
Dynamic Reconfiguration as Safeguard
Mechanism in the

Distributed Control Lab

Workshop: Fault Tolerant
Systems in Hard- and Software

Dipl. Inf. Andreas Rasche

2

Outline

l The Distributed Control Lab
– Motivation, Architecture

l Foucault's Pendulum Details
l Dynamic Reconfiguration as safe-guard

mechanism
l Evaluation of the approach
l Other Experiments in the DCL
l Conclusions

3

Distributed Control Lab

l 2001 project start at Hasso-Plattner-Institute
l Online access to physical experiments over the Web
l Practice of writing control algorithms for real-time

control problems
l Extensible architecture for hosting physical control

experiments
l Investigation of algorithms for user code observation

and replacement of control components
l Experiment : physical installation and specific control

software

4

Distributed Control Lab
Motivation

l study of system predictability, availability and security in
context of middleware-based dynamic control systems

l Reach a predictable system behaviour in unstable
environments

l Study techniques to prevent malicious code damaging
physical equipment

– Source code analysis
– Compiler / Language based
– Simulation
– Online observation / Component replacement

l Foucault's Pendulum demonstrates usage of dynamic
reconfiguration for online replacement of user control

5

The Distributed Control Lab

6

7

Problem : Malicious Code

l Investigation of Solution for malicious code detection
– Source Code Analysis
– Language limitations / special compiler
– Simulation before execution on physical experiment
– Analytic Redundancy

l Online observation of user programs
l Replacement of user programs before reach of

uncontrollable state
l Dynamic Reconfiguration of component-based control

application
l Monitoring of environmental settings and component states

8

Foucault’s Pendulum

l First installation 1848 by Leon Foucault in the
Pantheon in Paris

l Demonstrates earth rotation
l Today many installation including one in UN-building in

New York
l Problem : Pendulum must be kept swinging
l Solution : electro magnet under an iron ball
l Experiment: Find best control algorithm to keep the

pendulum swinging
– Using minimum energy
– Reaching the highest amplitude

9

10

11

12

USB Host-
Controller

User-
Controller

Safety-
Controller

Event
Duplication

Operating System I/O
Check HalfFull Flag

Configuration
Manager

Binary Reader /
Filter, Smooth

Event Creation

Binary Writer

Binary Stream
Generation

User Mode

Kernel Mode

Cypress EZ-USB

Read

Write

64 Byte

I/O request packet
Light Sensor

Electro Magnet

FIFO-Memory
4 KBytes

ReadFile() WriteFile()

Pendulum Control – detailed

• Laser light barriers sampled into
4KByte FIFO-memorys with 23,4
kHz

• USB-Controller checks half-full-
Flag

• 64 Byte blocks of data transferred
via USB 1.1

• Real-Time OS-Threads process in-
coming signals / produce out-going
bit stream

13

Our Approach : Dynamic Reconfiguration
as safe-guard mechanism

l Mapping of profiles to application configurations based
on environmental conditions and component states

l Selection of application configuration according to
conditions provides best service for a given situation

l Definition of
– observer : monitoring of environmental settings and component

states
– profiles : mapping of environmental conditions to application

configurations
– configurations of component-based applications

l Online monitoring of environment and components
l Change of application configuration using dynamic

reconfiguration if required (changed conditions)

14

Description of configurations of
component-based applications

l “A Configuration of a component-based
application denotes the set of its
parameterized components and the
connections among them.”

l XML-based description language
l Configuration Description: List of components,

their attributes, and connectors
l Support for a variety of component connectors

15

Configuration Framework

l Configuration Manager
– Selects matching app configuration based on observed conditions

and corresponding XML-configuration description
– Instantiates/queries defined observers
– Realizes distributed object activation
– Enables adaptation of distributed applications using dynamic

reconfiguration if required

l Standard reusable Observer-components
– Network Bandwidth, CPU Power, Memory Consumption,

Component State

l Components provide hooks for configuration management
– Interface IConfigure must be implemented – can be automated

16

Architecture for Adaptive Systems

configuration
manager

XML -
document

IConfigure

IConfigure

IConfigure
IConfigure

17

Our Reconfiguration Algorithm

l M.Wermelinger, J.Magee / J.Kramer
l Applications follow Actor Execution Model by G.Agha

– Application consists of interconnected components
– State of components changes only through interactions with

other components

l Transaction Concept
– Sequence of message exchanges over one connection
– Initiator of a transaction is informed about its completion
– Finishes in finite time

l Model matches wide range of typical applications
– Including Client/Server-style applications
– Control applications

18

Dynamic Reconfiguration -
Steps

l Start, Parameterization of new components
l Turn application into reconfigurable state

– No pending requests
– Block all connections involved in reconfiguration

l Prohibit new transactions over identified connections
lWait for all ongoing transactions to complete

– Blocking has to be ordered because of dependent transactions

l Parameterization of changed components
l Reconnect/Start all components
l Remove old components

19

Pendulum Experiment
Control Configurations

USB-Driver

Event Queuing

Safety
Controller

User
Program

Event
Duplicator

User
Program

Configuration 1 : safety controller

Configuration 2 : user program (cold standby)

Configuration 3 : user program (warm standby)

USB

Safety
Controller

Safety
Controller

20

Measurements:
Abnormal Termination of User Program

21

Configuration – a cross-cutting
concern (AOP)

l Additional configuration-specific code has to be added
to involved components

– Handling-/Blocking Transactions
– Start / Stop of component processing
– Connection handling
– Implementation of the IConfigure interface

l This code cross-cuts functional component code!
l We use aspect-oriented programming for automatic

addition of non-functional configuration specific code
l Usage of LOOM.Net – Aspect Weaver for .NET

– based on (binary) components

22

Making a Component Configurable

l Automatic implementation of configuration hooks
l Component programmer only has to mark

transactions and provide access to connection
references

23

Future Work

l “Higher Striker” – Real Time Control Experiment
– Running on a RTOS (Ce.Net, eCos, rtLinux)
– Small buffers possible / short delay
– Parallel Port I/O
– Sampling rate 38 kHz

l Port of .Net Environment (parts) to Lego-Robots
l Additional experiments / simulations

24

Related Work

l “Verbund Virtuelles Labor” project at University
Reutlingen / Germany

l iLab project (WebLab) at MIT
l Virtual Lab at University of Hagen /Germany
l Tele-Laboratory at University of Pisa
l Tele-Lab / Simplex architecture

25

Conclusions

l DCL : environment for remote experiment
access based on COTS Operating System and
Middleware

l Safety against malicious code demonstrated
l Analytic Redundancy / Runtime observation of

user control at Foucault‘s Pendulum applicable
l Replacement of faulty control algorithms using

dynamic reconfiguration
l Measured reconfiguration times highly

acceptable for control applications

