Dynamic Reconfiguration as Safeguard Mechanism in the Distributed Control Lab

Workshop: Fault Tolerant Systems in Hard- and Software

Dipl. Inf. Andreas Rasche

Outline

- The Distributed Control Lab
 - Motivation, Architecture
- Foucault's Pendulum Details
- Dynamic Reconfiguration as safe-guard mechanism
- Evaluation of the approach
- Other Experiments in the DCL
- Conclusions

Distributed Control Lab

- 2001 project start at Hasso-Plattner-Institute
- Online access to physical experiments over the Web
- Practice of writing control algorithms for real-time control problems
- Extensible architecture for hosting physical control experiments
- Investigation of algorithms for user code observation and replacement of control components
- Experiment : physical installation and specific control software

Distributed Control Lab Motivation

- study of system predictability, availability and security in context of middleware-based dynamic control systems
- Reach a predictable system behaviour in unstable environments
- Study techniques to prevent malicious code damaging physical equipment
 - Source code analysis
 - Compiler / Language based
 - Simulation
 - Online observation / Component replacement
- Foucault's Pendulum demonstrates usage of dynamic reconfiguration for online replacement of user control

The Distributed Control Lab

🙀 Distributed Control Lab - Mozilla

Forward

ack.

Home

Experiments

Live Video

My Jobs

My Settings

Latest News

Logout

Eile Edit View Go Bookmarks Iools Window Help 3 Reload

2) Stop

🤌 http://was.discourse.de/discourse/myjobs.aspx

The following jobs are registered for your account in the system :

Name	Location	State	Queued on		
Pendulum (Owner : Andreas Rasche)	HPI	Currently executed	Tue, 23 Sep 2003 10:51:27 GMT	View details	<u>Cancel</u>
Lego_Robots (Owner : Stefan Henze)	HPI	Finished (result code : StopSignal), 3 results available	Fri, 19 Sep 2003 16:59:36 GMT	View details	<u>Delete</u>
Lego_Robots (Owner : Lego Test Account)	HPI	Finished (result code : StopSignal), 3 results available	Fri, 19 Sep 2003 14:33:33 GMT	View details	<u>Delete</u>
Lego Simulator (Owner : Andreas Rasche)	HPI	Finished (result code : Successful), 4 results available	Fri, 19 Sep 2003 12:45:32 GMT	View details	<u>Delete</u>
Lego_Robots (Owner : Stefan Henze)	HPI	Finished (result code : StopSignal), 3 results available	Fri, 19 Sep 2003 11:18:49 GMT	<u>View details</u>	<u>Delete</u>
Lego_Robots (Owner : Andreas Rasche)	HPI	Finished (result code : StopSignal), 3 results available	Thu, 18 Sep 2003 16:28:56 GMT	<u>View details</u>	<u>Delete</u>
Lego_Robots (Owner : Andreas Rasche)	HPI	Finish_Experiment crashed	Thu, 18 Sep 2003 16:27:35 GMT	View details	<u>Delete</u>
Lego_Robots (Owner : Andreas Rasche)	HPI	Finished (result code : StopSignal), 3 results available	Thu, 18 Sep 2003 16:22:24 GMT	View details	<u>Delete</u>
Lego_Robots (Owner : Andreas Rasche)	HPI	Finished (result code : Failed), 2 results available	Thu, 18 Sep 2003 16:20:50 GMT	View details	<u>Delete</u>
Lego_Robots (Owner : Andreas Rasche)	HPI	Finished (result code : StopSignal), 3 results available	Thu, 18 Sep 2003 16:15:58 GMT	View details	<u>Delete</u>

My Jobs

Delete all entries

Page 1 of 46

[First Page] [Previous Page] [Next Page] [Last Page]

back to top

初

Print

 \mathbf{x}

💌 🌛 Search

Problem : Malicious Code

- Investigation of Solution for malicious code detection
 - Source Code Analysis
 - Language limitations / special compiler
 - Simulation before execution on physical experiment
 - Analytic Redundancy
 - Online observation of user programs
 - Replacement of user programs before reach of uncontrollable state
 - Dynamic Reconfiguration of component-based control application
 - Monitoring of environmental settings and component states

Foucault's Pendulum

- First installation 1848 by Leon Foucault in the Pantheon in Paris
- Demonstrates earth rotation
- Today many installation including one in UN-building in New York
- Problem : Pendulum must be kept swinging
- Solution : electro magnet under an iron ball
- Experiment: Find best control algorithm to keep the pendulum swinging
 - Using minimum energy
 - Reaching the highest amplitude

Pendulum Control – detailed

- Laser light barriers sampled into 4KByte FIFO-memorys with 23,4 kHz
- USB-Controller checks half-full-Flag
- 64 Byte blocks of data transferred via USB 1.1
- Real-Time OS-Threads process incoming signals / produce out-going bit stream

Our Approach : Dynamic Reconfiguration as safe-guard mechanism

- Mapping of profiles to application configurations based on environmental conditions and component states
- Selection of application configuration according to conditions provides best service for a given situation
- Definition of

13

- observer : monitoring of environmental settings and component states
- profiles : mapping of environmental conditions to application configurations
- configurations of component-based applications
- Online monitoring of environment and components
- Change of application configuration using dynamic reconfiguration if required (changed conditions)

Description of configurations of component-based applications

- "A Configuration of a component-based application denotes the set of its parameterized components and the connections among them."
- XML-based description language
- Configuration Description: List of components, their attributes, and connectors
- Support for a variety of component connectors

Configuration Framework

Configuration Manager

15

- Selects matching app configuration based on observed conditions and corresponding XML-configuration description
- Instantiates/queries defined observers
- Realizes distributed object activation
- Enables adaptation of distributed applications using dynamic reconfiguration if required
- Standard reusable Observer-components
 - Network Bandwidth, CPU Power, Memory Consumption, Component State
- Components provide hooks for configuration management
 - Interface IConfigure must be implemented can be automated

Architecture for Adaptive Systems

Our Reconfiguration Algorithm

- M.Wermelinger, J.Magee / J.Kramer
- Applications follow Actor Execution Model by G.Agha
 - Application consists of interconnected components
 - State of components changes only through interactions with other components
- Transaction Concept
 - Sequence of message exchanges over one connection
 - Initiator of a transaction is informed about its completion
 - Finishes in finite time
- Model matches wide range of typical applications
 - Including Client/Server-style applications
 - Control applications

Dynamic Reconfiguration -Steps

- Start, Parameterization of new components
- Turn application into reconfigurable state
 - No pending requests
 - Block all connections involved in reconfiguration
 - Prohibit new transactions over identified connections
 - Wait for all ongoing transactions to complete
 - Blocking has to be ordered because of dependent transactions
- Parameterization of changed components
- Reconnect/Start all components
- Remove old components

Pendulum Experiment Control Configurations

Measurements: Abnormal Termination of User Program

Configuration – a cross-cutting concern (AOP)

- Additional configuration-specific code has to be added to involved components
 - Handling-/Blocking Transactions
 - Start / Stop of component processing
 - Connection handling
 - Implementation of the IConfigure interface
- This code cross-cuts functional component code!
- We use aspect-oriented programming for automatic addition of non-functional configuration specific code
- Usage of LOOM.Net Aspect Weaver for .NET
 - based on (binary) components

Making a Component Configurable

- Automatic implementation of configuration hooks
- Component programmer only has to mark transactions and provide access to connection references

Future Work

- "Higher Striker" Real Time Control Experiment
 - Running on a RTOS (Ce.Net, eCos, rtLinux)
 - Small buffers possible / short delay
 - Parallel Port I/O
 - Sampling rate 38 kHz
- Port of .Net Environment (parts) to Lego-Robots
- Additional experiments / simulations

Related Work

- "Verbund Virtuelles Labor" project at University Reutlingen / Germany
- iLab project (WebLab) at MIT
- Virtual Lab at University of Hagen /Germany
- Tele-Laboratory at University of Pisa
- Tele-Lab / Simplex architecture

Conclusions

- DCL : environment for remote experiment access based on COTS Operating System and Middleware
- Safety against malicious code demonstrated
- Analytic Redundancy / Runtime observation of user control at Foucault's Pendulum applicable
- Replacement of faulty control algorithms using dynamic reconfiguration
- Measured reconfiguration times highly acceptable for control applications