Configuration and Dynamic
Reconfiguration of Component-based
Applications with Microsoft .NET

ISORC 2003
Hakodate - Japan

Andreas Rasche and
Andreas Polze

Outline
I

e Motivation

e Configuration framework for component-based
applications

e Algorithm for dynamic reconfiguration

e Making components configurable using
Aspect-Oriented Programming (AOP)

e Measurements
e Current Research : Distributed Control Lab
e Conclusions

Motivation
I

e Predictable end-to-end availability of services
e Mobile devices require application adaptability

e Dynamic reconfiguration provides a
powerful mechanism to adapt
component-based distributed
applications to changing environmental
conditions

e Evaluation of reconfiguration times in .NET

Our Approach : Adaptive Software
using Dynamic Reconfiguration

e Mapping of profiles to application configurations based
on environmental conditions

e Selection of application configuration according to
conditions provides best service for a given situation

e Definition of
— observer : monitoring of environmental settings

— profiles : mapping of environmental conditions to application
configurations

— configurations of component-based applications
e Online monitoring of environment

e Change of application configuration using dynamic
reconfiguration if required (changed conditions)

Description of configurations of
component-based applications

e “A Configuration of a component-based
application denotes the set of its
parameterized components and the
connections among them.”

e XML-based description language

e Configuration Description: List of components,
their attributes, and connectors

e Support for a variety of component connectors

Configuration Framework
-

e Configuration Manager

- Selects matching app configuration based on observed conditions
and corresponding XML-configuration description

- Instantiates/queries defined observers
- Realizes distributed object activation

- Enables adaptation of distributed applications using dynamic
reconfiguration if required

e Standard reusable Observer-components
- Network Bandwidth, CPU Power, Memory Consumption

e Components provide hooks for configuration management
- Interface IConfigure must be implemented — can be automated

Architecture for Adaptive Systems

configuration XML -
manager document
«

I fi :
con 'gure ﬁ) |Configure

\{W{f

IConflgure

Our Reconfiguration Algorithm
-

e M.Wermelinger, J.Magee / J.Kramer

e Applications follow Actor Execution Model by G.Agha
— Application consists of interconnected components
- State of components changes only through interactions with
other components
e Transaction Concept
- Sequence of message exchanges over one connection
— Initiator of a transaction is informed about its completion
— Finishes in finite time

e Model matches wide range of typical applications
- Including Client/Server-style applications

Dynamic Reconfiguration -
Steps
-

e Start, Parameterization of new components

e Turn application into reconfigurable state
- No pending requests
— Block all connections involved in reconfiguration
e Prohibit new transactions over identified connections
e \Wait for all ongoing transactions to complete
— Blocking has to be ordered because of dependent transactions
e Parameterization of changed components
e Reconnect/Start all components

e Remove old components

Configuration — a cross-cutting
concern (AOP)

e Additional configuration-specific code has to be added
to involved components
- Handling-/Blocking Transactions
— Start / Stop of component processing
- Connection handling

- Implementation of the IConfigure interface
e This code cross-cuts functional component code!

e \We use aspect-oriented programming for automatic
addition of non-functional configuration specific code

e Usage of LOOM.Net — Aspect Weaver for .NET
- based on (binary) components

Making a Component Configurable
-

e Automatic implementation of configuration hooks

e Component programmer only has to mark
transactions and provide access to connection

references
functional IConfigure
?interface (P

functional
? interface (C functional y Q
interface

* transaction -

handling
functional connections
component functional

=start / finallze
component
=aitributes

QO £

configurable component

Evaluation : Reconfiguration in the

NET Environment
g

Standard PCs : 1GHz PIlIl — 256 MB RAM
100 Mbit/s LAN

NET Remoting communication using binary channels
NET Framework 1.0 SP1 / Windows 2000 SP3

Client Proxy other proxys Server
Proxy.Getvalue(; > o= Sl?er}r/er.Gel\qolue[]; —> rran —————— % .
eturn a+1; alue

\ configure /

Configuration
Manager

O

o
oo
l

distribution of measured values
of reconfiguration time
o
o
=
|

o

o
o
|

- reconfiguration of a
component attribute
- distributed application
- pure .Net Remoting components
- no separate process

4,0 45 5,0 5,5 6,0
reconfiguration time in ms

distribution of measured values

0,28 - -
| addition of a component

— with separate process

| I blackout time

- B reconfiguration time

0,16 -

0,12 -

0,08 -

0,04

0,00 -

18 19 20 21 22 23 540 560 580 600 620 640
duration in ms

Using dynamic Reconfiguration for
Fault-tolerance / Security

e Current Research : Distributed Control Lab (DCL)
— Online lab for distributed robotics and control experiments

e Problem : malicious code can damage hardware

e Solution : dynamic reconfiguration of component-based
control application to replace user code

e Configuration framework as safeguard mechanism
e EXxperiment : Control of Foucault's Pendulum

=j Distributed Control Lab - Microsoft Internet Explorer =10 =}

file Edt Vew Favortes Took Help [= |
whack ~ = - Y 3] i} | Qoewch GiFavortes hveda 8| BN~ o A 5
Address Iiﬁ] hktp:f fwasdiscourse/newiob, aspxrexp=Pendulur j oG | Lirks >*
=
Experiments

The Pendulum Experiment

e ——
Live Video

You can enter here the program to steer the magnet,
which ig gituated under the pendulum. The necessary
programuming details are explained in this

documentation (german).

———
My lobs

e
My Settings

A —
Latest Mews

You can use one of the following code examples :

o2out

while | tLrue] ;l
i
/4 Peak for Hext Event J
Se=pendel ., GetMNext ()

/4 New Eventc 7
ifise!=null)
{
S First time at thisz place ?
if(last==null) last=se:
Af Kugel tritt ein LI

Upload vour code file : | Browse.. | Hpload

Btatt Job |

back to top

[_ [_ [_ Local intranet

Distributed Control Lab - Microsoft Internet Explorer

- fincomplete text, use dovmload for full version]

[

State Flow

sourca data of the diagram

Fou can use the downlond fink for viewing or saving the

.ﬁgm&m&&&&m&&&&&&&&&&&&&&

Pendulum Experiment
Control Configurations

Configuration 1 : safety controller

-_ - -

’— e Sy
| Safety
(Controllerl

Configuration 2 : user program (cold standby)

——— -

| Safety |
{Controllerl

- s -

Program

User

T
!

USB-Driver

Event Queuing

Configuration 3 : user program (warm standby)

/)
Safety

Controller|[¥ ~
—/ ~

User /

KProgram

k./

Distributed Control Lab
Ongoing Work
o

Detalled publication about pendulum and DCL
architecture follows

Control of Lego Mindstorm Robots
Cooperation with University of Pisa / Italy
High Striker / Real-time and Windows CE
Model Railway Control Application

ADAPT.NET - Adaptation framework for distributed
component-based .NET applications including dynamic
reconfiguration and object migration

Related Work
]

e Original work by M. Wermelinger provides
theoretical foundation

e Some systems handle adaptation especially for
mobile devices

- DACIA : relocation, replication and replacement of
components

- Odyssey : application aware adaptation
- Oreizy : architecture based application adaptation

- K.Nahrstedt et al.: middleware extension for
adaptation based on fuzzy logic

Conclusions
g

e \We have implemented and evaluated our
Dynamic Reconfiguration Framework

e Reconfiguration times are highly acceptable for
adaptation in mobile systems

e .NET environment provides sound basis for
dynamic reconfiguration
e Applicable to a wide range of scenarios

— Current focus on secure control systems in unsafe
environments

About the authors -
Additional Information

e Prof. Dr. rer. nat. Andreas Polze

— Professor at the Operating System & Middleware group at Hasso-
Plattner-Institute for Software Systems Engineering : University of
Potsdam / Germany

e Dipl-Inf. Andreas Rasche
— Diploma Humboldt University of Berlin

— Since 2002 Research Assistant Operating System & Middleware chair
at HPI

e Additional Information at : Www.dcl.hpi.uni-potsdam.de
— Download LOOM.Net
— Distributed Control Lab

