
Configuration and Dynamic
Reconfiguration of Component-based

Applications with Microsoft .NET

ISORC 2003
Hakodate - Japan

Andreas Rasche and
Andreas Polze

2

Outline

l Motivation
l Configuration framework for component-based

applications
l Algorithm for dynamic reconfiguration
l Making components configurable using

Aspect-Oriented Programming (AOP)
l Measurements
l Current Research : Distributed Control Lab
l Conclusions

3

Motivation

l Predictable end-to-end availability of services
l Mobile devices require application adaptability

l Dynamic reconfiguration provides a
powerful mechanism to adapt
component-based distributed
applications to changing environmental
conditions

l Evaluation of reconfiguration times in .NET

4

Our Approach : Adaptive Software
using Dynamic Reconfiguration

l Mapping of profiles to application configurations based
on environmental conditions

l Selection of application configuration according to
conditions provides best service for a given situation

l Definition of
– observer : monitoring of environmental settings
– profiles : mapping of environmental conditions to application

configurations
– configurations of component-based applications

l Online monitoring of environment
l Change of application configuration using dynamic

reconfiguration if required (changed conditions)

5

Description of configurations of
component-based applications

l “A Configuration of a component-based
application denotes the set of its
parameterized components and the
connections among them.”

l XML-based description language
l Configuration Description: List of components,

their attributes, and connectors
l Support for a variety of component connectors

6

Configuration Framework

l Configuration Manager
– Selects matching app configuration based on observed conditions

and corresponding XML-configuration description
– Instantiates/queries defined observers
– Realizes distributed object activation
– Enables adaptation of distributed applications using dynamic

reconfiguration if required

l Standard reusable Observer-components
– Network Bandwidth, CPU Power, Memory Consumption

l Components provide hooks for configuration management
– Interface IConfigure must be implemented – can be automated

7

Architecture for Adaptive Systems

configuration
manager

XML -
document

IConfigure

IConfigure

IConfigure
IConfigure

8

Our Reconfiguration Algorithm

l M.Wermelinger, J.Magee / J.Kramer
l Applications follow Actor Execution Model by G.Agha

– Application consists of interconnected components
– State of components changes only through interactions with

other components

l Transaction Concept
– Sequence of message exchanges over one connection
– Initiator of a transaction is informed about its completion
– Finishes in finite time

l Model matches wide range of typical applications
– Including Client/Server-style applications

9

Dynamic Reconfiguration -
Steps

l Start, Parameterization of new components
l Turn application into reconfigurable state

– No pending requests
– Block all connections involved in reconfiguration

l Prohibit new transactions over identified connections
lWait for all ongoing transactions to complete

– Blocking has to be ordered because of dependent transactions

l Parameterization of changed components
l Reconnect/Start all components
l Remove old components

10

Configuration – a cross-cutting
concern (AOP)

l Additional configuration-specific code has to be added
to involved components

– Handling-/Blocking Transactions
– Start / Stop of component processing
– Connection handling
– Implementation of the IConfigure interface

l This code cross-cuts functional component code!
l We use aspect-oriented programming for automatic

addition of non-functional configuration specific code
l Usage of LOOM.Net – Aspect Weaver for .NET

– based on (binary) components

11

Making a Component Configurable

l Automatic implementation of configuration hooks
l Component programmer only has to mark

transactions and provide access to connection
references

12

Evaluation : Reconfiguration in the
.NET Environment

l Standard PCs : 1GHz PIII – 256 MB RAM
l 100 Mbit/s LAN
l .NET Remoting communication using binary channels
l .NET Framework 1.0 SP1 / Windows 2000 SP3

....
Value

other proxys

configure

Client
Proxy.GetValue();

Proxy
a = Server.GetValue();

Return a+1;

Server

Configuration
Manager

13

14

15

Using dynamic Reconfiguration for
Fault-tolerance / Security

l Current Research : Distributed Control Lab (DCL)
– Online lab for distributed robotics and control experiments

l Problem : malicious code can damage hardware
l Solution : dynamic reconfiguration of component-based

control application to replace user code
l Configuration framework as safeguard mechanism
l Experiment : Control of Foucault‘s Pendulum

16

17

18

19

Pendulum Experiment
Control Configurations

USB-Driver

Event Queuing

Safety
Controller

User
Program

Proxy

User
Program

Configuration 1 : safety controller

Configuration 2 : user program (cold standby)

Configuration 3 : user program (warm standby)

USB

Safety
Controller

Safety
Controller

20

Distributed Control Lab
Ongoing Work

l Detailed publication about pendulum and DCL
architecture follows

l Control of Lego Mindstorm Robots
l Cooperation with University of Pisa / Italy
l High Striker / Real-time and Windows CE
l Model Railway Control Application

l ADAPT.NET - Adaptation framework for distributed
component-based .NET applications including dynamic
reconfiguration and object migration

21

Related Work

l Original work by M. Wermelinger provides
theoretical foundation

l Some systems handle adaptation especially for
mobile devices
– DACIA : relocation, replication and replacement of

components
– Odyssey : application aware adaptation
– Oreizy : architecture based application adaptation
– K.Nahrstedt et al.: middleware extension for

adaptation based on fuzzy logic

22

Conclusions

l We have implemented and evaluated our
Dynamic Reconfiguration Framework

l Reconfiguration times are highly acceptable for
adaptation in mobile systems

l .NET environment provides sound basis for
dynamic reconfiguration

l Applicable to a wide range of scenarios
– Current focus on secure control systems in unsafe

environments

23

About the authors -
Additional Information

l Prof. Dr. rer. nat. Andreas Polze
– Professor at the Operating System & Middleware group at Hasso-

Plattner-Institute for Software Systems Engineering : University of
Potsdam / Germany

l Dipl-Inf. Andreas Rasche
– Diploma Humboldt University of Berlin
– Since 2002 Research Assistant Operating System & Middleware chair

at HPI

l Additional Information at : www.dcl.hpi.uni-potsdam.de
– Download LOOM.Net
– Distributed Control Lab

