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This unit is a highly condensed version of the Energy-Aware Computing
Systems (EASY) lecture by Prof. Dr.-Ing. Timo H6nig (RUB, formerly FAU).

If you are interested in more content, check out the FAU-CS4 website or
convince us to offer an entire semester-spanning lecture, here at HPI.
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Our Computing Systems Use
Massive Amounts of Energy
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SUPERCOMPUTER FUGAKU - [1]
SUPERCOMPUTER FUGAKU, Ab4FX 48C 2.2GHZ,
TOFU INTERCONNECT D

Site: RIKEN Center for Computational Science
System URL: https://www.r-ccs.riken.jp/en/fugaku/project
Manufacturer: Fujitsu

Cores: 7,630,848

Memory: 5,087,232 GB

Processor: A6LFX 48C 2.2GHz

Theoretical Peak (Rpeak) 537,212 TFlop/s

Nmax 21,288,960

Power Consumption

Power: 29,899.23 kW (Optimized: 26248.36 kW)

Power Measurement Level: 2

[1] Fugaku Supercomputer, Top500 List, Acc. 2021-06-22. https://www.top500.0org/system/179807

Energy Research & Social Science
Volume 38, April 2018, Pages 128-137

.

ELSEVIER

Original research article

Digitalisation, energy and data demand: The
impact of Internet traffic on overall and peak
electricity consumption

Janine Morley * 2 B, Kelly Widdicks ® 2, Mike Hazas * @

Show more v

https://doi.org/10.1016j.ers5.2018.01.018 Get rights and content

Under a Creative Commons license

Abstract

Over the last decade, concerns have been raised about increases in the electricity

nsed hv infarmation technalnecies ather cansumer electranic devices data centres
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[2] Morley, 1., Widdicks, K., & Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on
overall and peak electricity consumption. Energy Research & Social Science, 38, 128-137.



What Consumes Energy?

(Finite) Energy Input CPU ‘
Accelerators oot
L 5 Work
hdennory ----'»
Storage

Heat Dissipation

Network Link

cause

effect

Software action

Energy consumption
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Energy vs. Power

The energy demand E that is required to execute an operation is the integral
over the system’s power demand from start (t;) to end (t.) of the operation.

le
A 4
AT
Energy E (unit: J or Ws) is the s "=~ Power P (unit: W or J/s) is the
ability to do work. rate of doing work.
E is a suitable metric for: P is a suitable metric for:
= your battery life = power supply constraints

(peak power)

= prediction of heat dissipation
(cooling facilities)

= your electricity bill
= your carbon footprint

Reducing the energy demand requires to

reduce the run-time or the power demand.
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dynamic static
A A —
Piotal NN C F- V2+N R V2
leak A
NumBer of Capac'itance Clock Frequency Supply‘VoItage Leak Re‘sistance
Active Transistors
fixed by limits given by limits given by fixed by
depends on T . o .
circ?.lit design circuit design  circuit design circuit design circuit design
and usage _ ParProg21 E1
(i power—g%ting configurable relates to Energy-Aware
is present) (impacts performance)|clock frequency Computing
Sven Koéhler

Reducing the power demand requires to Chart 7

shut off transistors or reduce the clock frequency.




Energy Management

Energy
Management
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Dynamic Voltage and Frequency Scaling

Modern compute architectures allow developers to actively regulate voltage
and clock frequency at a fine time granularity (tens of milliseconds).

Examples:

= Intel CPUs: RAPL using e.g., powergov or direct control register access
IBM POWER CPUs: EnergyScale via CIM or HMC

ARM: Plenty of tools and libraries, usually by SOC/board vendor

NVidia GPUs: nvidia-smi or NVidia Management Library

AMD GPUs: In the Linux sysfs at /sys/class/drm/../pp_od_clk_voltage

Proper power-gating is tricky. Without, your core
Thus, the Put your cores to sleep, when you can.
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Race or Crawl to Sleep?

power demand

execution time

race-to-sleep

Maximize sleep time using a
blocking management method
after finishing pending work.

Suits especially compute-
intensive processes

power demand

execution time
crawl-to-sleep

Configure system at minimum
voltage and clock rate, aiming
for low average/peak power.

Suits especially I/0- or
memory-bound processes
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Data Processing And Computing

- [3]

A naive approach to energy-aware

computing: £ os
Run memory-bound and CPU-bound £ e
threads_ with low and high clock speed, % //// —
respectively. 5085 % el fanction
© A—Aread L1 cache
0.80 O—Hr/w L1 cache
A—A read memory
. B r/w memor
Problems of this approach: 075/ —

! ! !
7333 400 466 533 600 660 733
execution speed [MHz]

= dynamic characteristics of workloads
= simple system model (#cores, interlocked voltages, cache size)
= input-dependent, variable size of working set

= costs for frequency switching

[3] Weissel, A., Bellosa, F. Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management. In: Proceedings of
the International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES’02) ACM, 2002, S. 238-246
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[4]
5
Contention between cores due to Ege —
resource demand (caches, memory) EE B 2 instances
leads to run-time penalties (depending 3£ - cachos
on thread characteristics). GRS e eees
M 4 instances
0_
aluadd stream-fit2 stream-fit1 stream
epochs cores 2+3
cres T EOFEEON=0@ == Figure 1. Normalized runtime of microbenchmarks running
II II II II on the Core2 Quad
Sd I Riirmirg
@@r@ﬂDDD DDD DDD DDD . :

I I I I Combine and co-locate compute-bound ::;':mg:‘}v:rle
aaed | L LLLLLL LI LD and memory-bound threads to reduce Computing
epochs cores 0+1 contention (Gang schedulingts7) .

Figure 4. Sorted scheduling. Bars correspond to memory Sven Kohler
intensity.
[4] Merkel, A., Bellosa, F.: Memory-aware Scheduling for Energy Efficiency on Multicore Processors. In: Proceedings of the Workshop Chart 12

on Power Aware Computing and Systems (HotPower’08), 2008, S. 123-130
[5] Ousterhout, J. K. et. al.: Scheduling Techniques for Concurrent Systems. In: Proceedings of the 1982 International Conference on

Distributed Computing Systems (ICDCS’82) Bd. 82, 1982, S. 22-30



Memory-aware Scheduling (Combining) II

Implementation:
= group CPU cores into pairs of two

s Run threads with complementary
resource demands on each pair

m Scaleto frequency if
compute-bound threads are ready
(only memory-bound threads ready)

» Scaleto frequency if
compute-bound thread is ready

Limitations and Considerations:

epochs cores 2+3

core3 .I--.I--.I--.I--

wMI-Ill-Ill-Ill-Il

@@W@ﬂDDDDDDD DDD I:||:||j|:|
[ -]

c°re°ll Ill-lll-lll-
T T

epochs cores 0+1

Figure 4. Sorted scheduling. Bars correspond to memory
intensity.

» inferences with kernel scheduling strategy (risks priority inversion)

= scheduling policy only effective for specific working set sizes
= memory hierarchy and cache sizes must be considered
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Access and Execute (Sequencing)

Sequenced execution the extend phases of homogenous operations.
Reorder your instructions into two streams operations of the same kind

frmin frnax decoupled

Access Phase Execute Phase

» prefetch data into caches, write = Execute operations on data in hot

intermediate results to memory caches (i.e., computations) ParProg21 E1

= run with low clock speed = run with high clock speed Energy-Aware
Computing
Eliminates unnecessary CPU stalling and memory waits, but requires some compiler Sven Kéhler

support and might cause additional synchronization efforts.

[6] Smith, J. E.: Decoupled Access/Execute Computer Architectures. In: Proceedings of the 9th Annual Symposium on Computer Chart 14
Architecture (ISCA'82), 1982, pp 112-119

[7] Koukos, K., Black-Schaffer, D., Spiliopoulos, V., Kaxiras, S.: Towards More Efficient Execution: A Decoupled Access-execute

Approach. In: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing (ICS'13), 2013
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What else?

m Pick a more energy-efficient system (e.g., FPGA over CPU
or high-efficiency cores like on ARM big.LITTLE machines)

m Optimize your algorithm!
m Optimize your implementation for performance, go to sleep
m But: Fast systems may use more energy than they save in timel8l

p . . . ] ParProg21 E1
You will never know if your algorithm, implementation or Energy-Aware

management strategy is more energy efficient then another, Computing
unless you measure ... Sven Kohler
Chart 15

[8] Honig, T., Janker, H., Eibel, C., Mihelic, O., & Kapitza, R. (2014). Proactive Energy-Aware Programming with PEEK.
In 2014 Conference on Timely Results in Operating Systems (TRIOS 14).
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Measurement Methods

Vshunt

@ ‘/shunt ~ 1
AN X

Rshunt L

Y—

Ov

physical measurements
Direct or indirect physical
method, like measuring the
voltage drop across a resistor.

Quite accurate, little overhead,
requires setup alteration

;Natt
1 [9]
-
40
38 .
0; -~ .0
36 L™
5 ¥
34 s e
PY
»
4
32 ;
s
305 3 10 15 20 25 3

Million L2_ADS/s
FIG. 3. Correlation of L2 Cache references and energy consumption

logical measurements

Based on a software power
model, initially build upon
physical measurements.

No additional circuits required,
but model might be error-prone

[9] Bellosa, F.: The Benefits of Event-Driven Energy Accounting in Power-Sensitive Systems. In: Proceedings of the 2000 ACM
SIGOPS European Workshop ,Beyond the PC: New Challenges for the Operating System” (EW ‘00) ACM, 2000, S. 37-42
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Measurement Facilities

A

= |

P
N

4
N

External

i.e., standalone devices intercepting the supply
between power source and measured device

On-Board

Part of the mainboard or SOC, often allow for
distinction of separate power rails

On-Chip

Integrated with the individual hardware
platform, allows for most details

IPMI, BMC,
Jetson counters

RAPL, PowerOCC
Apple M1 counters
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Hasso
Running Average Power Limit (RAPL) ﬂmﬂtn"f{

= Available for Intel platforms, since Sandy Bridge

m Registers capture cumulative energy consumption (not power draw), at
~1 ms resolution (wrap around after ~60s)

m Accessible via control registers, Linux sysfs, or perf_event_open
= Semi-compatible AMD implementation since Ryzen Gen 3

package power

plane (pkg) %
,_)
o

core power =

Slane (ppo) 2 ParProg21 E1
2 Energy-Aware
= Computing
= Sven Kohler
()]

graphics power plane (ppl)
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NVidia Jetson TX2 Boards

Two triple-channel INA3221 power monitors:

report averaged power draw, External
voltage and current Power

estimated 5% sample accuracy,
20 Hz sampling frequency

[2C exposed via Linux sysfs-interface at
/sys/bus/i2c/drivers/ina3221x/*/
iio_device/in_power

For all other NVidia GPUs:

Check out the NVidia Management Library
(nvml) or the nvidia-smi tool.
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Shameless Self-Plug: PinPoint

(W) [sonw) =
= CPU —— MEM — IN — EXT

. 14
& osmhpi/ pinpoint iy
L Ll il
Perf-Inspired Energy Profiling Tool 35
&5 MIT License
Y¢ 4stars % 3forks 10 4
<> Code () Issues 3 1 Pull requests () Actions [ Projects 07 wiki
8 -
=
% tzwenn Add ROSS'2020 reference ... on 15 Apr 9 82 61
View code
4 B
:= README.md
2 .
PinPoint o
0 2 4 6 8 10 12 14
cm=n :

A tool for energy profiling. At the moment the following platforms are supported:

e 3-channel INA3221 on NVIDIA Jetson TX2 boards

e 3-channel INA3221 on NVIDIA Jetson AGX Xavier boards

e Microchip MCP39F511N (for external power measurements)
* RAPL on x86_64 platforms (Linux and macOS)

e Nvidia GPUs on Linux (via NVIDIA Management Library)

https://github.com/
osmhpi/pinpoint

[12] Kbhler, S., Herzog, B., Honig, T., Wenzel, L., Plauth, M., Nolte, J., Polze, A., & Schréder-Preikschat, W. (2020, November).
Pinpoint the Joules: Unifying Runtime-Support for Energy Measurements on Heterogeneous Systems. In 2020 IEEE/ACM
International Workshop on Runtime and Operating Systems for Supercomputers (ROSS) (pp. 31-40). IEEE.
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Be Careful What You Measure
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Be Careful What You Measure
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® . I I ParProg21 E1
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. ' Computing
non-equidistant samplin 00 Ssma .
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s Power and energy demand are insufficient metrics
m Other system characteristics (e.g., performance or latency) may differ
strongly, even though power or energy characteristics are the same
s Extended metrics combine basic metrics (power/energy demand) with
additional system properties like execution time:
o Power-Delay Product (PDP): P, - t
(approximates energy per switching event, good for fixed voltage)
o Energy-Delay Product (EDP): E-t=P, -t t
(equal weight for changes of energy demand and performance,
but misleading metric for systems with dynamic voltage scaling(131) ParProg21 E1
Energy-Aware
o Energy-Delay-Squared Product (ED2P): EDP - t Computing
(good for fixed micro-architecture with dynamic voltage scaling!!4]) Sven Kéhler

[13] Horowitz, M., Indermaur, T., Gonzalez, R.: Low-power digital design.In: Proceedings of 1994 IEEE Symposium on Low Power

Electronics, 1994, S. 8-11 Chart 25
[14] Brooks, D. M., Bose, P., Schuster, S. E., Jacobson, H., Kudva, P. N., Buyuktosunoglu, A., Wellman, J., Zyuban, V., Gupta,

M., Cook, P. W.: Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors. In: IEEE

Micro 20 (2000), Nov, Nr. 6, S. 26-44
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Rebound Effect
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Jevons Paradox

Technological progress that increases the efficiency with which a resource is used
tends to increase (rather than decrease) the rate of consumption of that resource.

20
18 |

Resource Cost
—_
IS
1

1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 810121416 1820 2224 26 28 30

Resource Demand

increase efficiency by 20%
= increase demand by 10%
(Jevons Paradox does not apply)

Resource Cost

20
18 | |
16 | |
14 | |
12 | N

10 | ¢ :

0 é 4‘1 (; é 16 1‘2 1‘4 1‘6 1‘8 26 2‘2 2‘4 26 2‘8 30
Resource Demand
increase efficiency by 20%
= increase demand by 40%
(Jevons Paradox does apply)

S N = O o
1
L

[15] Jevons, W. S. (1866). The Coal Question; An Inquiry Concerning the Progress of the Nation, and the Probable

Exhaustion of our Coal-Mines. Macmillan & Co. London
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And now for a break and
a glass of water*.




