
Vet-Trend - Transnational Meeting
Integrating virtual and remote

laboratories using Web-Services

Dipl.-Inf. Andreas Rasche

Dr. Leandro Soares Indrusiak



Outline

■ The Vision

■ XML-based Web-Services

□ Overview

□ Programming Models

■ The Adaptive (Web Service) Execution Plattform

□ Stateful Web-Services

□ On-demand Web Service Deployment

■ Integrating the laboratories

□ Case study Potsdam -- Darmstadt

□ Batch-Mode vs. Interactive-Mode



The Vision



Web Services Overview

■ XML-based middleware for communication

■ Transport typically over HTTP and TCP/IP

■ Several extensions
□ WS-ResourceProperties

□ WS-ResourceLifetime

□ WS-Addressing (EndpointReference)

□ WS-Security

■ In practice many interoperability problems
□ Different encoding styles for method parameters in WSDL

□ Complex data types (HashMap vs. HashTable)

□ Document/literal encoding (WSI) works for Java and .Net
– .NET: .NET 2.0 WSE 3.0
– Java: JAX-WS 2.1, Java 6.0



The Adaptive Execution Platform

■ Infrastructure for dynamic deployment and execution of web
services

■ Logical services

□ Represent end-point for a service requests

□ 1:n mapping to physical service instances

□ Priority-based scheduling of invocations

□ Support of service invocation cancelation

■ Physical services

□ Physical deployed service instance

■ Service Properties using WS-ResourceProperties

□ Global properties (available to all instances)

□ Instance properties (unique per instance)



AXP Architecture



AXP and virtual/remote labs

■ Batch mode processing

■ Each experiment is represented by a service

□ Independent compile services for translating experiment
control code

■ Each experiment usage is a service invocation

□ Service method invocation returns after completion of
the experiment run

■ Experiment results can be accessed via properties

■ Service deployment descriptor contains experiment
information



AXP Lab Architecture



Implementing an Experiment Web Service

[WebService(Namespace="http://hpi-web.de/ExperimentServices")]

public class NxtExecutionService : WebService

{

[WebMethod]

public void ExecuteExperiment(byte[] experimentData)

{

... Load data to expriment and execute

// save experiment result

PropertySupport.SetInstanceProperty("LegoPath",path);
PropertySupport.SetInstanceProperty("StateFlow",flow);

}

[WebMethod]

public void Cancel(bool isUserCancelling)

{

// handle cancelation

}

}



Deployment Descriptor



A Web Service Client

ServiceInfo[] services = deploymentService.ListServices();

... Select experiment service ...

ServiceFactoryService serviceFactory = new ServiceFactoryService(factoryIp);

EndpointReference expService = serviceFactory.CreateServiceInstance(serviceId, priority,
false);

UsernameToken secToken = new UsernameToken(parameters.User, parameters.Password,
PasswordOption.SendHashed);

expService.RequestSoapContext.Security.MustUnderstand = false;
expService.RequestSoapContext.Security.Tokens.Add(secToken);

expService.ExecuteExperiment(controlFile.ReadToEnd());

WsrPropertiesService properties = new WsrPropertiesService(expService);

properties.GetResourceProperty<byte[]>("LegoPath");



Case Study: Potsdam -- Darmstadt

■ TU Darmstadt‘s remote prototyping lab

□ three releases so far:
– batch mode based on sockets
– batch mode based on Jini
– interactive mode based on Jini and Ptolemy II



Case Study: Potsdam -- Darmstadt

reconfigurable
hardware
module

reconfigurable
hardware service
& lookup service

client



Case Study: Potsdam -- Darmstadt

Jini registry 
and lookup server

client: Ptolemy II

queries for 
prototyping 
platforms

receives
proxy of remote

resource

JavaSpaces
Ticketing Service

pool of FPGA-based prototyping platforms

backend backend backend

upload service proxy and ticket



Case Study: Potsdam -- Darmstadt



Case Study: Potsdam -- Darmstadt

■ Goal: integrate TU Darmstadt‘s remote prototyping lab to
Potsdam AXP Lab

□ substitute Jini for webservices

■ Synergy: take advantage of AXP Lab

□ use available front-ends: simpler and standard

□ use available service handling mechanisms

□ potential to employ simplified authentication mechanism

■ Plus:

□ another case study to AXP Lab

□ driver for AXP improvements: support interactive mode



Support for Interactive Modes

■ In batch mode only data transfer at begin and end of
experiment usage possible

■ Interactive mode requires data transfer from/to user during
exeperiment usage

■ Solution: Usage of additional stream-oriented Web Service
methods

□ byte[] ReadData()

□ WriteData(byte[] inData)

■ The infrastructure must be extended to support concurrent
request on a physical service instance



Conclusions

■ Batch mode remote experiments can be interconnected
using Web Service

□ Interoperability between platforms, operating
systems, languages supported

□ Firewall problems solved

□ Security support

■ Connection between HPI Potsdam and TU Darmstadt will
be running soon

■ Open questions

□ Integration of other experiment types

□ Experiment service repository and description


