. Either the PSL Checkpoint Files (“b_route_design.dcp”) for the CAPI1.0 SNAP Design Kit
c. Or the BSP zipped files for CAPI2.0 cards (with Power9)
d. Install Xilinx Vivado with latest supported version and associated FPGA family
e. Kconfig should be installed automatically (ncurses library may be needed)
f. Do not install capi_utils. This is only for Power8/9 environment.
g. Download PSLSE

https://github.com/open-power/snap
https://github.com/open-power/snap/blob/master/README.md#dependencies
https://github.com/open-power/snap/blob/master/README.md#dependencies
https://developer.ibm.com/linuxonpower/capi/snap/
http://ibm.biz/powercapi_snap
https://github.com/open-power/snap/tree/master/doc/README.md
https://github.com/open-power/snap/tree/master/doc/README.md
https://github.com/open-power/snap.git
https://github.com/ibm-capi/pslse
https://github.com/open-power/snap/blob/master/README.md#dependencies
https://github.com/open-power/snap/blob/master/README.md#dependencies

 P a g e 4

SNAP Framework built on Power™ CAPI technology September 11th, 2018

3) Follow instructions on https://github.com/open-

power/snap/tree/master/hardware/README.md to set your hardware-specific variables

a. This will set Xilinx variables
b. In your snap directory, create the file snap_env.sh

gedit snap_env.sh

In the environment file we need to provide the paths for :

- the pslse dir

- the dcp containing the PSL used in Power8 environment

- eventually the directory containing the BSP files containing the PSL used in Power9

environment, but unless otherwise mentioned, there is a default location : hardware/capi2-

bsp/psl where the BSP zipped should be placed.

export PSLSE_ROOT=~pslse

export PSL_DCP=~path_to_CAPI_PSL_Checkpoints/ADKU3_Checkpoint/b_route_design.dcp

echo "export PSL9_IP_CORE= <for CAPI2.0 cards: path to ibm.com_CAPI_PSL9_WRAP2.00.zip

file>" >> $snap_env_sh

and save and close the file.

If you intend to use the N250S card on Power8, just adapt your path accordingly

export PSL_DCP=~path_to_CAPI_PSL_Checkpoints/N250S_Checkpoint/b_route_design.dcp

NOTE: you can also type the following commands to create the file :

echo "export PSLSE_ROOT=~pslse" > snap_env.sh

echo "export PSL_DCP=~path_to_CAPI_PSL_Checkpoints/ADKU3_Checkpoint/b_route_design.dcp" >>

snap_env.sh

NOTE: you can also use ${FPGACARD} SNAP variable to parametrize your path if you use several

cards in the same P8 system (for P9 only one zip file containing the BSP is required) :
echo "export PSL_DCP=~path_to_CAPI_PSL_Checkpoints/\${FPGACARD}_Checkpoint/b_route_design.dcp" >>

snap_env.sh

4) Follow instructions on https://github.com/open-

power/snap/blob/master/hardware/sim/README.md to set your simulation-specific variables.

Vivado xsim is the default simulator and nothing needs to be set to have it run.

4. Setup your environment on your Power8/9 deployment server

1) Clone the snap github

git clone https://github.com/open-power/snap.git

2) Following instructions on https://github.com/open-power/snap#dependencies you should

have installed on your Power8/9 deployment environment.

a. libcxl installation ➔(for ubuntu) sudo apt-get install libcxl-dev

b. Image loader ➔ see https://github.com/ibm-capi/capi-utils

Your 2 environments are now fully prepared for SNAP.

https://github.com/open-power/snap/tree/master/hardware/README.md
https://github.com/open-power/snap/tree/master/hardware/README.md
https://github.com/open-power/capi2-bsp
https://github.com/open-power/capi2-bsp
https://github.com/open-power/snap/blob/master/hardware/sim/README.md
https://github.com/open-power/snap/blob/master/hardware/sim/README.md
https://github.com/open-power/snap.git
https://github.com/open-power/snap#dependenciesY
https://github.com/ibm-capi/capi-utils

 P a g e 5

SNAP Framework built on Power™ CAPI technology September 11th, 2018

5. Choose the card that will fit your requirements

The choice of the card obviously depends on your needs and availability. For already supported cards

direct SNAP usage is possible. If a new card is considered, if it is using the same FPGA part as a

supported one, most of the PSL attachment work can be reused.

Different cards offer different features : communication (Ethernet at different speed), on board memory

(DDR3, DDR4, QDR, …) NVMe attachment capability, etc…. As SNAP is open source software, everyone

can use or contribute to the ecosystem.

6. Understand how data are exchanged with FPGA

SNAP has been designed such a way that you can move data from a Source to a Destination without

knowing the specific protocol to access the different memories. In the application, the coder decides

where the data are located. These data locations can be either in the Host server memory, as well as on

the card memory, or even outside the server and the card on an external storage accessed directly by

the FPGA card.

The data transfer is not handled by the host processor, we just need to communicate the data source

or destination address and size and the FPGA will handle it.

Important: We will call “application” the code executed on the server which calls the “action”

containing the function to off-load and/or accelerate. This action can be “software” or “hardware”

whether it is coded to be executed on CPU or FPGA.

 P a g e 6

SNAP Framework built on Power™ CAPI technology September 11th, 2018

7. Understand the HLS helloworld example

Let’s consider a simple example of a C code changing the case of a text read from a file and writing back

the result into another file.

Once typed a text in a file t1, the user calls the program with path of input and output files as

arguments. The different steps (red flow) are then typically:

1) Text is read and stored in the server’s memory (source).

2) CPU processes the text and writes back the result to the server memory (destination).

3) Text modified is then written from memory to disk.

Let’s now consider that we decide to “export” this “changing case processing” from the server processor

to an external FPGA card. To keep that simple, we need to implement this switch so that the program

call remains with no great changes (blue flow). To be able to differentiate which of these 2 paths we are

using, we will use a lower case algorithm in the “software” action, so called because it runs on the CPU,

and we will use a upper case algorithm in the “hardware” action so called because it will run on the

FPGA.

Through this simple example, we will discover some of the advantages and strength of SNAP tools to

help exporting the previously CPU executed task.

 P a g e 7

SNAP Framework built on Power™ CAPI technology September 11th, 2018

8. Preliminary Step : configure SNAP environment

You now need to configure SNAP for the card and the action you will want to use.

For a first test, from snap directory, type make snap_config .

 Make sure the terminal window is large enough to allow the opensource configurator to appear.

Otherwise it behaves as if you opened it and closed it suddenly ! you get an unexpected SNAP

config done

 Menu uses simple kconfig opensource tool. Thus menus might change depending on the

preselection we apply, it is not always possible to go back and forth without artefacts.

For example selecting N250S/hls_nvme_memcopy/cloud mode will enforce nosim mode.

the make model will then inform you it can build a model in “nosim” mode. Come back and

select “xsim”.

 Do hesitate to use context helps.

This opens a menu window as the following one. Let’s select the Card Type ADKU3 and the Action Type

HLS helloworld with the default vivado xsim simulator.

 Use “space bar” or “return” to select depending if a submenu is present or not.

Then select <Exit> and <Yes> to save the configuration

 P a g e 8

SNAP Framework built on Power™ CAPI technology September 11th, 2018

If everything is set ok, then you should have displayed the SNAP ENVIRONMENT SETUP summary and

the content of snap_env.sh which is the configuration file that we have prepared earlier.

You may get some warnings if one of the 3 variables of this snap_env.sh is not set appropriately. It is

recommended to correct it before going further.

In this example, you typically selected the N250S card with the path PSL_DCP set to ADKU3!

 The selected hls_helloworld example appears as a new variable in snap_env.sh, as it will define

the directory used for simulation and hardware tests.

 Should you need to change anything in the configuration, you would need to make clean_config

in the snap directory to reset those variables. (then copy again the snap_env.sh reference from

your home dir to your snap dir)

 SNAP contains several examples which can be used as references in the same manner.

 We are now using Vivado 2018.1 version

 P a g e 9

SNAP Framework built on Power™ CAPI technology September 11th, 2018

9. Step 1: Run your application with your CPU-executable action

As we use dynamic libraries, we need to prepare our environment, this is easy to do while preparing the

software tools :

cd ~/snap

make software

All the code for the hls_helloworld example can be found in ~snap/actions/hls_helloworld

Let’s start with the application running with the CPU-executable action. Let’s look to the files located in

sw sub-directory: cd ~snap/actions/hls_helloworld/sw

You will find 2 C code files : snap_helloworld.c which is what we call the application which will be always

run on the CPU (Power or x86) and action_lowercase.c which is the “software” action.

1) Let’s first compile the code executing the command make

The first time you’ll get

If you already made the file, you’ll will only get :

 Note that a “make apps” from the snap dir will create all demo applications (here we just want

to show you just the necessary files)

2) Create a text file (if not done previously) to be processed by the FPGA. Use a mix of lower and

upper case to see the difference when using both actions. Remember “hardware” action will

change all characters in Upper case and the “software” action which will change all characters in

Lower case.

 echo " Hello World. I hope you enjoy this wonderful experience using SNAP." > /tmp/t1

 P a g e 10

SNAP Framework built on Power™ CAPI technology September 11th, 2018

3) Run the application SNAP_CONFIG=CPU ./snap_helloworld -i /tmp/t1 -o /tmp/t2

Display the 2 files :

Displaying the 2 files confirms that the “lower case” processing has been correctly done – using the

“software” action code.

You can try the Debug option to see MMIO exchanges between application and action typing:

 SNAP_TRACE=0xF SNAP_CONFIG=CPU ./snap_helloworld -i /tmp/t1 -o /tmp/t2

 P a g e 11

SNAP Framework built on Power™ CAPI technology September 11th, 2018

10. Step 2: run your application with a simulated model of your FPGA-executable action

Now that we have checked that the application works ok with the “software” action, let’s use the

“hardware” action. We’ll keep using the snap_helloworld application located in hls_helloworld/sw, but

will now use the “hardware” action located in hls_helloworld/hw.

Optional: This “hardware” action can compiled alone:

- from cd ~/snap/actions/hls_helloworld/hw , and type make

or compiled with the whole SNAP design:

- from cd ~/snap, and type make apps

This compilation is optional since included in the following commands of the flow :

Let’s first build the model of the code so that you can run your application with a simulated model of

your FPGA executable code.

1) From the snap directory cd ~snap , type make model

2) If the build is succesful, then go into ~snap/hardware/sim typing

 cd hardware/sim and start the simulator typing ./run_sim

3) A new window will popup.

Type in it snap_maint -vv to execute the discovery mode. This step is mandatory in simulation

simulation as well as in real hardware. It allows the SNAP logic to discover all the actions from all

the cards. Should an application request an action, it will thus be assigned to the proper

hardware.

 P a g e 12

SNAP Framework built on Power™ CAPI technology September 11th, 2018

This shows that the action found is HLS Hello World,…as expected.

Running it a second time will confirm that this discovery step has already been done.

4) Then create a text file (if not done previously) to be processed by the FPGA.

 echo " Hello World. I hope you enjoy this wonderful experience using SNAP." > /tmp/t1

5) Run the application snap_helloworld -i /tmp/t1 -o /tmp/t2 (Please note the difference

compared to calling software action is: We don’t use SNAP_CONFIG environmental variable.

Actually here implies the default value of SNAP_CONFIG=FPGA)

6) Display the 2 files :

This confirms that the “upper case” processing has been correctly done – using the “hardware” code.

You can try other options before exiting

• Run the software code: SNAP_CONFIG=CPU snap_helloworld -i /tmp/t1 -o /tmp/t2

• Run the debug mode on FPGA code: SNAP_TRACE=0xF snap_helloworld -i /tmp/t1 -o /tmp/t2

You can now exit the simulator. The poped up terminal window will disappear.

 P a g e 13

SNAP Framework built on Power™ CAPI technology September 11th, 2018

11. Step 3: Run your application with your FPGA-excutable action

Now that your application has been succefully executed with the simulated “hardware” action, let’s

generate the “image” of the code which will be put into the FPGA.

1) From the snap directory cd ~snap , type make image (this takes an hour or so)

An image has been built and can be found in ~snap/hardware/build/Images

You can check subdirectories in /home/opuser/snap/hardware/build/ for more information that Vivado

generates.

2) Copy this image located into ~snap/hardware/build/Images into the Power8/9 server on which

is plugged the FPGA card

3) Log to your Power8/9 server

4) Use capi-flash-script to download the binary image into the FPGA (cf. https://github.com/ibm-

capi/capi-utils)

From the directory where you copied your bin file type:

sudo capi-flash-script fw_2017_1124_1919_noSDRAM_ADKU3_28.bin

 P a g e 14

SNAP Framework built on Power™ CAPI technology September 11th, 2018

5) Clone the snap github

git clone https://github.com/open-power/snap.git

6) Enter directory snap by typing cd ~snap

and compile the software and all application and action make software apps

https://github.com/open-power/snap.git

 P a g e 15

SNAP Framework built on Power™ CAPI technology September 11th, 2018

7) Execute the command source ./snap_path.sh to add all the paths you will need to PATH

variable.

8) Find which card are available in the Power8/9 server you are connected to:

snap_find_card -v -A ALL

If you have 2 cards ADKU3, then the 2 cards slots are displayed. Using C0 or C1 will help you

chosing the right one.

9) Run the discovery mode to locate on which FPGA card your action has been copied to by typing:

 snap_maint -vv -C0 or snap_maint -vv -C1 depending on the slots reported previously

Only one of these commands should answer you

For your information the other slot will not answer:

10) Create a text file to be processed by the FPGA. Use a mix of lower and upper case to see the

difference when using the “hardware” action which will change all characters in Upper case and

the “software” action which will change all characters in Lower case.

 echo " Hello World. I hope you enjoy this wonderful experience using SNAP." > /tmp/t1

11) Go to the application you want to run typing

cd /home/snap/actions/hls_helloworld/sw

12) Run the application ./snap_helloworld -i /tmp/t1 -o /tmp/t2 -C0 (or -C1)

 P a g e 16

SNAP Framework built on Power™ CAPI technology September 11th, 2018

13) Display the 2 files :

This confirms that the “upper case” processing has been correctly done – using the “hardware” action

code.

You can try other options before exiting

• Run the software code: SNAP_CONFIG=CPU snap_helloworld -i /tmp/t1 -o /tmp/t2

• Run the debug mode on FPGA code: SNAP_TRACE=0xF snap_helloworld -i /tmp/t1 -o /tmp/t2

12. Conclusion

So far you have been able to run a complete simple example on an FPGA through CAPI SNAP.

You have seen in detail the mecanism that allows submitting a simple task to the FPGA.

You have all the necessary files to undertand how the initially CPU executed task has been submitted to

FPGA hardware.

Once this mecanism is understood, you can experiment further.

You can use some other provided examples to launch a large section of memory copy (hls_memcopy

example) from host memory to the DDR of the FPGA. Then you can make your own FPGA calculation

and get the result back with a second hls_memcopy as a last step.

It should give you a taste of the power of CAPI acceleration using POWER CAPI Technology.

