
Development and Execution of Adaptive
Component-based Applications

Dipl.-Inf. Andreas Rasche
Operating Systems & Middleware Group

Prof. Dr. Andreas Polze

Hasso-Plattner-Institute

University of Potsdam

23.01.2008 Andreas Rasche 2

Outline

 Adaptive applications using alternative application
configurations

 Dynamic reconfiguration in component-platforms (Java/.NET)
 Reaching a reconfigurable state

 Dynamic update and state transfer

 AOP tools for generating (re-)configuration specific logic

 Case study: adaptive control applications in a remote lab

 Conclusions

23.01.2008 Andreas Rasche 3

Adaptive Component-based
Applications

 Varying resources and context parameters demand adaptation
 Requirement: keep application properties (app.-level QoS) in user-desired

range
 Components are units of deployment that can be composed by a third party
 Same interfaces can be implemented by multiple components having

different properties
 Different combinations of components (configuration) can fulfill

functional requirements of an application
 Applications can be composed for different usage situations
 Solution: Selection and activation of appropriate configuration for given

environmental properties allow for adaptation
 Challenge: Integrate dynamic reconfiguration in component platforms

23.01.2008 Andreas Rasche 4

Capsules – Components at Runtime

application threads

R

R R R

other
capsules

 A capsule logically groups a set of objects
 Each object has a type
 Each type is defined in an component
 Each component has a version

root objects
capsule objects
primitive types (string, int, byte)
internal references
external references

R

configuration
specific logic

23.01.2008 Andreas Rasche 5

The Adapt.Net Configuration Infrastructure

Configuration
Manager

XML-
Configuration
Description

IConfigure

IConfigure

IConfigure
IConfigure

Monitoring

XML-
Adaptation

Profile

Adaptation
Engine

parameter

23.01.2008 Andreas Rasche 6

Adaptation through dynamic reconfiguration

 Application configuration:
 Set of parameterized capsules
 Set of connectors among capsules
 Mapping to computers in a distributed system

 Dynamic reconfiguration includes:
 Addition/removal of capsules
 Changing capsule parameter
 Migration(new location)/ updating (new logic) capsules
 Changing connections between capsules

 Reconfiguration actions must remain consistency
 No method execution during updates
 No execution at capsules with unconnected sink capsules

23.01.2008 Andreas Rasche 7

Reaching a reconfigurable state
 A capsule is reconfigurable if there is no on-going method

execution of capsules‘ objects on any threads‘ stack!

 A reconfigurable state can be reached by:

 Blocking new method calls from threads and other capsules

 Waiting for all ongoing method calls to complete

 Acyclic graphs: connections can be blocked orderly

 Cyclic graphs: single threads must be blocked

 Reader-Writer-Locks for synchronization

 Read-Lock is acquired for each normal method call

 Write-Lock is acquired by the update logic

 Usage of recursive locks for recursive calls

Acquire
read-lock

R

Configuration
Manager Acquire

write-lock

23.01.2008 Andreas Rasche 8

Reconfiguration of Distributed Applications

 RW-Locks in .NET- and Java-platform do not work distributed

 Problem: When blocking a thread it must not have on-going

method calls on involved capsules

 Solution: logical thread-IDs and counters
 Counter per capsule with on-going methods per thread
 Update counter when entering/leaving a capsule via a root-object
 During blocking: threads with no on-going method on involved

capsules (counter in all capsule is zero) can be blocked

K2
update

K1
update

K3

ID 1

ID 2

23.01.2008 Andreas Rasche 9

K2
update

K1
update

Reconfiguration of Distributed Applications

 RW-Locks in .NET- and Java-platform do not work distributed

 Problem: When blocking a thread it must not have on-going

method calls on involved capsules

 Solution: logical thread-IDs and counters
 Counter per capsule with on-going methods per thread
 Update counter when entering/leaving a capsule via a root-object
 During blocking: threads with no on-going method on involved

capsules (counter in all capsule is zero) can be blocked

0ID 2

1ID 1

K3

1ID 1

1ID 2

1ID 1

ID 1

ID 2

23.01.2008 Andreas Rasche 10

Application-specific synchronization

 In case of synchronization among application threads the

algorithm must be extended

 All capsules on a path between involved capsules (the block-

set) are added to the block-set

K2K1

K3

ID 1

ID 2

R

update

update

1.

2. lock(R) 3. continue with R locked

8.

5.
6.

7. try to lock R
4. context switch

23.01.2008 Andreas Rasche 11

AOP tools and (re-)configuration specific logic

 Synchronization logic for dynamic reconfiguration
 Management of capsules‘ counters
 Blocking of threads

 Implementation of component‘s configuration interface
 Set-up of communication connections
 Parameterization
 Initiation of blocking for dynamic reconfiguration
 State transfer for migration and dynamic updates

 New programming model for marking connection end-

points and parameters
public class Filter{
 [Parameter]
 int compression;
 [Connection]
 IStream sink;

23.01.2008 Andreas Rasche 12

Dynamic Updates

 Complex reconfiguration operation
 activation of new code (and data layout)

 Capsules have to be updated dynamically to:
 Activate more appropriate algorithms at runtime
 Integrate bug-fixed versions (remove security vulnerabilities)
 Change graphical representation of adapted architecture

 Classes cannot be exchanged directly (in Java/.NET)
 New versions of objects must be created
 State must be transferred from old to new version

 Algorithm for reaching reconfigurable state used to
apply update atomically

V 1.0 V 2.0

23.01.2008 Andreas Rasche 13

Traversing the Object Graph

 Start from all root objects
 For each field of all objects traverse all references
 In case of an update:

 Create an instance of the new version
 Copy the state by transferring all fields from the old to the new

instance
 For reference fields: traverse target first an install potential new

version afterwards
 Usage of Reflection (GetFields, Set-/GetValue)

MyObject V1.0

Person: „Arthur“

Color:black

Weight: 65

Nr: 42

Object temp = oldObj.GetValue(„Weight“);

newObj.SetValue(„Weight“,temp);

MyObject V2.0

Person: „Arthur“

Color:black

Weight: 0

Nr: 42

R

23.01.2008 Andreas Rasche 14

Traversing the Object Graph II

 Cycle recognition (visited nodes)

 Creation of new types (no constructor execution)

 Dynamic assembly loading (shadow copies)

 Arrays (update type and content)

 Delegates (update target and method)

 Generics (update bound types)

 Type and assembly objects

 Activation/deactivation/update of aspects

 State transformation for changed data layout

23.01.2008 Andreas Rasche 15

experiment managerexperiment manager

SS
OO
AA
PP

resultresult
managementmanagement

job/experimentjob/experiment
managementmanagement

FoucaultFoucault’’s Pendulums Pendulum

Industrial ControlIndustrial Control

Visual Studio Visual Studio
IntegrationIntegration

Mobile AccessMobile Access

Web-BrowserWeb-Browser

““Higher StrikerHigher Striker””
real-timereal-time
controlcontrol

Case Study: Adaptive Control Applications
in the Distributed Control Lab

23.01.2008 Andreas Rasche 16

Fault Tolerance and Security
with dynamic reconfiguration
 Problem: malicious code submitted via the Internet
 Solution: execute an adaptive control application

 Verified safety controller

 Observed parameters
 Pendulums amplitude
 Duration of job execution
 State of user capsule

(abnormal termination)

safety
controller

hardware
access

output=active

safety
controller

hardware
access

output=inactive

user
control

event
duplication

configuration 1

configuration 2

23.01.2008 Andreas Rasche 17

Conclusions

 Configurations can be composed/developed independently
 Non-functional app.-properties can be tested for aimed situation
 New configurations can be added (by a separate planner/...)

 Algorithm for dynamic reconfiguration of distributed
multithreaded applications with cyclic dependencies
 Low overhead for normal method execution

 Dynamic updates for activating alternative algorithms/ hot-fixes
 Without manipulation of the virtual machine

 AOP capable of generating (re-)configuration specific logic

 Adaptive applications can be used for protecting experiment
hardware in a remote laboratory environment

23.01.2008 Andreas Rasche 18

http://www.dcl.hpi.uni-potsdam.de

23.01.2008 Andreas Rasche 19

Further Reading
 ReDAC - Dynamic Reconfiguration of distributed component-based applications with

cyclic dependencies Rasche, Andreas ; Polze, Andreas: Submitted to 11th IEEE International
Symposium on Ob ject-Oriented Real-Time Distributed Computing, 5-7 Mai 2008, Orlando,
Florida

 Dynamic Updates of Graphical Components in the .NET Framework

Andreas Rasche and Wolfgang Schult, appeared in Proceedings of Workshop on
Selbstorganisierende, Adaptive, Kontextsensitive verteilte Systeme in the frame of the GI/ITG-
Tagung Kommunikation in Verteilten Systemen, Bern / Schweiz, 1. March 2007

 Self-Adaptive Multithreaded Applications - A Case for Dynamic Aspect Weaving

Andreas Rasche, Wolfgang Schult, and Andreas Polze in ACM International Conference
Proceedings of the 4th Workshop on Adaptive and Reflective Middleware (ARM 2005) Grenoble,
France - November 28, 2005

 Heterogeneous Adaptive Component-Based Applications with Adaptive.Net

Andreas Rasche, Marco Puhlmann and Andreas Polze in Proceedings of International
Symposium on Object-oriented Real-time distributed Computing (ISORC), Seattle, Washington,
USA, May 2005

