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Outline

 Adaptive applications using alternative application
configurations

 Dynamic reconfiguration in component-platforms (Java/.NET)
 Reaching a reconfigurable state

 Dynamic update and state transfer

 AOP tools for generating (re-)configuration specific logic

 Case study: adaptive control applications in a remote lab

 Conclusions
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Adaptive Component-based
Applications

 Varying resources and context parameters demand adaptation
 Requirement: keep application properties (app.-level QoS) in user-desired

range
 Components are units of deployment that can be composed by a third party
 Same interfaces can be implemented by multiple components having

different properties
 Different combinations of components (configuration) can fulfill

functional requirements of an application
 Applications can be composed for different usage situations
 Solution: Selection and activation of appropriate configuration for given

environmental properties allow for adaptation
 Challenge: Integrate dynamic reconfiguration in component platforms
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Capsules – Components at Runtime

application threads

R

R R R

other
capsules

 A capsule logically groups a set of objects
 Each object has a type
 Each type is defined in an component
 Each component has a version

root objects
capsule objects
primitive types (string, int, byte)
internal references
external references

R

configuration
specific logic
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The Adapt.Net Configuration Infrastructure
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Adaptation through dynamic reconfiguration

 Application configuration:
 Set of parameterized capsules
 Set of connectors among capsules
 Mapping to computers in a distributed system

 Dynamic reconfiguration includes:
 Addition/removal of capsules
 Changing capsule parameter
 Migration(new location)/ updating (new logic) capsules
 Changing connections between capsules

 Reconfiguration actions must remain consistency
 No method execution during updates
 No execution at capsules with unconnected sink capsules
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Reaching a reconfigurable state
 A capsule is reconfigurable if there is no on-going method

execution of capsules‘ objects on any threads‘ stack!

 A reconfigurable state can be reached by:

 Blocking new method calls from threads and other capsules

 Waiting for all ongoing method calls to complete

 Acyclic graphs: connections can be blocked orderly

 Cyclic graphs: single threads must be blocked

 Reader-Writer-Locks for synchronization

 Read-Lock is acquired for each normal method call

 Write-Lock is acquired by the update logic

 Usage of recursive locks for recursive calls

Acquire
read-lock

R

Configuration
Manager Acquire

write-lock
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Reconfiguration of Distributed Applications

 RW-Locks in .NET- and Java-platform do not work distributed

 Problem: When blocking a thread it must not have on-going

method calls on involved capsules

 Solution: logical thread-IDs and counters
 Counter per capsule with on-going methods per thread
 Update counter when entering/leaving a capsule via a root-object
 During blocking: threads with no on-going method on involved

capsules (counter in all capsule is zero) can be blocked

K2
update

K1
update

K3

ID 1

ID 2
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Reconfiguration of Distributed Applications

 RW-Locks in .NET- and Java-platform do not work distributed

 Problem: When blocking a thread it must not have on-going

method calls on involved capsules

 Solution: logical thread-IDs and counters
 Counter per capsule with on-going methods per thread
 Update counter when entering/leaving a capsule via a root-object
 During blocking: threads with no on-going method on involved

capsules (counter in all capsule is zero) can be blocked
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Application-specific synchronization

 In case of synchronization among application threads the

algorithm must be extended

 All capsules on a path between involved capsules (the block-

set) are added to the block-set

K2K1

K3

ID 1

ID 2
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update

update
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2. lock(R) 3. continue with R locked 

8.

5.
6.

7. try to lock R
4. context switch
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AOP tools and (re-)configuration specific logic

 Synchronization logic for dynamic reconfiguration
 Management of capsules‘ counters
 Blocking of threads

 Implementation of component‘s configuration interface
 Set-up of communication connections
 Parameterization
 Initiation of blocking for dynamic reconfiguration
 State transfer for migration and dynamic updates

 New programming model for marking connection end-

points and parameters
public class Filter{
      [Parameter]
      int compression;
      [Connection]
      IStream sink;
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Dynamic Updates

 Complex reconfiguration operation
 activation of new code (and data layout)

 Capsules have to be updated dynamically to:
 Activate more appropriate algorithms at runtime
 Integrate bug-fixed versions (remove security vulnerabilities)
 Change graphical representation of adapted architecture

 Classes cannot be exchanged directly (in Java/.NET)
 New versions of objects must be created
 State must be transferred from old to new version

 Algorithm for reaching reconfigurable state used to
apply update atomically

V 1.0 V 2.0
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Traversing the Object Graph

 Start from all root objects
 For each field of all objects traverse all references
 In case of an update:

 Create an instance of the new version
 Copy the state by transferring all fields from the old to the new

instance
 For reference fields: traverse target first an install potential new

version afterwards
 Usage of Reflection (GetFields, Set-/GetValue)

MyObject V1.0

Person: „Arthur“

Color:black

Weight: 65

Nr: 42

Object temp = oldObj.GetValue(„Weight“);

newObj.SetValue(„Weight“,temp);

MyObject V2.0

Person: „Arthur“

Color:black

Weight: 0

Nr: 42

R
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Traversing the Object Graph II

 Cycle recognition (visited nodes)

 Creation of new types (no constructor execution)

 Dynamic assembly loading (shadow copies)

 Arrays (update type and content)

 Delegates (update target and method)

 Generics (update bound types)

 Type and assembly objects

 Activation/deactivation/update of aspects

 State transformation for changed data layout
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experiment managerexperiment manager
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FoucaultFoucault’’s Pendulums Pendulum

Industrial ControlIndustrial Control

Visual Studio Visual Studio 
IntegrationIntegration
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Web-BrowserWeb-Browser

““Higher StrikerHigher Striker””
real-timereal-time
controlcontrol

Case Study: Adaptive Control Applications
in the Distributed Control Lab
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Fault Tolerance and Security
with dynamic reconfiguration
 Problem: malicious code submitted via the Internet
 Solution: execute an adaptive control application

 Verified safety controller

 Observed parameters
 Pendulums amplitude
 Duration of job execution
 State of user capsule

(abnormal termination)

safety
controller

hardware
access

output=active

safety
controller

hardware
access

output=inactive

user
control

event
duplication

configuration 1

configuration 2
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Conclusions

 Configurations can be composed/developed independently
 Non-functional app.-properties can be tested for aimed situation
 New configurations can be added (by a separate planner/...)

 Algorithm for dynamic reconfiguration of distributed
multithreaded applications with cyclic dependencies
 Low overhead for normal method execution

 Dynamic updates for activating alternative algorithms/ hot-fixes
 Without manipulation of the virtual machine

 AOP capable of generating (re-)configuration specific logic

 Adaptive applications can be used for protecting experiment
hardware in a remote laboratory environment
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http://www.dcl.hpi.uni-potsdam.de
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