
Parallel Programming and Heterogeneous Computing
D3 - Shared-Nothing: Actors

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel, and Andreas Polze
Operating Systems and Middleware Group

1
Actors

ParProg20 D3
Actors
Sven Köhler

Chart 2Actors

Actor 1

Actor 2

Actor 0

Actor 3

Actor 4

„Everything is an actor“

■ Developed as part of AI research at MIT
■ Another mathematical model for concurrent computation
■ Uses no global system state / namespace / clock
■ Actor are computational primitive

□ Makes local decisions, has a mailbox for incoming messages
□ Concurrently creates more actors
□ Concurrently sends / receives messages

■ Asynchronous one-way message sending with changing topology
(CSP communication graph is fixed)
□ Recipient is identified by mailing address
□ Actor A gets to know actor B only by direct creation,

or by name transmission from another actor C

The Actor Model

Sven Köhler

ParProg20 D3
Actors

Chart 3
C. Hewitt, P. Bishop, and R. Steiger. “A Universal Modular ACTOR Formalism for Artificial Intelligence”
In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence. (pp. 235-245) IJCAI’73.

Actor 1

Actor 2

Actor 0

Actor 3

Actor 4

2
Erlang

ParProg20 D3
Actors
Sven Köhler

Chart 4Erlang
Joe Armstrong
(1950-2019)

■ Functional language with actor support in practice
■ Designed for large-scale concurrency

□ First version in 1986 by Joe Armstrong, at Ericsson Labs
□ Available as open source since 1998

■ Language goals driven by Ericsson product development
□ Scalable distributed execution of phone call handling software with

large number of concurrent activities
□ Fault-tolerant operation under timing constraints
□ Online software update

■ Applications
□ Amazon EC2 SimpleDB, WhatsApp backend, Facebook chat (former

ejabberd), T-Mobile SMS and authentication, Motorola call processing,
Ericsson GPRS and 3G mobile network products, CouchDB, …

Erlang – Ericsson Language

Sven Köhler

ParProg20 D3
Actors

Chart 5

Erlang Cluster Terminology

Sven Köhler

ParProg20 D3
Actors

Chart 6

An Erlang cluster consists of multiple interconnected nodes, each running
several light-weight processes (actors).
Message passing implemented by shared memory (same node), TCP (ERTS), …

nodeA

PA.1

PA.2

PA.0

PA.4

PA.5

nodeB

PB.0

PB.1

Host 1

nodeC

Host 2

nodeD

Host 3

se
qu

en
tia

l

■ Sequential subset is influenced by functional and logical programming
(Prolog, ML, Haskell, ...)
■ Variables (uppercase) – immutable, single bound within context
■ Atoms - constant literals, implement only comparison operation

(lowercase)
■ Lists [H|T] and tuples {} are the base for complex data structures

■ Dynamic typing (runtime even allows invalid types)
■ Control flow through pattern matching

■ Allows for functions and modules, provides built-in functions
□ Functions are defined as match set of pattern clauses
□ On match, all variables in the function’s head become bound

area({square, Side}) -> Side * Side;
area({circle, Rad}) -> math:pi() * Rad * Rad.

Sequential Erlang: Language Elements

Sven Köhler

ParProg20 D3
Actors

Chart 7
body

alternative

Sequential Erlang: Example

-module(fact).
-export([factorial/1]).

factorial(0) -> 1;
factorial(N) -> N * factorial(N - 1).

> fact:factorial(3).
matches N = 3 in clause 2
== 3 * factorial(3 - 1)
== 3 * factorial(2)
matches N =2 in clause 2
== 3 * 2 * factorial(2 - 1)
== 3 * 2 * factorial(1)
matches N = 1 in clause 2
== 3 * 2 * 1 * factorial(1 - 1)
== 3 * 2 * 1 * factorial(0)
== 3 * 2 * 1 * 1 (clause 1)
== 6

Sven Köhler

ParProg20 D3
Actors

Chart 8

Functions and shell expressions
end with a period.

Clauses end with a semicolon.

■ CASE construct: Result is last expression evaluated on match
□ Catch-all clause (_) not recommended here (defensive programming)

(May lead to match error at completely different code position)

case cond-expression of
pattern1 -> expr1, expr2, ...
pattern2 -> expr1, expr2, ...

end

■ WHEN construct: Add a guard (bool-condition) to function head
□ Func(Args) when bool-expression -> expr1, expr2, ...

■ IF construct: Test until one of the guards evaluates to TRUE

□ rarely used
□ if

Guard1 -> expr1, expr2, ...
Guard2 -> expr1, expr2, ...

end

Sequential Erlang: Conditional Programming

Sven Köhler

ParProg20 D3
Actors

Chart 9

factorial(X) when X =< 1 -> 1;

■ Each concurrent activity is called process, started from a function
■ Local state is call-stack and local variables
■ Only interaction through asynchronous message passing
■ Processes are reachable via unforgable name (pid)

■ Design philosophy is to spawn a worker process for each new event
□ spawn([node,]module, function, argumentlist)

□ Spawn always succeeds, created process may terminate
with a runtime error later (abnormally)

□ Supervisor process can be notified on fails

Concurrency in Erlang

Sven Köhler

ParProg20 D3
Actors

Chart 10

Armstrong, Joe. "Concurrency oriented programming in Erlang." Invited talk, FFG (2003).

Sending a Message in Erlang

Sven Köhler

ParProg20 D3
Actors

Chart 11

Pid ! Msg

■ Communication via message passing is part of the language
■ Send never fails, works asynchronous
■ Receiver has a mailbox concept

□ Queue of received messages
□ Only messages from same source arrive in-order

■ Selective message fetching from mailbox
□ receive statement with set of clauses, pattern matching on entire

mailbox
□ Process is suspended in receive operation until a match

receive
Pattern1 when Guard1 -> expr1, expr2, ..., expr_n;
Pattern2 when Guard2 -> expr1, expr2, ..., expr_n;
_ -> expr1, expr2, ..., expr_n

end

Receiving a Message in Erlang

Sven Köhler

ParProg20 D3
Actors

Chart 12after IntExpr -> expr1, expr2, ..., expr_n;

Messaging Example in Erlang

Tail Recursion

Spawning

Tail Recursion

Pattern Matching

Functions exported + #args

Communication

Sven Köhler

ParProg20 D3
Actors

Chart 13

Typical process
pattern:
■ Get spawned
■ register alias
■ initialize local

state
■ enter receiver

loop with current
state

■ finalize on some
stop message

■ Processes can be registered under a name (see shell „regs().“)

□ Registered processes are expected to provide a stable service
□ Messages to non-existent processes under alias results in an error on

the caller side

register(Name, Pid) Register Process with Pid
registered() Return list of registered Names
whereis(Name) Return Pid of Name, or undefined

The Hidden Global State: Name Registry

Sven Köhler

ParProg20 D3
Actors

Chart 14

■ Receiver loop typically modeled with tail-recursive call
□ Receive message, handle it, recursively call yourself
□ Call to sub-routine our yourself is the very last operation,

so the stack frame can be overwritten (becomes a jump)
□ Tail recursion ensures constant memory consumption

■ Non-handled messages in the mailbox should be considered as bug,
avoid defensive programming with _ (throw away without notice)

■ Messaging deadlocks are easily preventable by preventing the
circular wait condition (wait for multiple message patterns)

■ Libraries and templates available for most common patterns
□ Client / Server model - clients access resources and services
□ Finite state machine - perform state changes on message
□ Event handler - receive messages of specific type

Concurrent Programming Design Hints

Sven Köhler

ParProg20 D3
Actors

Chart 15

Robustness through layering in process tree
■ Leave processes act as worker

(application layer)
■ Interior processes act as supervisor

(monitoring layer)
■ Supervisor shall isolate crashed workers from

higher system layers through exit trap
■ Rule of thumb: Processes should

always be part of a supervision tree
■ Allows killing of processes with

updated implementation as a whole
-> High-Availabulity features

Erlang Robustness

Sven Köhler

ParProg20 D3
Actors

Chart 16

super-
visor

super-
visor

super-
visor

worker worker worker

■ Credo:
□ „Let it crash and let someone else deal with it“
□ „Crash early“

■ link() creates bidirectional link to another process

□ If a linked process terminates abnormally, exit signal is sent
□ On reception, partners send exit signal to their partners

– Same reason attribute, leads again to termination

■ Processes can trap incoming exit signals through configuration, leading
to normal message in the inbox

■ Unidirectional variant monitor() for one-way surveillance

■ Standard build-in atomic function available

Pid = spawn_link(Module, Function, Args)
equals to link(Pid = spawn(Module, Function, Args))

Erlang Robustness

Sven Köhler

ParProg20 D3
Actors

Chart 17

Learn You Some Erlang For Great Good

Sven Köhler

ParProg20 D3
Actors

Chart 18

^D Sven Köhler

ParProg20 D3
Actors

Chart 19

end

