Hardware-near Programming in the
Common Language Infrastructure

Stefan Richter, Andreas Rasche and Andreas Polze
Hasso-Plattner-Institute at University of Potsdam

ISORC 2007

ﬂ 7-9 May, 2007 Ce (il
Santorini Island, Greece %o

‘ Roadmap

= The Common Language Infrastructure
= Real-time.Net Project

m GCC Common Intermediate Language (CIL)
Front-end
= Hardware-near programming
o Direct-memory access
o Interrupt handling
o Support for Implementing Concurrency

= Conclusions

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce

The Common Language Infrastructure

= Open specification developed by Microsoft

o Describes executable code EE
o Runtime environment T T T
o Describes core of the (ADO.NET. SGL, XSLT, Kpath, XML, tc)
Microsoft .NET Framework 10 s S S ey
= Standardized by ISO/ECMA: Cm

(debug, exception, type checking, JIT compilers)

a2 ISO/IEC 23271 o =

Operating System

o Standard ECMA-335 (Windows CE, ME, 2000/XP or others)

= Common Language Runtime (CLR) is Microsoft’s
commercial implementation of the CLI

= Open source implementations: Mono, Portable.Net

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce 2

C# and CLI for Real-Time Systems

= Higher-level programming languages induce higher
developer productivity

o Programming errors never result in system crashes because of
predictable nature of sandbox-mode execution of CLI instructions

o due to the support for rapid prototyping, simulators for targets can
be created more easily.

o Usage standard library functions of the CLI minimizes code for
target-specific hardware.

= Find a way to run CLI intermediate language (IL) code on
the target

= Find a way to integrate the CLI program with the “special”
hardware of the target

= Find a way to provide real-time guarantees to developers of
applications for the target

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce

‘ ECMA CLI for Real-Time Systems

= Just-in-time compilation causes hard-to-predict execution
times for method execution

= Garbage collection freezes application code for potentially
long time

= Memory allocation actions, such as object creation, vary
depending on whether garbage collection is invoked to free
unused memory for reuse

= No support for hardware-near programming
o Direct Memory Access
o Memory Mapped I/O
o Interrupt Handling
o Low-level access to registers (scheduler support)

= Limited threading model (semantics, priorities, policies,
synchronization)

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce

GCC Intermediate L.anguage Front-End

= Modification the GNU Compiler Collection (GCC) to
support compilation of IL code into target machine code

o Compilation of each method in intermediate language into
one function on assembler level

o Symbolic execution to translate the stack machine
instructions into GCC's internal statement representation
(GNU compiler for Java (GCJ) approach)

o GCC optimizes and compiles into assembler code

C++.NET GCC |
™~ i - i

: CIL Renesas :

C# | Front End RTL H8/300 |
: Back End ||| |

VB.NET i Backends |

1 target binaries

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce

1 /O Subsystem in Real-Time.Net

= Mapping hardware to the CLI's object model

= Attributes (annotations) for marking fields for direct
/O address mapping
0 [MemoryAlias (addr)] for memory mapped I/O
o [PortAlias (addr)] for port based I/O

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce =7

Structured Definition of Hardware

I

N
@)
~1
g
@
I~
.
(@
0
]
(71
)
l5 _,'

(Wl
D
|
e
02

(O

o O
—1

g

@

[

(e |
On o
@

(0)

(T1

0)

I_'_.'

(D

@

|_

@

(T

(D

[y

|

jan
00) 00 I
@

o
(©0
NN
\©
—1
)
@
[y
(!
>
O
(ay
(B1
(9)
(D
I—;J

= Hardware vendors implement
library for their hardware

= Hardware access defined by
vendor-specific struct

(D
QO
|_
@)
(7

N> (D
N

(Et

(S
O
N
1A
IN

(D
@
|_
0
(3
D

N

N

N
1=
I—r_i

N

5
Q
N

TN
|
=5

1 T G

N

B

CLI ahead-of-time compiler

(@)

CO

I
(T

O
I
(T1

C* program

C* compiler

CLI binary

S
ERS

On
DL

N

Rules for Memory/Port Aliases |

= Uniqueness: At most one alias attribute per field

= Validity: Addresses must be valid

= Fields the type of which is a Closed Value Type only

o CVTs are value types that contain value types only

m Completeness

o All fields in a type must have the same alias type

o Static fields must have the same alias type as their type

= No access optimisation
= No memory management

A

int8 y

intl16 u

int32 v

Bz

int16 u

int32 v

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce

0

‘Rules for Memory/Port Al

1ases 11

= Let x be the value attached to a field f by an
alias attribute. If fis static, its address is x.

o ldsflda f: loads x on the stack

m Otherwise, its address is the sum of x and the
address of the field that fis a field of.

o ldflda f ;: takes an address a from
pushes a+x

the stack and

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce 10

‘ Rules for Memory/Port Aliases I11

= Let f be a MemoryAlias(x) attributed field the type of which is
a built-in type of size s. Then, the memory block of size s
starting at the alias address of fis never to be used for
memory allocation. Accesses to f are to be redirected to its
alias address:

o Idsfld f : reads from address x and pushes that value on the
stack

stsfld f : pops a value from the stack and writes it to address x

|dfld f : takes an address a from the stack, reads from address
a+x and pushes that value on the stack

o stfld f : takes an address a from the stack, then pops a value
from the stack and writes it to address a+x

= Analogous for PortAlias

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce 11

{

public static void Sound (ushort frequency) L
e, |

0ff O B Ee

.
=

if (frequency < 31)
return;

H8_3297 .Board.Timer8Bit.ChannelO.ControlStatusRegister = 0x03;
HE8_3297 .Board.Timer&8Bit.Channell .TimerCounter = 0x00;

if (frequency <= 122)
{
H8_3297 .Board.Timer8Bit.ChannelO.ConstantRegisterA =
(byte) ((short) 7813 / frequency);

H8_3297 .Board. SerialTimerControlRegister &= OxFE;
H8_3297 .Board.Timer8Bit.ChannelO.ControlRegister = 0x0B;
¥
else if (frequency <= 488)
{
H8_3297 .Board.Timer8Bit.ChannelO.ConstantRegisterA =
(byte) (31250 / frequency);

H8_3297 .Board.SerialTimerControlRegister |= 0x01;
H8_3297 .Board.Timer8Bit.ChannelO.ControlRegister = 0x0B;
1

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce 19

‘ [/O Subsystem: Interrupts

Interrupt vectors are delegate fields of type
vold delegate InterruptHandler (void)

Interrupt handlers are static methods with
[InterruptHandler] attribute

Parts of immediate working context that is
manipulated must be saved on entry and restored on
exit of interrupt handlers method

Immediate interrupt context must be restored at the

end of interrupt handler methods

o Our GCC frontend generates different return opcode “return
from interrupt”

Static functions for controlling interrupt hardware
o Hardware.Cpu.Interrupts.DisableAll
o Hardware.Cpu.Interrupts.EnableAll

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce 12

Interrupt Handling Example (manutacturer)

[StaticDelegate]
public delegate void InterruptHandler ();

public struct VectorTable

{
[MemoryAlias (0x06)]

public InterruptHandler NonMaskableInterrupt;
}

public class Hardware
{
[MemoryAlias (0x0000)]
public static VectorTable VectorTable;
[MemoryAlias (OxXFFC3)]
public static byte SomeRegister;

}

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce

14

Interrupt Handling Example (programmer)

[InterruptHandler]
static void Handler ()

{
/* any code */
}

public static void Main ()

{

Hardware.VectorTable.NonMaskableInterrupt = Handler;
}
or in C* 1.0:

Hardware.VectorTable.NonMaskableInterrupt =
new InterruptHandler (null, Handler);

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce 18

‘ Implementing Preemptive Concurrency

static void Main ()

{

Cpu.Scheduler = DetermineNext;

Hardware.VT.TimerInterruptVector = Cpu.InvokeScheduler;

Timer.Start () ;

while (true) Cpu.Sleep ()

// Class Cpu 1s implemented target specific
public static Cpu.Context DetermineNext (Cpu.Context
{

Cpu.Context newContext;

/* determine the new context */

return newContext;

context)

Method in Scheduler

Determine new context

depending on current

Timer Interrupt InvokeScheduler
Save current IIC ——— 1 Save current context
Set new IIC — Set new context

context

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce

1A

‘ Status and Ongoing Work

= Our gcc front-end supports interrupt handling and
direct memory access as suggested

= Acceptable overhead (max. 50%) of generated code
compared to ,hand-written” assembler

= Acceptable compilation times

= Supported target Platforms: H8-300 Lego Mindstorm
RCX 2.0

= Current projects:

o OS#: micro-kernel operating system using Real-Time.Net
o Support for latest Lego NXT hardware (ARM)

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce 17

‘ Conclusions

= New extension for the standard ECMA 335

» General approach for mapping hardware
registers to structured value types

= Enables OEMs to specify their hardware in
high-level languages

= Attributed-based declaration of interrupt
handler methods

= Approach for hardware-near programming
using more productive high-level languages

~/6/2007 Anrndvreaec Racche TSRORC 2007 [Rantnring Teland (Yvrepce

Hardware-near Programming in the
Common Language Infrastructure

http:/ /www.dclL.hpi.uni-potsdam.de

Stefan Richter, Andreas Rasche and Andreas Polze
Hasso-Plattner-Institute at University of Potsdam

ISORC 2007

ﬂ 7-9 May, 2007 s @@;
Santorini, Greece %o

