
Offload?
State of the art, CAPI, OpenCAPI,…



Understand how to offload a server (1/3)

Server

1 « Classic » CPU execution

Application

Function

- Direct access to Host memory

Use-case: find the common elements of 2 tables
- 1 TB table is located in host memory
- 1 TB table is located on external disks

- TB of data to ingest through a 
100Gb/s ethernet card
→ Network + host memory usage

1TB to ingest through a 4x100Gb/s card takes 20.5 secs!

Table 3

Table 1

Table 2

Where are data located??



Understand how to offload a server (2/3)

2 Adding a « classic » PCIe FPGA card

Server

Application

Function

- Function is offloaded / accelerated
- Server network resources savings
- Server memory savings

- Need a software driver
→ CPU + memory usage
→ adding a level of code complexity
→ losing direct access to Host memory

- FPGA card is a SLAVE
➔ ALL data pushed to the FPGA
→ High utilization of PCIe BW
→ data coherency lost

- 1 user / 1 application / 1 function



Understand how to offload a server (3/3)

Server

3 Adding a « CAPI-enabled » FPGA card

Function

Application

- Function is offloaded / accelerated
- Server network resources savings
- Server memory savings

- CAPP = CAPI Hardware driver
→ CPU + memory savings

- FPGA card is MASTER
→ Function accesses only host data needed
→ coherency of data
→ Address translation 
(@action=@application)

- Multiple threads / multiple users can be 
associated to multiple actionsCAPP



CAPI/OpenCAPI evolution: Increase bandwidth and reduce latency

Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

OpenCAPI3.0

P9 / CAPI2.0
PCIeGen4x8 @16Gb/s
~14 GB/s measured

est. <555ns total latency

P9 / OpenCAPI3.0
OpenCAPI link 25Gb/s 8 lanes

~22GB/s measured
378ns total latency

P8 / CAPI1.0
PCIeGen3x8 @8Gb/s

~4GB/s measured
~800ns latency

“Total latency” test on OpenCAPI3.0:
Simple workload created to simulate communication 
between system and attached FPGA
1. Copy 512B from host send buffer to FPGA
2. Host waits for 128 Byte cache injection from FPGA 

and polls for last 8 bytes
3. Reset last 8 bytes
4. Repeat Go TO 1.

P9 Server

Core

CAPI2.0



Coding: RTL? C/C++? SNAP?



The CAPI – SNAP concept

Action X
Action Y
Action Z

CAPI

SNAP

Vivado
HLS

CAPI FPGA becomes a peer of the CPU
➔ Action directly accesses host memory

SNAP
Manage server threads and actions
Manage access to IOs (memory, network)
➔ Action easily accesses resources 

FPGA
Gives on-demand compute capabilities
Gives direct IOs access (storage, network)
➔ Action directly accesses external resources 

Vivado
HLS

Compile Action written in C/C++ code
Optimize code to get performance
➔ Action code can be ported efficiently

+

+

+

=
Offload/accelerate a C/ C++ code with :
- Quick porting
- Minimum change in code
- Better performance than CPU

FPGA



FPGA development: Choice1 (air liner cockpit) 

— Develop your code
• Software side: on 

libcxl APIs

• FPGA side: on PSL 
interface 
o Or TLx for 

OpenCAPI

Process C
Slave Context

libcxl

cxl

SNAP
library      

Job
Queue

Process B
Slave Context

libcxl

cxl

SNAP
library      

Job
Queue

Process A
Slave Context

libcxl

cxl

HDK:
CAPI
PSL

CAPI

Big developing efforts 
Extreme performance targeted, full control

Programming based on libcxl and PSL interface

Application on Host Acceleration on FPGA

Software
Program

Hardware Logic



FPGA development: Choice2 (Recommended, simplified cockpit)

• CAPI SNAP is an environment that makes it easy for programmers to create 
FPGA accelerators and integrate them into their applications.
• Security based on IBM POWER's technology.
• Portable from CAPI1.0, 2.0 to OpenCAPI
• Open-source (once a driver is available, everyone can make use of it)

https://github.com/open-power/snap

Storage, Networking, Analytics Programming framework



SNAP framework

Process C
Slave Context

libcxl

cxl

SNAP
library      

Job
Queue

Process B
Slave Context

libcxl

cxl

SNAP
library      

Job
Queue

Process A
Slave Context

libcxl

cxl

SNAP
library      

Job
Queue

Application on Host Acceleration on FPGA

Software Program

PSL/AXI bridge
DRAM
on-card

Network
(TBD)

NVMeAXI

Host 
DMA

Control

MMIO

Job 
Manager

Job
Queue

Quick and easy developing
Use High Level Synthesis tool to convert C/C++ to RTL, or directly use RTL

Programming based on SNAP library and AXI interface

AXI is an industry standard for on-chip interconnection (https://www.arm.com/products/system-ip/amba-specifications)

C/C++
or RTL

Hardware Action

HDK:
CAPI
PSL 
or 

BSP

CAPI

https://www.arm.com/products/system-ip/amba-specifications)


2 different working modes

The Fixed-Action Mode
PARALLEL MODE

The Job-Queue Mode
SERIAL MODE

FPGA-action executes a job 
and returns after completion

FPGA-action is designed to permanently run
Data-streaming approach with data-in and 
data-out queue

Software Program C/C++ function

Hardware Action
Software Program C/C++ function

Hardware Action



FPGA CARD

Why CAPI is simpler and faster ? Because of the coherency of memory

Place computing closer to data
No data multiple copy

DRAM
on-card

Network
(TBD)

NVMeAXI

Action1
Verilog

Action3
…

Action2
C/C++

Host
memory

CAPI

Config/Status

Core1 Core2 Core3
« Core4 » 

like

From CPU-centric architecture …. to a …… Server memory centric architecture



WHAT 
POWER + 
FPGA BRING 
? => 
COHERENCY

Let’s understand SNAP with a “hello world” example
Application on 

Server

snap_helloworld –i /tmp/t1 -o /tmp/t2 (-mode=cpu)

HELLO WORLD. I love this new
experience with SNAP

“Lower  case” 
processing

➔ “software” action

hello world. I love this new
experience with snap

“Upper case” 
processing

➔ “hardware” action

snap_helloworld –i /tmp/t1 –o /tmp/t2 (default -mode=fpga)

HELLO WORLD. I LOVE THIS NEW
EXPERIENCE WITH SNAP

➔ Change C code to implement:
- A switch to execute action on CPU or on FPGA
- A way to access new resources



Host System memory

SNAP solution Flow : prepare the data (hls_helloworld example)
Application

addr_in = snap_malloc(size)

Fill input data into host server memory
- Evaluate input file size 
- Allocate memory area (64Bytes aligned)
- Read data from input file and fill ibuff with 

data from input file

1

Prepare host server memory to store the 
results:
- Evaluate output file size (same than input)
- Allocate memory area (64 Bytes aligned)

2

Prepare parameters to be written in MMIO 
registers:
- type_in = SNAP_ADDRTYPE_HOST_DRAM;
- addr_in = (unsigned long) ibuff;

3

addr_out = snap_malloc(size)

snap_addr_set(&mjob->in, addr_in, size_in, type_in,
SNAP_ADDRFLAG_ADDR | SNAP_ADDRFLAG_SRC);

snap_addr_set(&mjob->out, addr_out, size_out, type_out,
SNAP_ADDRFLAG_ADDR | SNAP_ADDRFLAG_DST |
SNAP_ADDRFLAG_END);

snap_job_set(cjob, mjob, sizeof(*mjob), NULL, 0);- Assign the structure mjob containing all 
parameters we just filled to the job cjob

- type_out = SNAP_ADDRTYPE_HOST_DRAM;
- addr_out = (unsigned long) obuff;

Allocate the card that will be used4 card = snap_card_alloc_dev (device, 
SNAP_VENDOR_ID_IBM, 

SNAP_DEVICE_ID_SNAP);

action = snap_attach_action (card,
HELLOWORLD_ACTION_TYPE, action_irq, 

timeout);

Allocate the action  that will be used on the 
allocated card

5

rc = __file_read(input, addr_in, size);

size = __file_size(input);

Data memory area

@addr_out
------ Output text area-----

@addr_in
------ Input Text ------

MMIO registers
@mjob

type_in, addr_in, flags_in
type_out, addr_out, flags_out

Action X
Action Y
Action Z

C/ C++ code used in Application



Host System memory

SNAP solution Flow : call + process the action (hls_helloworld example)
Application Hardware 

function/action

rc = snap_action_sync_execute_job(action, &cjob, timeout);Call the action. This will:
- Write all registers to the action (MMIO)
- Start the action
- Wait for completion (interrupt, MMIO polling, 

or timeout)
- Read all registers from the action (MMIO)

6

This starts the execution of the software
or hardware function//action code 

Get and align the input_data_address, input_data
_address  and size to access (MMIO)

1
i_idx = act_reg->Data.in.addr >> ADDR_RIGHT_SHIFT;
o_idx = act_reg->Data.out.addr >> ADDR_RIGHT_SHIFT;
size = act_reg->Data.in.size;

Read data from input_data address directly in host 
memory server (din_gmem)

memcpy((char*) text, din_gmem + i_idx, size);

Process the data (uppercase conversion) 
for (i = 0; i < sizeof(text); i++ ) 

if (text[i] >= 'a' && text[i] <= 'z')
text[i] = text[i] - ('a' - 'A');

memcpy(dout_gmem + o_idx, (char*) text, size); Write data to output_data address directly in host 
memory server (dout_gmem)

act_reg->Control.Retc = SNAP_RETC_SUCCESS; Fill the return code

2

3

4

5

The end of the code sends to the application an 
interrupt (if set)

Data memory area

@addr_out
------ Output text area-----

@addr_in
------ Input Text------

MMIO registers
@mjob

type_in, addr_in, flags_in
type_out, addr_out, flags_out

C/ C++ code used in Application

Core



Host System memory

SNAP solution Flow : free the action (hls_helloworld example)
Application

Read output data from the host server 
memory and write them to output file
- Read data from host server (obuf) and 

write data to output file

7

8 snap_detach_action(action);
snap_card_free(card);
__free(obuff);
__free(ibuff);

Detach action
Disallocate the card
Free the dynamic allocation of buffers

rc = __file_write(output, addr_out, size); Data memory area

@addr_out
------ Output text ----

@addr_in
------ Input Text------

C/ C++ code used in Application

Action X
Action Y
Action Z



A SIMPLE 3 STEPS PROCESS

Application

SNAP_CONFIG=CPU snap_helloworld –i
/tmp/t1 -o /tmp/t2

“Lower  case” processing
➔ “software” action

Action

1

x86 server

ISOLATION

command: make

SNAP_CONFIG=FPGA
snap_helloworld –i /tmp/t1 –o /tmp/t2

FPGA Card emulation
with Power Server IBM’s 

simulation engine

2

“Upper case” processing
➔ “hardware” action

x86 server

Application Action

SIMULATION

command: make sim

3

“Upper case” processing
➔ “hardware” action

POWER8/9 server

Application Action

SNAP_CONFIG=FPGA
snap_helloworld –i /tmp/t1 –o /tmp/t2

EXECUTION

command: make image



SNAP Ecosystem
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SHA3 example



The SHA3 test_speed program structure: 
➔ 2 parameters : NB_TEST_RUNS, NB_ROUNDS

main() {
for(run_number = 0; run_number < NB_TEST_RUNS; run_number++) 
{

if(nb_elmts > (run_number % freq))
checksum ^= test_speed(run_number);

}
} 

uint64_t test_speed (const uint64_t run_number) 
{
for( i=0; i < 25; i++ ) 

st[i] = i + run_number;
bg = clock;
do {

for( i=0; I < NB_ROUNDS; i++ ) 
sha3_keccakf(st, st);

} while ((clock –bg) < 3 * CLOCKS_PER_SEC);
for( i=0; i < 25; i++ ) 

x += st[i];
return x;
}

NB_ROUNDS=100,000void sha3_keccakf(uint64_t st_in[25], uint64_t st_out[25])
{

for (round = 0; round < KECCAKF_ROUNDS; round++) 
processing Theta + Rho Pi + Chi

}

Math function

Recursive loops

NB_TEST_RUNS = 65,536

Parallel loops

KECCAKF_ROUNDS = 24 → 24 calls calling the algorithm process

Code used was downloaded 
(with author’s authorization) from:
https://github.com/mjosaarinen/tiny_sha3

As measuring time with HLS is not obvious, the “time” loop was 
modified so that parallelism could be done. The goal stays to 
execute the maximum times the keccakf algorithm per second.



void sha3_keccakf(uint64_t st_in[25], uint64_t st_out[25],
{

int i, j, round;
uint64_t t, bc[5];
uint64_t st[25];

for (i = 0; i < 25; i++)
#pragma HLS UNROLL

st[i] = st_in[i];
for (r = 0; r < KECCAKF_ROUNDS; r++) {

#pragma HLS PIPELINE
// Theta
for (i = 0; i < 5; i++)

bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];

for (i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5)

st[j + i] ^= t;
}

// Rho Pi
t = st[1];
for (i = 0; i < 24; i++) {

j = keccakf_piln[i];
bc[0] = st[j];
st[j] = ROTL64(t, keccakf_rotc[i]);
t = bc[0];

}

//  Chi
for (j = 0; j < 25; j += 5) {

for (i = 0; i < 5; i++)
bc[i] = st[j + i];

for (i = 0; i < 5; i++)
st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];

}

//  Iota
st[0] ^= keccakf_rndc[r];

}
for (i = 0; i < 25; i++)

#pragma HLS UNROLL
st_out[i] = st[i];

}

Keccakf function changes

FYI for comparison: changes done to port this code to CUDA
…/…
// Rho Pi

st0 = st00;
st10 = ROTL643(st01, 1, 63);
st7 = ROTL643(st010, 3, 61);
st11 = ROTL643(st07, 6, 58);
st17 = ROTL643(st011, 10, 54);
st18 = ROTL643(st017, 15, 49);
st3 = ROTL643(st018, 21, 43);
st5 = ROTL643(st03, 28, 36);
st16 = ROTL643(st05, 36, 28);
st8 = ROTL643(st016, 45,19);
st21 = ROTL643(st08, 55, 9);
st24 = ROTL643(st021, 2, 62);
st4 = ROTL643(st024, 14, 50);
st15 = ROTL643(st04, 27, 37);
st23 = ROTL643(st015, 41, 23);
st19 = ROTL643(st023, 56, 8);
st13 = ROTL643(st019, 8, 56);
st12 = ROTL643(st013, 25, 39);
st2 = ROTL643(st012, 43, 21);
st20 = ROTL643(st02, 62, 2);
st14 = ROTL643(st020, 18, 46);
st22 = ROTL643(st014, 39, 25);
st9 = ROTL643(st022, 61, 3);
st6 = ROTL643(st09, 20, 44);
st1 = ROTL643(st06, 44, 20);

…/…

Changes done for HLS:
- splitting in and out ports
- adding HLS PIPELINE instruction



FPGA area used by the design

32 test_speed functions in parallel:16 test_speed functions in parallel:

“Hardware view” just to show the 
place used by the logic in the 
FPGA



Offload Method:
SHA3 speed_test benchmark (on P8): FPGA is >35x faster than CPU

“The lower the better”

https://github.com/open-power/snap/tree/master/actions/hls_sponge

slices/32
CPU (antipode)

20 cores - 160 threads slices/32
CPU (antipode)

20 cores - 160 threads
FPGA speedup 

vs CPU
FPGA KU060-32// System P FPGA KU060-32// System P

test_speed calls (keccak per sec) (keccak per sec) (msec) (msec)
100,000 4,666,573 149,575 21 669 31
200,000 9,334,453 295,786 21 676 32
400,000 18,668,036 488,441 21 819 38
800,000 37,330,845 865,289 21 925 43

1,600,000 74,672,143 1,572,084 21 1,018 47
3,200,000 143,568,576 2,539,064 22 1,260 57

12,800,000 149,900,457 3,699,211 85 3,460 41
409,600,000 150,837,950 4,267,759 2,715 95,975 35
819,200,000 150,900,077 4,303,717 5,429 190,347 35

3,276,700,000 150,937,573 4,344,618 21,709 754,198 35
6,553,600,000 150,941,821 4,352,266 43,418 1,505,790 35



A Truly Heterogeneous Architecture Built on OpenCAPI

OpenCAPI3.1

OpenCAPI3.0-4.0



Feature CAPI 1.0 CAPI 2.0 OpenCAPI 3.0 OpenCAPI 4.0

Processor Generation POWER8 POWER9 POWER9 Future

CAPI Logic Placement FPGA/ASIC FPGA/ASIC NA
DL/TL on Host

DLx/TLx on endpoint 
FPGA/ASIC

NA
DL/TL on Host

DLx/TLx on endpoint 
FPGA/ASIC

Interface
Lanes per Instance
Lane bit rate

PCIe Gen3
x8/x16
8 Gb/s

PCIe Gen4
2 x (Dual x8) 

16 Gb/s

Direct 25G
x8

25 Gb/s

Direct 25G+
x4, x8, x16, x32

25+ Gb/s

Address Translation on CPU No Yes Yes Yes 

Native DMA from Endpoint
Accelerator

No Yes Yes Yes

Home Agent Memory on
OpenCAPI Endpoint with 
Load/Store Access

No No Yes Yes

Native Atomic Ops to Host 
Processor Memory from 
Accelerator

No Yes Yes Yes

Accelerator -> HW Thread
Wake-up

No Yes Yes Yes

Low-latency small message push
128B Writes to Accelerator

MMIO 4/8B only MMIO 4/8B only MMIO 4/8B only Yes

Host Memory Caching Function
on Accelerator

Real Address Cache 
in PSL

Real Address Cache 
in PSL

No Effective Address Cache 
in Accelerator

Remove PCIe layers to 
reduce latency 

significantly

Comparison of IBM CAPI Implementations



48 lanes PCIe G4
Up to 32 lanes CAPI 2.0 & 1.0 enabled

POWER9: CAPI2.0 and OpenCAPI3.0

- CAPI2.0
- 2x PCIe Gen4 x16 lanes CAPI2.0 enabled
- 2x faster than PCIe Gen3 x16
➔ per FPGA card: 1 slot PCIeGen4x8 or PCIeGen3x16 – 16GBps

- OpenCAPI3.0
- From 0 to 4x OpenCAPI Link (2x8 lanes) at 25Gbps depending on the P9 chip (i.e. ZZ has 1 OpenCAPI Link per socket)
- 100% Open Interface Architecture to connect to user-level accelerators, I/.O devices and advanced memories
➔ per FPGA card: 1 brick=8 lanes – 25GBps

48 lanes over 25Gbps Link
Up to 32 lanes for OpenCAPI 3.0
All can be used for NVLink



OpenCAPI Link

P9 OpenCAPI
3.9GHz Core, 2.4GHz Nest

Xilinx FPGA VU3P

298ns‡

2ns Jitter

TL, DL, PHY

TLx, DLx, PHYx (80ns‖)

378ns† Total Latency

PCIe G4 Link

P9 PCIe Gen4

Xilinx FPGA VU3P

est. <337ns 

PCIe Stack

Xilinx PCIe HIP (218ns¶)

est. <555ns§ Total Latency

PCIe G3 Link

P9 PCIe Gen3
3.9GHz Core, 2.4GHz Nest

Altera FPGA Stratix V

337ns 
7ns Jitter

PCIe Stack

Altera PCIe HIP (400ns¶)

737ns§ Total Latency

PCIe G3 Link

Kaby Lake PCIe Gen3* 
3.9GHz Core, 2.4GHz Nest

Altera FPGA Stratix V

376ns 
31ns Jitter

PCIe Stack

Altera PCIe HIP (400ns¶)

776ns§ Total Latency

* Intel Core i7 7700 Quad-Core 3.6GHz (4.2GHz Turbo Boost)
† Derived from round-trip time minus simulated FPGA app time
‡ Derived from round-trip time minus simulated FPGA app time and simulated FPGA TLx/DLx/PHYx time 

§ Derived from measured CPU turnaround time plus vendor provided HIP latency
‖ Derived from simulation
¶ Vendor provided latency statistic


