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Motivation
I

e Predictable end-to-end availability of services
e Mobile devices require application adaptability

e Dynamic reconfiguration provides a
powerful mechanism to adapt
component-based distributed
applications to changing environmental
conditions

e Evaluation of reconfiguration times in .NET



Our Approach : Adaptive Software
using Dynamic Reconfiguration

e Mapping of profiles to application configurations based
on environmental conditions

e Selection of application configuration according to
conditions provides best service for a given situation

e Definition of
— observer : monitoring of environmental settings

— profiles : mapping of environmental conditions to application
configurations

— configurations of component-based applications
e Online monitoring of environment

e Change of application configuration using dynamic
reconfiguration if required (changed conditions)



Description of configurations of
component-based applications

e “A Configuration of a component-based
application denotes the set of its
parameterized components and the
connections among them.”

e XML-based description language

e Configuration Description: List of components,
their attributes, and connectors

e Support for a variety of component connectors



Configuration Framework
-

e Configuration Manager

- Selects matching app configuration based on observed conditions
and corresponding XML-configuration description

- Instantiates/queries defined observers
- Realizes distributed object activation

- Enables adaptation of distributed applications using dynamic
reconfiguration if required

e Standard reusable Observer-components
- Network Bandwidth, CPU Power, Memory Consumption

e Components provide hooks for configuration management
- Interface IConfigure must be implemented — can be automated



Architecture for Adaptive Systems
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Our Reconfiguration Algorithm
-

e M.Wermelinger, J.Magee / J.Kramer

e Applications follow Actor Execution Model by G.Agha
— Application consists of interconnected components
- State of components changes only through interactions with
other components
e Transaction Concept
- Sequence of message exchanges over one connection
— Initiator of a transaction is informed about its completion
— Finishes in finite time

e Model matches wide range of typical applications
- Including Client/Server-style applications



Dynamic Reconfiguration -
Steps
-

e Start, Parameterization of new components

e Turn application into reconfigurable state
- No pending requests
— Block all connections involved in reconfiguration
e Prohibit new transactions over identified connections
e \Wait for all ongoing transactions to complete
— Blocking has to be ordered because of dependent transactions
e Parameterization of changed components
e Reconnect/Start all components

e Remove old components



Configuration — a cross-cutting
concern (AOP)

e Additional configuration-specific code has to be added
to involved components
- Handling-/Blocking Transactions
— Start / Stop of component processing
- Connection handling

- Implementation of the IConfigure interface
e This code cross-cuts functional component code!

e \We use aspect-oriented programming for automatic
addition of non-functional configuration specific code

e Usage of LOOM.Net — Aspect Weaver for .NET
- based on (binary) components



Making a Component Configurable
-

e Automatic implementation of configuration hooks

e Component programmer only has to mark
transactions and provide access to connection
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Evaluation : Reconfiguration in the

NET Environment
g

Standard PCs : 1GHz PIlIl — 256 MB RAM
100 Mbit/s LAN

NET Remoting communication using binary channels
NET Framework 1.0 SP1 / Windows 2000 SP3
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Using dynamic Reconfiguration for
Fault-tolerance / Security

e Current Research : Distributed Control Lab (DCL)
— Online lab for distributed robotics and control experiments

e Problem : malicious code can damage hardware

e Solution : dynamic reconfiguration of component-based
control application to replace user code

e Configuration framework as safeguard mechanism
e EXxperiment : Control of Foucault's Pendulum
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The Pendulum Experiment
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Distributed Control Lab - Microsoft Internet Explorer
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Pendulum Experiment
Control Configurations

Configuration 1 : safety controller
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Distributed Control Lab
Ongoing Work
o

Detalled publication about pendulum and DCL
architecture follows

Control of Lego Mindstorm Robots
Cooperation with University of Pisa / Italy
High Striker / Real-time and Windows CE
Model Railway Control Application

ADAPT.NET - Adaptation framework for distributed
component-based .NET applications including dynamic
reconfiguration and object migration



Related Work
]

e Original work by M. Wermelinger provides
theoretical foundation

e Some systems handle adaptation especially for
mobile devices

- DACIA : relocation, replication and replacement of
components

- Odyssey : application aware adaptation
- Oreizy : architecture based application adaptation

- K.Nahrstedt et al.: middleware extension for
adaptation based on fuzzy logic



Conclusions
g

e \We have implemented and evaluated our
Dynamic Reconfiguration Framework

e Reconfiguration times are highly acceptable for
adaptation in mobile systems

e .NET environment provides sound basis for
dynamic reconfiguration
e Applicable to a wide range of scenarios

— Current focus on secure control systems in unsafe
environments
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