
Development and Execution of Adaptive
Component-based Applications

Dipl.-Inf. Andreas Rasche
Operating Systems & Middleware Group

Prof. Dr. Andreas Polze

Hasso-Plattner-Institute

University of Potsdam

23.01.2008 Andreas Rasche 2

Outline

 Adaptive applications using alternative application
configurations

 Dynamic reconfiguration in component-platforms (Java/.NET)
 Reaching a reconfigurable state

 Dynamic update and state transfer

 AOP tools for generating (re-)configuration specific logic

 Case study: adaptive control applications in a remote lab

 Conclusions

23.01.2008 Andreas Rasche 3

Adaptive Component-based
Applications

 Varying resources and context parameters demand adaptation
 Requirement: keep application properties (app.-level QoS) in user-desired

range
 Components are units of deployment that can be composed by a third party
 Same interfaces can be implemented by multiple components having

different properties
 Different combinations of components (configuration) can fulfill

functional requirements of an application
 Applications can be composed for different usage situations
 Solution: Selection and activation of appropriate configuration for given

environmental properties allow for adaptation
 Challenge: Integrate dynamic reconfiguration in component platforms

23.01.2008 Andreas Rasche 4

Capsules – Components at Runtime

application threads

R

R R R

other
capsules

 A capsule logically groups a set of objects
 Each object has a type
 Each type is defined in an component
 Each component has a version

root objects
capsule objects
primitive types (string, int, byte)
internal references
external references

R

configuration
specific logic

23.01.2008 Andreas Rasche 5

The Adapt.Net Configuration Infrastructure

Configuration
Manager

XML-
Configuration
Description

IConfigure

IConfigure

IConfigure
IConfigure

Monitoring

XML-
Adaptation

Profile

Adaptation
Engine

parameter

23.01.2008 Andreas Rasche 6

Adaptation through dynamic reconfiguration

 Application configuration:
 Set of parameterized capsules
 Set of connectors among capsules
 Mapping to computers in a distributed system

 Dynamic reconfiguration includes:
 Addition/removal of capsules
 Changing capsule parameter
 Migration(new location)/ updating (new logic) capsules
 Changing connections between capsules

 Reconfiguration actions must remain consistency
 No method execution during updates
 No execution at capsules with unconnected sink capsules

23.01.2008 Andreas Rasche 7

Reaching a reconfigurable state
 A capsule is reconfigurable if there is no on-going method

execution of capsules‘ objects on any threads‘ stack!

 A reconfigurable state can be reached by:

 Blocking new method calls from threads and other capsules

 Waiting for all ongoing method calls to complete

 Acyclic graphs: connections can be blocked orderly

 Cyclic graphs: single threads must be blocked

 Reader-Writer-Locks for synchronization

 Read-Lock is acquired for each normal method call

 Write-Lock is acquired by the update logic

 Usage of recursive locks for recursive calls

Acquire
read-lock

R

Configuration
Manager Acquire

write-lock

23.01.2008 Andreas Rasche 8

Reconfiguration of Distributed Applications

 RW-Locks in .NET- and Java-platform do not work distributed

 Problem: When blocking a thread it must not have on-going

method calls on involved capsules

 Solution: logical thread-IDs and counters
 Counter per capsule with on-going methods per thread
 Update counter when entering/leaving a capsule via a root-object
 During blocking: threads with no on-going method on involved

capsules (counter in all capsule is zero) can be blocked

K2
update

K1
update

K3

ID 1

ID 2

23.01.2008 Andreas Rasche 9

K2
update

K1
update

Reconfiguration of Distributed Applications

 RW-Locks in .NET- and Java-platform do not work distributed

 Problem: When blocking a thread it must not have on-going

method calls on involved capsules

 Solution: logical thread-IDs and counters
 Counter per capsule with on-going methods per thread
 Update counter when entering/leaving a capsule via a root-object
 During blocking: threads with no on-going method on involved

capsules (counter in all capsule is zero) can be blocked

0ID 2

1ID 1

K3

1ID 1

1ID 2

1ID 1

ID 1

ID 2

23.01.2008 Andreas Rasche 10

Application-specific synchronization

 In case of synchronization among application threads the

algorithm must be extended

 All capsules on a path between involved capsules (the block-

set) are added to the block-set

K2K1

K3

ID 1

ID 2

R

update

update

1.

2. lock(R) 3. continue with R locked

8.

5.
6.

7. try to lock R
4. context switch

23.01.2008 Andreas Rasche 11

AOP tools and (re-)configuration specific logic

 Synchronization logic for dynamic reconfiguration
 Management of capsules‘ counters
 Blocking of threads

 Implementation of component‘s configuration interface
 Set-up of communication connections
 Parameterization
 Initiation of blocking for dynamic reconfiguration
 State transfer for migration and dynamic updates

 New programming model for marking connection end-

points and parameters
public class Filter{
 [Parameter]
 int compression;
 [Connection]
 IStream sink;

23.01.2008 Andreas Rasche 12

Dynamic Updates

 Complex reconfiguration operation
 activation of new code (and data layout)

 Capsules have to be updated dynamically to:
 Activate more appropriate algorithms at runtime
 Integrate bug-fixed versions (remove security vulnerabilities)
 Change graphical representation of adapted architecture

 Classes cannot be exchanged directly (in Java/.NET)
 New versions of objects must be created
 State must be transferred from old to new version

 Algorithm for reaching reconfigurable state used to
apply update atomically

V 1.0 V 2.0

23.01.2008 Andreas Rasche 13

Traversing the Object Graph

 Start from all root objects
 For each field of all objects traverse all references
 In case of an update:

 Create an instance of the new version
 Copy the state by transferring all fields from the old to the new

instance
 For reference fields: traverse target first an install potential new

version afterwards
 Usage of Reflection (GetFields, Set-/GetValue)

MyObject V1.0

Person: „Arthur“

Color:black

Weight: 65

Nr: 42

Object temp = oldObj.GetValue(„Weight“);

newObj.SetValue(„Weight“,temp);

MyObject V2.0

Person: „Arthur“

Color:black

Weight: 0

Nr: 42

R

23.01.2008 Andreas Rasche 14

Traversing the Object Graph II

 Cycle recognition (visited nodes)

 Creation of new types (no constructor execution)

 Dynamic assembly loading (shadow copies)

 Arrays (update type and content)

 Delegates (update target and method)

 Generics (update bound types)

 Type and assembly objects

 Activation/deactivation/update of aspects

 State transformation for changed data layout

23.01.2008 Andreas Rasche 15

experiment managerexperiment manager

SS
OO
AA
PP

resultresult
managementmanagement

job/experimentjob/experiment
managementmanagement

FoucaultFoucault’’s Pendulums Pendulum

Industrial ControlIndustrial Control

Visual Studio Visual Studio
IntegrationIntegration

Mobile AccessMobile Access

Web-BrowserWeb-Browser

““Higher StrikerHigher Striker””
real-timereal-time
controlcontrol

Case Study: Adaptive Control Applications
in the Distributed Control Lab

23.01.2008 Andreas Rasche 16

Fault Tolerance and Security
with dynamic reconfiguration
 Problem: malicious code submitted via the Internet
 Solution: execute an adaptive control application

 Verified safety controller

 Observed parameters
 Pendulums amplitude
 Duration of job execution
 State of user capsule

(abnormal termination)

safety
controller

hardware
access

output=active

safety
controller

hardware
access

output=inactive

user
control

event
duplication

configuration 1

configuration 2

23.01.2008 Andreas Rasche 17

Conclusions

 Configurations can be composed/developed independently
 Non-functional app.-properties can be tested for aimed situation
 New configurations can be added (by a separate planner/...)

 Algorithm for dynamic reconfiguration of distributed
multithreaded applications with cyclic dependencies
 Low overhead for normal method execution

 Dynamic updates for activating alternative algorithms/ hot-fixes
 Without manipulation of the virtual machine

 AOP capable of generating (re-)configuration specific logic

 Adaptive applications can be used for protecting experiment
hardware in a remote laboratory environment

23.01.2008 Andreas Rasche 18

http://www.dcl.hpi.uni-potsdam.de

23.01.2008 Andreas Rasche 19

Further Reading
 ReDAC - Dynamic Reconfiguration of distributed component-based applications with

cyclic dependencies Rasche, Andreas ; Polze, Andreas: Submitted to 11th IEEE International
Symposium on Ob ject-Oriented Real-Time Distributed Computing, 5-7 Mai 2008, Orlando,
Florida

 Dynamic Updates of Graphical Components in the .NET Framework

Andreas Rasche and Wolfgang Schult, appeared in Proceedings of Workshop on
Selbstorganisierende, Adaptive, Kontextsensitive verteilte Systeme in the frame of the GI/ITG-
Tagung Kommunikation in Verteilten Systemen, Bern / Schweiz, 1. March 2007

 Self-Adaptive Multithreaded Applications - A Case for Dynamic Aspect Weaving

Andreas Rasche, Wolfgang Schult, and Andreas Polze in ACM International Conference
Proceedings of the 4th Workshop on Adaptive and Reflective Middleware (ARM 2005) Grenoble,
France - November 28, 2005

 Heterogeneous Adaptive Component-Based Applications with Adaptive.Net

Andreas Rasche, Marco Puhlmann and Andreas Polze in Proceedings of International
Symposium on Object-oriented Real-time distributed Computing (ISORC), Seattle, Washington,
USA, May 2005

