
Hardware-near Programming in the
Common Language Infrastructure

Stefan Richter, Andreas Rasche and Andreas Polze
Hasso-Plattner-Institute at University of Potsdam

ISORC 2007
7-9 May, 2007

Santorini Island, Greece

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 2

Roadmap
nn The Common Language InfrastructureThe Common Language Infrastructure
nn RealReal--time.Net Projecttime.Net Project
nn GCC Common Intermediate Language (CIL) GCC Common Intermediate Language (CIL)

FrontFront--endend
nn HardwareHardware--near programmingnear programming

qq DirectDirect--memory accessmemory access
qq Interrupt handlingInterrupt handling
qq Support for Implementing ConcurrencySupport for Implementing Concurrency

nn ConclusionsConclusions

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 3

The Common Language Infrastructure

nn Open Open specificationspecification developed by developed by MicrosoftMicrosoft
qq Describes executable code Describes executable code
qq Runtime environment Runtime environment
qq Describes core of the Describes core of the

Microsoft .NET FrameworkMicrosoft .NET Framework

nn Standardized by ISO/ECMA:Standardized by ISO/ECMA:
qq ISO/IEC 23271ISO/IEC 23271
qq Standard ECMAStandard ECMA--335335

nn Common Language Runtime (CLR) is MicrosoftCommon Language Runtime (CLR) is Microsoft’’s s
commercial implementation of the CLIcommercial implementation of the CLI

nn Open source implementations: Mono, Portable.NetOpen source implementations: Mono, Portable.Net

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 4

C# and CLI for Real-Time Systems
nn HigherHigher--level programming languages induce higher level programming languages induce higher

developer productivitydeveloper productivity
qq Programming errors never result in system crashes because of Programming errors never result in system crashes because of

predictable nature of sandboxpredictable nature of sandbox--mode execution of CLI instructionsmode execution of CLI instructions
qq due to the support for rapid prototyping, simulators for targetsdue to the support for rapid prototyping, simulators for targets can can

be created more easily. be created more easily.
qq Usage standard library functions of the CLI minimizes code for Usage standard library functions of the CLI minimizes code for

targettarget--specific hardware.specific hardware.

nn Find a way to run CLI intermediate language (IL) code on Find a way to run CLI intermediate language (IL) code on
the targetthe target

nn Find a way to integrate the CLI program with the Find a way to integrate the CLI program with the ““specialspecial””
hardware of the targethardware of the target

nn Find a way to provide realFind a way to provide real--time guarantees to developers of time guarantees to developers of
applications for the targetapplications for the target

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 5

ECMA CLI for Real-Time Systems

nn JustJust--inin--time compilationtime compilation causes hardcauses hard--toto--predict execution predict execution
times for method executiontimes for method execution

nn Garbage collectionGarbage collection freezes application code for potentially freezes application code for potentially
long timelong time

nn Memory allocation actionsMemory allocation actions, such as object creation, vary , such as object creation, vary
depending on whether garbage collection is invoked to free depending on whether garbage collection is invoked to free
unused memory for reuseunused memory for reuse

nn No support for No support for hardwarehardware--near programmingnear programming
qq Direct Memory AccessDirect Memory Access
qq Memory Mapped I/OMemory Mapped I/O
qq Interrupt HandlingInterrupt Handling
qq LowLow--level access to registers (scheduler support)level access to registers (scheduler support)

nn Limited Limited threadingthreading model (semantics, priorities, policies, model (semantics, priorities, policies,
synchronization)synchronization)

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 6

GCC Intermediate Language Front-End

nn Modification the GNU Compiler Collection (GCC) to Modification the GNU Compiler Collection (GCC) to
support compilation of IL code into target machine codesupport compilation of IL code into target machine code
qq Compilation of each method in intermediate language into Compilation of each method in intermediate language into

one function on assembler levelone function on assembler level
qq Symbolic execution to translate the stack machine Symbolic execution to translate the stack machine

instructions into instructions into GCCGCC’’ss internal statement representationinternal statement representation
(GNU compiler for Java (GCJ) approach)(GNU compiler for Java (GCJ) approach)

qq GCC optimizes and compiles into assembler codeGCC optimizes and compiles into assembler code

.NET
Assembly

CIL
Front End RTL

Renesas
H8/300

Back End

Target OS
Binary

GCC

Backends

C++.NET

C#

VB.NET
target binaries

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 7

I/O Subsystem in Real-Time.Net
nn Mapping hardware to the Mapping hardware to the CLICLI’’ss object modelobject model
nn Attributes (annotations) for marking fields for direct Attributes (annotations) for marking fields for direct

I/O address mappingI/O address mapping
q [MemoryAlias(addr)] for memory mapped I/Ofor memory mapped I/O
q [PortAlias(addr)] for port based I/Ofor port based I/O

[MemoryAlias(0xff82)]
static byte myMemoryLocation;

byte b = myMemoryLocation;
myMemoryLocation = ~0x42;
myMemoryLocation |= 0x23;

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 8

Structured Definition of Hardware
publicpublic structstruct Port{Port{

[MemoryAlias(0x00)][MemoryAlias(0x00)]
publicpublic bytebyte
DataDirectionRegisterDataDirectionRegister;;
[MemoryAlias(0x02)][MemoryAlias(0x02)]
publicpublic bytebyte DataRegisterDataRegister;;

}}

publicpublic structstruct H8_3297{ H8_3297{
/* ... *//* ... */
[MemoryAlias(0xFFB5)][MemoryAlias(0xFFB5)]
publicpublic staticstatic Port Port4; Port Port4;
[MemoryAlias(0xFFB8)][MemoryAlias(0xFFB8)]
publicpublic staticstatic Port Port5;Port Port5;
/* ... *//* ... */

}}

byte byte b = H8_3297.Port5.b = H8_3297.Port5.DataRegisterDataRegister;;
H8_3297.Port5.H8_3297.Port5.DataRegister DataRegister = ~0x42;= ~0x42;
H8_3297.Port4.H8_3297.Port4.DataDirectionRegister DataDirectionRegister |= 0x23;|= 0x23;

nn Hardware vendors implement Hardware vendors implement
library for their hardwarelibrary for their hardware

nn Hardware access defined by Hardware access defined by
vendorvendor--specific specific structstruct

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 9

Rules for Memory/Port Aliases I

nn Uniqueness: At most one alias attribute per fieldUniqueness: At most one alias attribute per field
nn Validity: Addresses must be validValidity: Addresses must be valid
nn Fields the type of which is a Fields the type of which is a Closed Value TypeClosed Value Type onlyonly

qq CVTsCVTs are value types that contain value types onlyare value types that contain value types only

nn CompletenessCompleteness
qq All fields in a type must have the same alias typeAll fields in a type must have the same alias type
qq Static fields must have the same alias type as their typeStatic fields must have the same alias type as their type

nn No access optimisationNo access optimisation
nn No memory managementNo memory management

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 10

Rules for Memory/Port Aliases II

nn Let Let xx be the value attached to a field f by an be the value attached to a field f by an
alias attribute. If alias attribute. If ff is static, its address is is static, its address is xx. .
qq ldsfldaldsflda f : loads x on the stackf : loads x on the stack

nn Otherwise, its address is the sum of Otherwise, its address is the sum of xx and the and the
address of the field that address of the field that ff is a field of. is a field of.
qq ldfldaldflda f : takes an address f : takes an address aa from the stack and from the stack and

pushes pushes a+xa+x

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 11

Rules for Memory/Port Aliases III

nn Let f be a Let f be a MemoryAlias(xMemoryAlias(x) attributed field the type of which is) attributed field the type of which is
a builta built--in type of size in type of size ss. Then, the memory block of size . Then, the memory block of size ss
starting at the alias address of starting at the alias address of ff is never to be used for is never to be used for
memory allocation. Accesses to f are to be redirected to its memory allocation. Accesses to f are to be redirected to its
alias address:alias address:
qq ldsfldldsfld f : reads from address f : reads from address xx and pushes that value on the and pushes that value on the

stackstack
qq stsfldstsfld f : pops a value from the stack and writes it to address f : pops a value from the stack and writes it to address xx
qq ldfldldfld f : takes an address f : takes an address aa from the stack, reads from address from the stack, reads from address

a+xa+x and pushes that value on the stackand pushes that value on the stack
qq stfldstfld f : takes an address f : takes an address aa from the stack, then pops a value from the stack, then pops a value

from the stack and writes it to address a+xfrom the stack and writes it to address a+x
nn Analogous for Analogous for PortAliasPortAlias

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 12

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 13

I/O Subsystem: Interrupts
nn Interrupt vectors are Interrupt vectors are delegatedelegate fields of type fields of type

void delegate void delegate InterruptHandlerInterruptHandler (void)(void)
nn Interrupt handlers are Interrupt handlers are staticstatic methods with methods with

[[InterruptHandlerInterruptHandler]] attribute attribute
nn Parts of immediate working context that is Parts of immediate working context that is

manipulated must be saved on entry and restored on manipulated must be saved on entry and restored on
exit of interrupt handlers methodexit of interrupt handlers method

nn Immediate interrupt context must be restored at the Immediate interrupt context must be restored at the
end of interrupt handler methodsend of interrupt handler methods
qq Our GCC Our GCC frontendfrontend generates different return generates different return opcodeopcode ““return return

from interruptfrom interrupt””
nn Static functions for controlling interrupt hardwareStatic functions for controlling interrupt hardware

qq Hardware.Cpu.Interrupts.DisableAllHardware.Cpu.Interrupts.DisableAll
qq Hardware.Cpu.Interrupts.EnableAllHardware.Cpu.Interrupts.EnableAll

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 14

Interrupt Handling Example (manufacturer)

[StaticDelegate]
public delegate void InterruptHandler ();

public struct VectorTable
{

[MemoryAlias(0x06)]
public InterruptHandler NonMaskableInterrupt;

}

public class Hardware
{

[MemoryAlias(0x0000)]
public static VectorTable VectorTable;
[MemoryAlias(0xFFC3)]
public static byte SomeRegister;

}

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 15

Interrupt Handling Example (programmer)

[InterruptHandler]
static void Handler ()
{

/* any code */
}

public static void Main ()
{

Hardware.VectorTable.NonMaskableInterrupt = Handler;
}

or in C# 1.0:

Hardware.VectorTable.NonMaskableInterrupt =
new InterruptHandler (null, Handler);

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 16

Implementing Preemptive Concurrency
static void Main ()
{

Cpu.Scheduler = DetermineNext;
Hardware.VT.TimerInterruptVector = Cpu.InvokeScheduler;
Timer.Start ();
while (true) Cpu.Sleep ();

}

// Class Cpu is implemented target specific
public static Cpu.Context DetermineNext (Cpu.Context context)
{

Cpu.Context newContext;
/* determine the new context */
return newContext;

}

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 17

Status and Ongoing Work

n Our gcc front-end supports interrupt handling and
direct memory access as suggested

n Acceptable overhead (max. 50%) of generated code
compared to „hand-written“ assembler

n Acceptable compilation times
n Supported target Platforms: H8-300 Lego Mindstorm

RCX 2.0
n Current projects:

q OS#: micro-kernel operating system using Real-Time.Net
q Support for latest Lego NXT hardware (ARM)

6/6/2007 Andreas Rasche ISORC 2007 Santorini Island, Greece 18

Conclusions

n New extension for the standard ECMA 335
n General approach for mapping hardware

registers to structured value types
n Enables OEMs to specify their hardware in

high-level languages
n Attributed-based declaration of interrupt

handler methods
n Approach for hardware-near programming

using more productive high-level languages

Hardware-near Programming in the
Common Language Infrastructure

Stefan Richter, Andreas Rasche and Andreas Polze
Hasso-Plattner-Institute at University of Potsdam

ISORC 2007
7-9 May, 2007

Santorini, Greece

http://www.dcl.hpi.uni-potsdam.de

