

Digital Engineering • Universität Potsdan

Parallel Programming and Heterogeneous Computing

E1 - Energy-Aware Computing

Sven Köhler, Lukas Wenzel, Max Plauth, and Andreas Polze Operating Systems and Middleware Group

News

Lecture

Overview

Slides

This unit is a highly condensed version of the *Energy-Aware Computing Systems (EASY)* lecture by Prof. Dr.-Ing. Timo Hönig (RUB, formerly FAU).

If you are interested in more content, check out the FAU-CS4 website or convince us to offer an entire semester-spanning lecture, here at HPI.

CS 4 / Lehre / SS 2020 / Ener Energy-Aware	gy-Aware Computing Systems Computing Systems (EASY) im SS 2020	
Home	Lecture Content	

causality (interdependencies, dimensions)

ParProg21 E1 Energy-Aware Computing

Sven Köhler

Chart 2

https://www4.cs.fau.de/Lehre/SS20/V_EASY/

Introduction

Fundamentals

Overview

Organisation

· Power, energy, and performance

Background

Background

ParProg21 E1 Energy-Aware Computing

Sven Köhler

Our Computing Systems Use Massive Amounts of Energy

SUPERCOMPUTER FUGAKU -[1] SUPERCOMPUTER FUGAKU, A64FX 48C 2.2GHZ, TOFU INTERCONNECT D

Site:	RIKEN Center for Computational Science	
System URL:	https://www.r-ccs.riken.jp/en/fugaku/project	
Manufacturer:	Fujitsu	
Cores:	7,630,848	
Memory:	5,087,232 GB	
Processor:	A64FX 48C 2.2GHz	
Theoretical Peak (Rpeak)	537,212 TFlop/s	
Nmax	21,288,960	
Power Consumption		
Power:	29,899.23 kW (Optimized: 26248.36 kW)	

2

Power Measurement Level:

[1] Fugaku Supercomputer, Top500 List, Acc. 2021-06-22. https://www.top500.org/system/179807 [2] Morley, J., Widdicks, K., & Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Research & Social Science, 38, 128-137.

Original research article

Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak

electricity consumption

Janine Morley * 名 回, Kelly Widdicks ^b回, Mike Hazas ^b回 Show more V

https://doi.org/10.1016/j.erss.2018.01.018 Under a Creative Commons license

Get rights and content

Abstract

Over the last decade, concerns have been raised about increases in the electricity used by information technologies other consumer electronic devices data centres

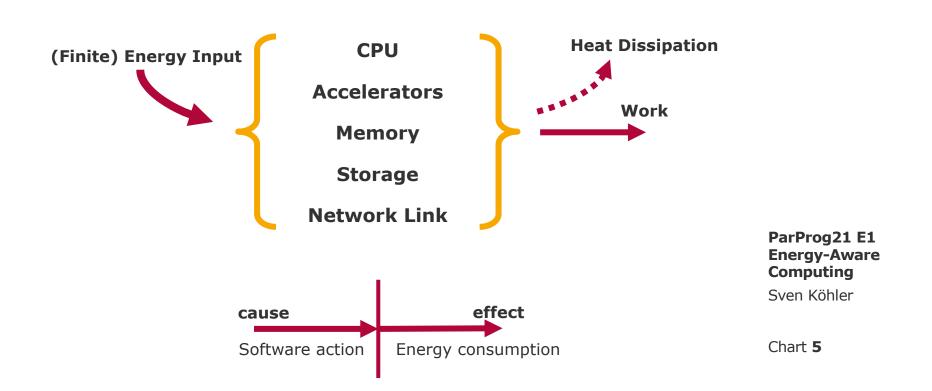
🕑 🔊 25 % <mark>-</mark> 🗲

ParProg21 E1 **Energy-Aware** Computing

Sven Köhler

Chart 4

Hasso Plattner Institut



Energy Research & Social Science Volume 38, April 2018, Pages 128-137

What Consumes Energy?

The energy demand E that is required to execute an operation is the integral over the system's power demand from start (t_s) to end (t_e) of the operation.

Energy E (unit: J or Ws) is the ability to do work.

E is a suitable metric for:

Energy vs. Power

- your battery life
- your electricity bill
- your carbon footprint

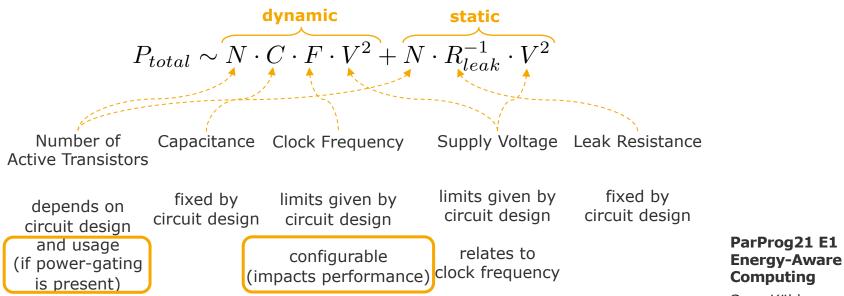
Power P (unit: W or J/s) is the rate of doing work.

P is a suitable metric for:

- power supply constraints (peak power)
- prediction of heat dissipation (cooling facilities)

ParProg21 E1 Energy-Aware Computing

Sven Köhler


Reducing the energy demand requires to reduce the run-time or the power demand.

 $E = \int_{t_o}^{t_e} P(t) dt$

Power Demand of Computing Circuits

Sven Köhler

Reducing the power demand requires to shut off transistors or reduce the clock frequency.

Energy Management

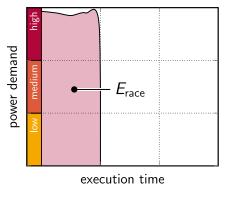
Energy Management

ParProg21 E1 Energy-Aware Computing

Sven Köhler

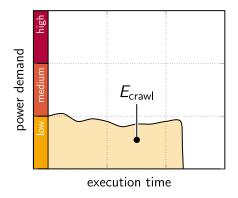
HPI Hasso Plattner Institut

Modern compute architectures allow developers to actively regulate voltage and clock frequency at a fine time granularity (tens of milliseconds).


Examples:

- Intel CPUs: RAPL using e.g., powergov or direct control register access
- IBM POWER CPUs: EnergyScale via CIM or HMC
- ARM: Plenty of tools and libraries, usually by SOC/board vendor
- NVidia GPUs: nvidia-smi or NVidia Management Library
- AMD GPUs: In the Linux sysfs at /sys/class/drm/.../pp_od_clk_voltage

Proper power-gating is tricky. Without, your **idling** core **is wasting energy**. Thus, **minimize** the **idle time!** Put your cores to sleep, when you can. ParProg21 E1 Energy-Aware Computing


Race or Crawl to Sleep?

race-to-sleep

Maximize sleep time using a blocking management method after finishing pending work.

Suits especially computeintensive processes

crawl-to-sleep

Configure system at minimum voltage and clock rate, aiming for low average/peak power.

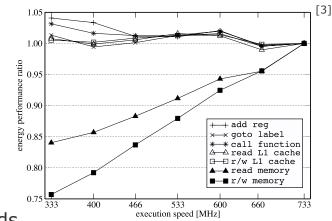
Suits especially I/O- or memory-bound processes

ParProg21 E1 Energy-Aware Computing

[3] Weissel, A., Bellosa, F. Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management. In: Proceedings of the International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES'02) ACM, 2002, S. 238–246

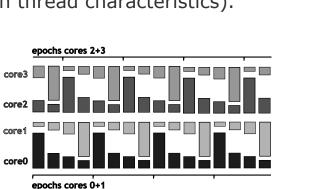
Data Processing And Computing

A **naïve approach** to energy-aware computing:


Run memory-bound and CPU-bound threads with low and high clock speed, respectively.

Problems of this approach:

- dynamic characteristics of workloads
- simple system model (#cores, interlocked voltages, cache size)
- input-dependent, variable size of working set
- costs for frequency switching



Memory-aware Scheduling (Combining) I

Observation:

Contention between cores due to resource demand (caches, memory) leads to run-time penalties (depending on thread characteristics).

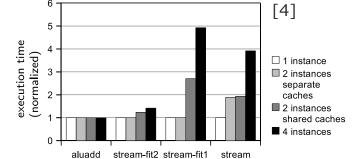


Figure 1. Normalized runtime of microbenchmarks running on the Core2 Quad

Proposed strategy:

Combine and co-locate compute-bound and memory-bound threads to reduce contention (Gang scheduling^[5]) ParProg21 E1 Energy-Aware Computing

Sven Köhler

Figure 4. Sorted scheduling. Bars correspond to memory intensity.

[4] Merkel, A., Bellosa, F.: Memory-aware Scheduling for Energy Efficiency on Multicore Processors. In: Proceedings of the Workshop on Power Aware Computing and Systems (HotPower'08), 2008, S. 123–130
[5] Ousterhout, J. K. et. al.: Scheduling Techniques for Concurrent Systems. In: Proceedings of the 1982 International Conference on Distributed Computing Systems (ICDCS'82) Bd. 82, 1982, S. 22–30

Memory-aware Scheduling (Combining) II

Implementation:

- group CPU cores into pairs of two
- Run threads with complementary resource demands on each pair
- Scale to lowest frequency if no compute-bound threads are ready (only memory-bound threads ready)
- Scale to highest frequency if at least one compute-bound thread is ready

Limitations and Considerations:

- inferences with kernel scheduling strategy (risks priority inversion)
- scheduling policy only effective for specific working set sizes
- memory hierarchy and cache sizes must be considered

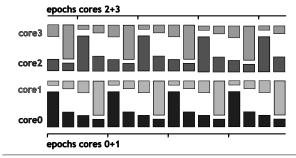
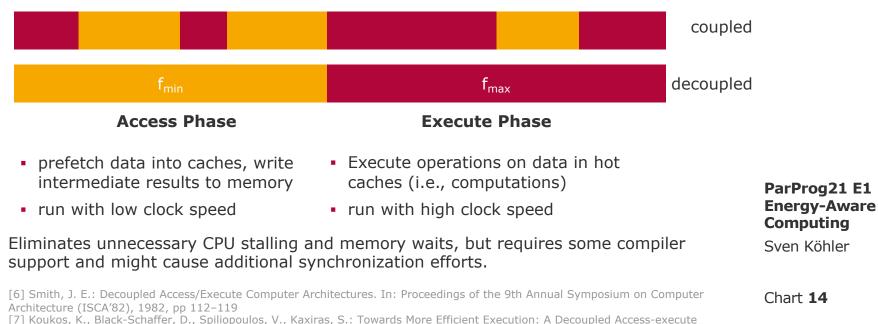


Figure 4. Sorted scheduling. Bars correspond to memory intensity.


ParProg21 E1 Energy-Aware Computing

Access and Execute (Sequencing)

Sequenced execution the extend phases of homogenous operations.

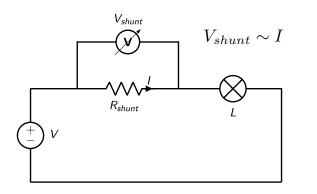
Reorder your instructions into two streams operations of the same kind

Approach. In: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing (ICS'13), 2013

- Pick a more energy-efficient system (e.g., FPGA over CPU or high-efficiency cores like on ARM big.LITTLE machines)
- Optimize your algorithm!
- Optimize your implementation for performance, go to sleep
- But: Fast systems may use more energy than they save in time^[8]

You will never know if your algorithm, implementation or management strategy is more energy efficient then another, unless you measure ... ParProg21 E1 Energy-Aware Computing

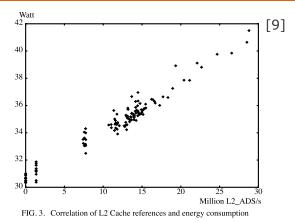
Measuring Power and Energy



ParProg21 E1 Energy-Aware Computing

Sven Köhler

HPI Hasso Plattner Institut


Measurement Methods

physical measurements

Direct or indirect physical method, like measuring the voltage drop across a resistor.

Quite accurate, little overhead, requires setup alteration

logical measurements

Based on a software power model, initially build upon physical measurements.

No additional circuits required, but model might be error-prone

ParProg21 E1 Energy-Aware Computing

Sven Köhler

Chart 17

[9] Bellosa, F.: The Benefits of Event-Driven Energy Accounting in Power-Sensitive Systems. In: Proceedings of the 2000 ACM SIGOPS European Workshop "Beyond the PC: New Challenges for the Operating System" (EW '00) ACM, 2000, S. 37–42

Measurement Facilities

i.e., standalone devices intercepting the supply between power source and measured device

On-Board

Part of the mainboard or SOC, often allow for distinction of separate power rails

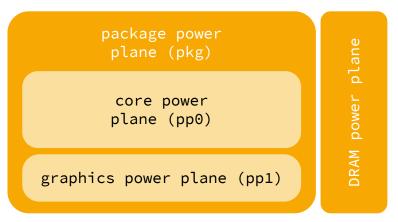
On-Chip

Integrated with the individual hardware platform, allows for most details

525

IPMI, BMC, Jetson counters

RAPL, PowerOCC Apple M1 counters


ParProg21 E1 Energy-Aware Computing

Sven Köhler

HPI Hasso Plattner Institut

Running Average Power Limit (RAPL)

- Available for Intel platforms, since Sandy Bridge
- Registers capture cumulative energy consumption (not power draw), at ~1 ms resolution (wrap around after ~60s)
- Accessible via control registers, Linux sysfs, or perf_event_open
- Semi-compatible AMD implementation since Ryzen Gen 3

Hasso Plattner

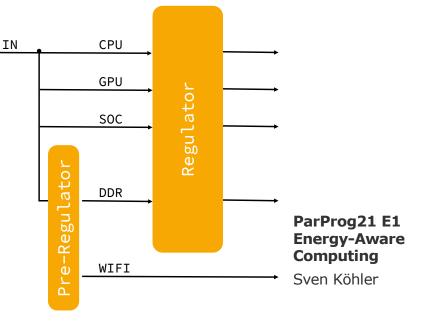
Institut

Sven Köhler

Chart 19

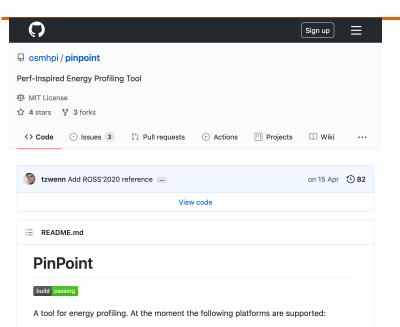
[10] Intel. 64 and IA-32 Architectures Software Developer's Manual (Volume 3). Acc. 2020-06-12 https://software.intel.com/content/dam/develop/public/us/en/documents/325384-sdm-vol-3abcd.pdf

NVidia Jetson TX2 Boards

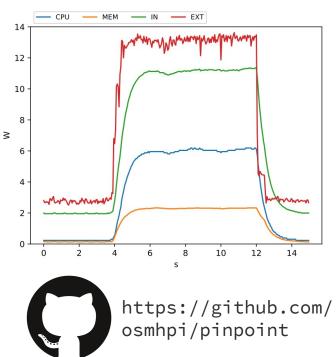

Two triple-channel INA3221 power monitors:

External

Power

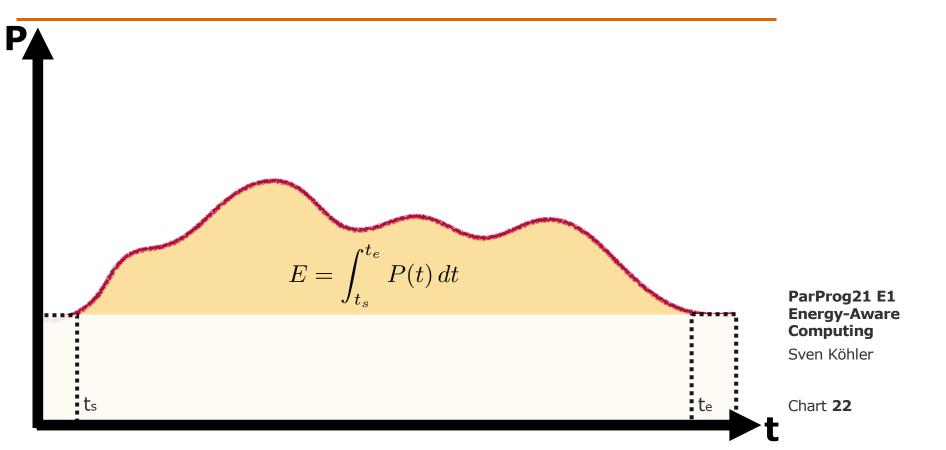

- report averaged power draw, voltage and current
- estimated 5% sample accuracy, 20 Hz sampling frequency
- I²C exposed via Linux sysfs-interface at /sys/bus/i2c/drivers/ina3221x/*/ iio_device/in_power

For all other NVidia GPUs: Check out the NVidia Management Library (nvml) or the nvidia-smi tool.



Shameless Self-Plug: PinPoint

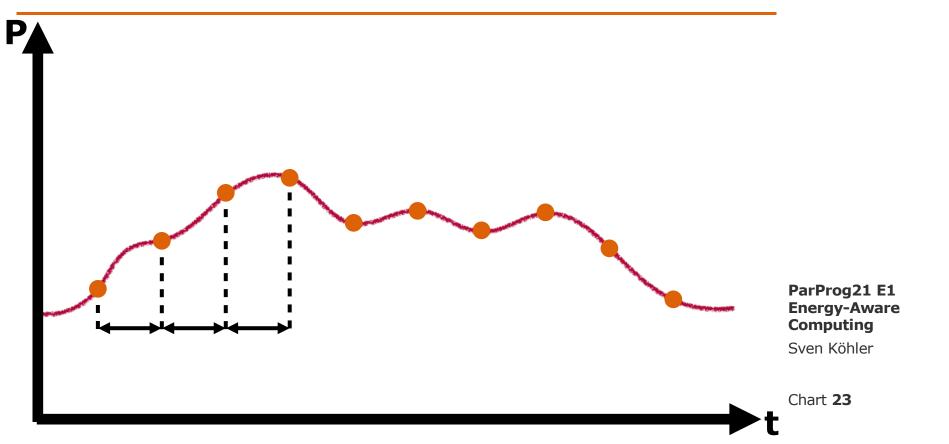
- 3-channel INA3221 on NVIDIA Jetson TX2 boards
- 3-channel INA3221 on NVIDIA Jetson AGX Xavier boards
- Microchip MCP39F511N (for external power measurements)
- RAPL on x86_64 platforms (Linux and macOS)
- Nvidia GPUs on Linux (via NVIDIA Management Library)


ParProg21 E1 Energy-Aware Computing

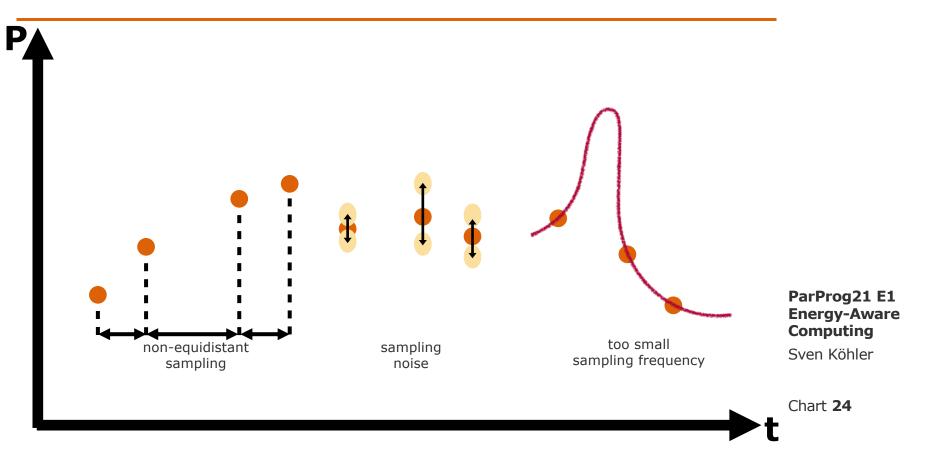
Sven Köhler

[12] Köhler, S., Herzog, B., Hönig, T., Wenzel, L., Plauth, M., Nolte, J., Polze, A., & Schröder-Preikschat, W. (2020, November). Pinpoint the Joules: Unifying Runtime-Support for Energy Measurements on Heterogeneous Systems. In *2020 IEEE/ACM International Workshop on Runtime and Operating Systems for Supercomputers (ROSS)* (pp. 31-40). IEEE.

Be Careful What You Measure


HPI

Hasso Plattner


Institut

Be Careful What You Measure

Be Careful What You Measure

Hasso

Plattner

Institut

HPI

Extended and Composite Metrics

HPI Hasso Plattner Institut

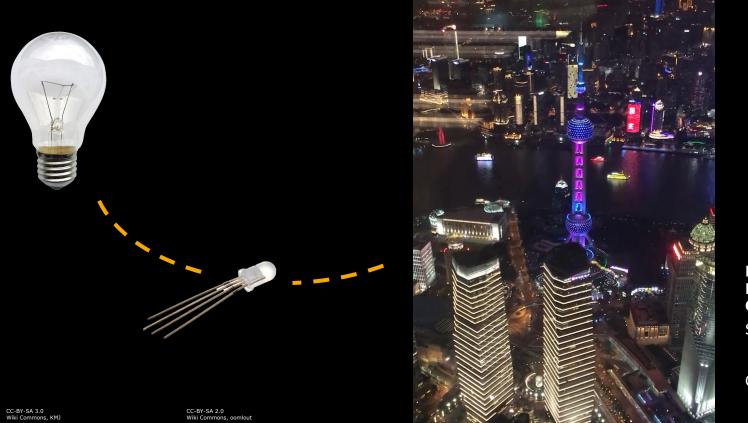
- Power and energy demand are insufficient metrics
- Other system characteristics (e.g., performance or latency) may differ strongly, even though power or energy characteristics are the same
- Extended metrics combine basic metrics (power/energy demand) with additional system properties like execution time:
 - Power-Delay Product (PDP): P_{avg} · t
 (approximates energy per switching event, good for fixed voltage)
 - Energy-Delay Product (EDP): E · t ~ P_{avg} · t · t (equal weight for changes of energy demand and performance, but misleading metric for systems with dynamic voltage scaling^[13])
 - Energy-Delay-Squared Product (ED²P): EDP · t (good for fixed micro-architecture with dynamic voltage scaling^[14])

[13] Horowitz, M., Indermaur, T., Gonzalez, R.: Low-power digital design.In: Proceedings of 1994 IEEE Symposium on Low Power Electronics, 1994, S. 8–11
[14] Brooks, D. M., Bose, P., Schuster, S. E., Jacobson, H., Kudva, P. N., Buyuktosunoglu, A., Wellman, J., Zyuban, V., Gupta, M., Cook, P. W.: Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors. In: IEEE Micro 20 (2000), Nov, Nr. 6, S. 26–44

ParProg21 E1 Energy-Aware Computing

Sven Köhler

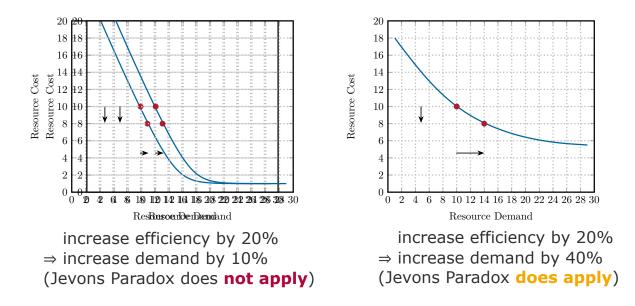
Closing Remarks


Closing Remarks

ParProg21 E1 Energy-Aware Computing

Sven Köhler

Rebound Effect



ParProg21 E1 Energy-Aware Computing Sven Köhler

Jevons Paradox

Technological progress that increases the efficiency with which a resource is used tends to increase (rather than decrease) the rate of consumption of that resource.

ParProg21 E1 Energy-Aware Computing

Sven Köhler

[15] Jevons, W. S. (1866). The Coal Question; An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of our Coal-Mines. Macmillan & Co. London

Digital Engineering • Universität Potsdam

And now for a break and a glass of water*.

*or drink of your choice