
Parallel Programming and Heterogeneous Computing

FPGA Accelerators

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel and Andreas Polze

Operating Systems and Middleware Group

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 2.1

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

−

General Purpose Hardware

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Custom Hardware

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 2.2

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

×

General Purpose Hardware

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Custom Hardware

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 2.3

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

×

General Purpose Hardware

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Custom Hardware

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 2.4

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

+

General Purpose Hardware

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Custom Hardware

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 3.1

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

General Purpose Hardware Custom Hardware

+

× ×

−== =

+ ×−

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 3.2

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

General Purpose Hardware Custom Hardware

+

× ×

−== =

+ ×−

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 3.3

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

General Purpose Hardware Custom Hardware

+

× ×

−== =

+ ×−

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 3.4

Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop

Memory

Execute

Register

General Purpose Hardware Custom Hardware

+

× ×

−== =

+ ×−

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

■ Truly custom hardware built as Application-Specific Integrated Circuits (ASICs) is
extremely expensive to design and manufacture

➢ Only feasible for high production volumes

➢ Usually requires at least some general-purpose aspects to fit many use-cases

■ Field Programmable Gate Arrays (FPGAs) are manufactured as general-purpose
integrated circuits, and thus far less expensive than equivalent ASICs

■ FPGAs can be configured to realize a custom hardware architecture

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 4

Introduction
Mapping Workloads to Hardware

+

× ×

−== =

■ Regular fixed-function integrated circuits implement a single and usually highly
optimized hardware architecture (e.g. CPUs, GPUs, …)

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 5

FPGA Characteristics
Hardware Structure

■ FPGA fabric is a regular structure of hardware
primitives and an interconnect for signal lines

□ Interconnect can be configured to connect
signals lines between primitives

□ Primitives can be configured to select
variations of their basic behavior

➢ Appropriate configurations can make the
FPGA behave like any custom hardware
design (within fabric capacity)

Hardware primitives include:

■ Logic Blocks (CLB) with Flipflops, Lookup
Tables, Multiplexers, …

■ Memory Blocks (BRAM) to act as single port,
dual port or FIFO memories

■ Arithmetic Blocks (DSP) with hardware
multipliers, adders, shifters, …

■ Clock Management Blocks (MMCM) to derive
clock signals with specific frequency and
phase relations

■ IO Banks with logic for various signaling
standards

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 6

FPGA Characteristics
Hardware Structure

CLB in a Xilinx UltraScale FPGA
(from: Xilinx UG 474, Figure 5-1)

Floorplan of a Xilinx Kintex Ultra Scale XCKU060 FPGA

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 7

FPGA Characteristics
Hardware Structure

Example: Accumulator (2 bit)

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 8

FPGA Characteristics
Hardware Structure

FF

in0

FF

in1

FF

acc0

FF

acc1

LUT3

000|0
001|0
010|0
011|1
100|0
101|1
110|1
111|1

LUT2

00|0
01|1
10|1
11|0

LUT2

00|0
01|0
10|0
11|1

in

+ acc
2 FPGA

CLBCLB

■ Fixed-function hardware is rated by maximum operating clock frequency

■ FPGAs have no uniform clock frequency rating:

□ FPGA fabric supports multiple clock signals in different regions

□ Specific configurations define combinatorial paths of varying lengths

➢ Maximum clock frequency is design specific and constrained by the longest
combinatorial path delay

■ Specific primitives like BRAMs can have maximum clock frequency ratings

□ BRAMs on current Xilinx FPGAs run at up to 800MHz

■ Individual logic delays range from 0.1ns to 0.5ns

➢ Small and tightly coupled design sections may run at 1GHz

■ Common frequency for complete designs is 250MHz Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 9

FPGA Characteristics
Performance

Example: Accumulator (2 bit)

■ Combinatorial paths begin and
end at flipflops

■ Clock period must be longer that
the maximum path delay

Maximum delay:

𝐦𝐚𝐱{𝒕𝜹} = 𝟕𝐧𝐬

Clock frequency:

𝒇 ≤
𝟏

𝐦𝐚𝐱 𝒕𝜹
= 𝟏𝟒𝟑𝐌𝐇𝐳

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 10

FPGA Characteristics
Performance

FF

in0

FF

in1

FF

acc0

FF

acc1

LUT3

000|0
001|0
010|0
011|1
100|0
101|1
110|1
111|1

LUT2

00|0
01|1
10|1
11|0

LUT2

00|0
01|0
10|0
11|1

CLBCLB

0ns

0ns

0ns

0ns

2ns

3ns

3ns

2ns

5ns

2ns

3ns

+1ns

+1ns

+1ns

4ns

4ns

+3ns

+1ns+2ns

+2ns

+3ns

+1ns

+1ns

5ns

6ns 7ns

FPGA designs operate at up to an order of magnitude lower clock frequencies than
ASIC accelerators!

How do FPGAs achieve speedups over fixed function hardware?

➢ Avoid overheads of general-purpose hardware:

□ CPUs invest a large amount of logic and cycles into fetching and decoding
general-purpose instructions

□ CPUs must accommodate a wide variety of applications by providing a
compromise set of execution facilities (i.e. function units, forwarding
paths, …)

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 11

FPGA Characteristics
Performance

Any program can be transformed into an equivalent hardware design:

■ Variables and operations are realized in the datapath

■ Control flow is realized through a finite state machine (FSM) controlling the
datapath

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 12

FPGA Design
Basic Patterns

int proc(int a, int b, int f)
{

int f_inv = 1 - f;
a *= f;
b *= f_inv;
return a + b;

}

+

×

−

rA

rB

rF

rI
1

a

b

f

ret

S0 S1𝐫𝐀 ← 𝐚
𝐫𝐁 ← 𝐛
𝐫𝐅 ← 𝐟

S2𝐫𝐀 ← 𝐫𝐀× 𝐫𝐅
𝐫𝐈 ← 𝟏 − 𝐫𝐅

𝐫𝐁 ← 𝐫𝐁 × 𝐫𝐈
𝐫𝐞𝐭 ← 𝐫𝐀+ 𝐫𝐁S3

Control Signals Status Signals

Strictly reproducing the original control flow always yields a correct hardware
implementation for a program.

! Resulting design is rarely efficient, as original control flow is ignorant of
datapath utilization and does not capture data dependencies

➢ Efficient designs leverage pipelining and replication of operations to maximize
computational throughput

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 13

FPGA Design
Basic Patterns

S0 S1𝐫𝐀 ← 𝐚
𝐫𝐁 ← 𝐛
𝐫𝐅 ← 𝐟

S2𝐫𝐀 ← 𝐫𝐀× 𝐫𝐅
𝐫𝐈 ← 𝟏 − 𝐫𝐅

𝐫𝐁 ← 𝐫𝐁 × 𝐫𝐈
𝐫𝐞𝐭 ← 𝐫𝐀+ 𝐫𝐁S3=

int proc(int a, int b, int f)
{

int f_inv = 1 - f;
a *= f;
b *= f_inv;
return a + b;

}

■ Dataflow is a computational model based on streams of data units, that are
processed by traversing a network of operators

➢ Enables a flexible kind of task parallelism, where operations are not
orchestrated by control flow but availability of data operands

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 14

FPGA Design
Dataflow Model

Input A

Input F

Input B

+ Output R

×

−
×1

Data Flow

int proc(int a, int b, int f)
{

int f_inv = 1 - f;
a *= f;
b *= f_inv;
return a + b;

}

Control Flow

➢ Workloads with an efficient dataflow representation usually yield an
efficient hardware implementation!

HDLs share syntactic features with programming languages:

■ VHDL is related to Ada, Verilog to C

HDLs have fundamentally different semantics to programming languages:

■ Statements are not executed in sequential order,
but applied concurrently, whenever their input values change

■ Function calls have no meaning,
closest equivalent are module instantiations,
that like inline functions copy the module to the place of instantiation

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 15

FPGA Development
Hardware Description Languages

Each (synthesizable) HDL construct translates to specific hardware structures:

□ Conditional Statements → Multiplexer

□ Signals that change value only on clock events → Flipflops

□ Arithmetic operations → Adder circuits, DSP Blocks

□ Reading and writing large arrays → Distributed RAM, BRAM

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 16.1

FPGA Development
Hardware Description Languages

process (s_sel)
begin

if s_sel = '0' then
s_out <= s_inA;

else
s_out <= s_inB;

end if;
end process;

s_sel

s_inA

s_inB

s_out=

➢ Designers need to know relations between HDL and hardware constructs
to produce correct and efficient designs

Each (synthesizable) HDL construct translates to specific hardware structures:

□ Conditional Statements → Multiplexer

□ Signals that change value only on clock events → Flipflops

□ Arithmetic operations → Adder circuits, DSP Blocks

□ Reading and writing large arrays → Distributed RAM, BRAM

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 16.2

FPGA Development
Hardware Description Languages

process (s_clk)
begin

if s_clk'event and s_clk = '1' then
if s_rst = '1' then

s_out <= '0';
else

s_out <= s_inD;
end if;

end if;
end process;

s_clk

s_rst

s_inD s_out

R

=

➢ Designers need to know relations between HDL and hardware constructs
to produce correct and efficient designs

Each (synthesizable) HDL construct translates to specific hardware structures:

□ Conditional Statements → Multiplexer

□ Signals that change value only on clock events → Flipflops

□ Arithmetic operations → Adder circuits, DSP Blocks

□ Reading and writing large arrays → Distributed RAM, BRAM

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 16.3

FPGA Development
Hardware Description Languages

➢ Designers need to know relations between HDL and hardware constructs
to produce correct and efficient designs

process (s_inA, s_inB)
begin

s_sum <= s_inA + s_inB;
end process;

=
s_inA

s_sum+
s_inB

Each (synthesizable) HDL construct translates to specific hardware structures:

□ Conditional Statements → Multiplexer

□ Signals that change value only on clock events → Flipflops

□ Arithmetic operations → Adder circuits, DSP Blocks

□ Reading and writing large arrays → Distributed RAM, BRAM

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 16.4

FPGA Development
Hardware Description Languages

s_clk

s_rst

s_inD s_out

R

=

➢ Designers need to know relations between HDL and hardware constructs
to produce correct and efficient designs

process (s_clk)
begin

if s_clk'event and s_clk = '1' then
if s_wr = '1' then

s_buf(to_integer(s_adr)) <= s_di;
end if;
s_do <= s_buf(to_integer(s_adr));

end if;
end process;

=
s_clk

s_adr

s_di s_dos_buf

s_wr

Hardware development toolchains and workflows are significantly different
from software development.

Final artifacts are not executable binaries but hardware configurations.

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 17

FPGA Development
Workflow

HDLs operate at a very low level of abstraction:

■ HDL development requires rare skillset in developers
as well as much time and effort

➢ Increase productivity by raising level of abstraction of design method

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 18

FPGA Development
High-Level Design Methods

+ No transition from software mindset
+ Well suited for algorithmic specification

− No fine-grained control over hardware
− Not suited for structural specification

+ Intuitive graphical method
+ Well suited for structural specification

− Relies on already defined modules
− Not suited for algorithmic specification

Block Designs (BD):

■ Instantiate and connect existing hardware modules in a block diagram editor

High-Level Synthesis (HLS):

■ Automatically translate programs (usually restricted subset of C/C++) into
equivalent hardware descriptions

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 19

FPGA Development
Workflow

High-level design methods extend the frontend of traditional workflows.

They usually produce HDL descriptions as intermediate artifacts.

And now for a break and
a bowl of Bancha.

*or beverage of your choice

FPGA accelerator cards provide a host system interface as well as local memory
and IO resources.

■ DRAM modules to complement the limited BRAM capacity on the FPGA

■ Flash Storage

■ Network Interfaces

■ Video and Peripheral Ports

■ Auxilliary Accelerators like Crypto Units or A/V Codecs

…

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 21

FPGA Accelerators

Device Attached Accelerators:

■ Accelerator acts as a device in host system

■ Accelerator can only access local resources

➢ Host must copy data via DMA

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 22.1

FPGA Accelerators

Memory

ProcessorFPGA

InputMemory

Application

Driver

1. Initiate

2. Copy

3. Process

4. Copy

5. Complete

Device Attached Accelerators:

■ Accelerator acts as a device in host system

■ Accelerator can only access local resources

➢ Host must copy data via DMA

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 22.2

FPGA Accelerators

Memory

ProcessorFPGA

InputMemory

Application

Driver

Input

1. Initiate

2. Copy

3. Process

4. Copy

5. Complete

Device Attached Accelerators:

■ Accelerator acts as a device in host system

■ Accelerator can only access local resources

➢ Host must copy data via DMA

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 22.3

FPGA Accelerators

Memory

ProcessorFPGA

InputMemory

Application

Driver

InputOutput

1. Initiate

2. Copy

3. Process

4. Copy

5. Complete

Device Attached Accelerators:

■ Accelerator acts as a device in host system

■ Accelerator can only access local resources

➢ Host must copy data via DMA

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 22.4

FPGA Accelerators

Memory

ProcessorFPGA

InputMemory

Application

Driver

InputOutput Output

1. Initiate

2. Copy

3. Process

4. Copy

5. Complete

Device Attached Accelerators:

■ Accelerator acts as a device in host system

■ Accelerator can only access local resources

➢ Host must copy data via DMA

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 22.5

FPGA Accelerators

Memory

ProcessorFPGA

InputMemory

Application

Driver

InputOutput Output

1. Initiate

2. Copy

3. Process

4. Copy

5. Complete

Processor

Memory

FPGA

Memory

Application

Input

Coherently Attached Accelerators:

■ Accelerator connected to the coherent memory interconnect on the host system

□ CAPI (OpenPOWER), CCIX (ARM), Gen-Z, CXL (Intel)

■ Accelerator can autonomously access host memory

➢ Enables more fine-grained interaction patterns

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 23.1

FPGA Accelerators

1. Initiate

2. Process

3. Complete

Processor

Memory

FPGA

Memory

Application

InputOutput

Coherently Attached Accelerators:

■ Accelerator connected to the coherent memory interconnect on the host system

□ CAPI (OpenPOWER), CCIX (ARM), Gen-Z, CXL (Intel)

■ Accelerator can autonomously access host memory

➢ Enables more fine-grained interaction patterns

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 23.2

FPGA Accelerators

1. Initiate

2. Process

3. Complete

Processor

Memory

FPGA

Memory

Application

InputOutput

Coherently Attached Accelerators:

■ Accelerator connected to the coherent memory interconnect on the host system

□ CAPI (OpenPOWER), CCIX (ARM), Gen-Z, CXL (Intel)

■ Accelerator can autonomously access host memory

➢ Enables more fine-grained interaction patterns

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 23.3

FPGA Accelerators

1. Initiate

2. Process

3. Complete

Host

CAPI Interaction Scheme:

■ Accelerator is attached to a host process

■ Accelerator can access virtual memory space of host process

■ Host process can access control registers exposed by the accelerator

SNAP Framework:

■ Wraps low-level CAPI interface and local resources into a homogeneous environment

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 24

CAPI SNAP Framework

FPGA
CAP
Proxy

Core
0..n

Coherent Cache
Hierarchy

Host Memory

Core
0..n

PSL

SNAP Core

Local Memory

User
Design

cxl driver

libcxl

libsnap

Application

kernel

user

User Design Environment:

Consists of multiple random-access interfaces,
each to a separate address space.

■ Host Memory Interface, controlled by user design (master)

■ Local Memory Interface, controlled by user design (master)

■ Control Register Interface, controlled by host (slave)

□ Host writes configuration

□ Host reads status

□ Host can initiate user design activity
by setting bits in specific control registers

■ Optionally, SNAP can implement an NVMe controller to
access non-volatile local storage

■ Further card peripherals can be accessed via custom
controllers Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 25

CAPI SNAP Framework

SNAP Core

User Design hmem

ctrl

lmemnvme...

■ The Advanced Microcontroller Bus Architecture (AMBA) was originally defined for
ARM SoC designs → now widely adopted in FPGA designs

■ Channels are a basic construct, used throughout the protocol family

□ Payload signals are transferred from a source to a destination

□ Valid handshake signal indicates that source presents new payload data

□ Ready handshake signal indicates that destination accepts transfer

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 26

Excursion
AMBA Protocol Family

Source Destination

payload

valid

ready

Channel

■ The Advanced Extensible Interface Stream (AXI Stream) protocol uses a
single AMBA channel to transmit sequential data streams from a master to a slave

■ The Advanced Extensible Interface (AXI) protocol requires five AMBA channels
to give a master random access to a slave address space

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 27

Excursion
AMBA Protocol Family

Master SlaveT Channel

Write

Master Slave

AR Channel

AW Channel

W Channel

R Channel

B Channel

Read

■ AXI supports burst transactions:
single read or write request initiates multiple contiguous data transfers

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 28

Excursion
AMBA Protocol Family

■ AXI Lite is a simplified variant of the AXI protocol:

□ Same 5-channel structure

□ No burst capability

➢ Suitable for peripheral register interfaces

Master Slave

AR

AW

W

R

B

Read 4
at 0x3F00

Data
0xd0

Data
0xd0

Data
0xd1

Data
0xd2

Data
0xd3

Write 2
at 0xC080

Data
0xd1

Done

Example: Add a configurable offset to a stream of unsigned 32bit integers

■ Data stream is read from and written to buffers in host memory

□ hmem interface is used, lmem remains inactive

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 29

Accelerator Design Example
A Data Stream Adder

0x40..44 Read Address

0x48 Read Size (x64Byte)

0x50..54 Write Address

0x58 Write Size (x64Byte)

0x60 Offset Value

SNAP Core

User Design

lmem

hmem

ctrl

AxiWriter

StreamAdder

Registers

0x40..480x60 0x50..58

■ Conversion between AXI and AXI
Stream through AxiReader and
AxiWriter modules

□ AxiSplitter separates read and

write channels for both modules

■ Actual implementation resides in
StreamAdder module

■ Control interface to host is realized in
Registers module

□ Configures offset value and stream
buffer addresses

AxiSplitter

AxiReader

entity StreamAdder is
port (

pi_clk : in std_logic;
pi_rst_n : in std_logic;

pi_offset : in unsigned (31 downto 0);

pi_inData : in unsigned (511 downto 0);
pi_inValid : in std_logic;
po_inReady : out std_logic;

po_outData : out unsigned (511 downto 0);
po_outValid : out std_logic;
pi_outReady : in std_logic);

end StreamAdder;

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 30

Accelerator Design Example
A Data Stream Adder

StreamAdder

offset

inData

inValid
inReady

outData

outValid
outReady

?

architecture StreamAdder of StreamAdder is
signal s_data : unsigned (511 downto 0);
signal s_result : unsigned (511 downto 0);
signal s_valid : std_logic;
signal s_ready : std_logic;

begin
i_inputStage : entity work.PipelineStage

port map (pi_clk => pi_clk, pi_rst_n => pi_rst_n,
pi_inData => pi_inData, pi_inValid => pi_inValid, po_inReady => po_inReady,
po_outData => s_data, po_outValid => s_valid, pi_outReady => s_ready);

process(s_data)
begin

for v_idx in 0 to 15 loop
s_result(v_idx*32+31 downto v_idx*32) <= s_data(v_idx*32+31 downto v_idx*32) + pi_offset;

end loop;
end process;

i_outputStage : entity work.PipelineStage
port map (pi_clk => pi_clk, pi_rst_n => pi_rst_n,

pi_inData => s_result, pi_inValid => s_valid, po_inReady => s_ready,
po_outData => po_outData, po_outValid => po_outValid, pi_outReady => pi_outReady);

end StreamAdder;

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 31.1

Accelerator Design Example
A Data Stream Adder

architecture StreamAdder of StreamAdder is
signal s_data : unsigned (511 downto 0);
signal s_result : unsigned (511 downto 0);
signal s_valid : std_logic;
signal s_ready : std_logic;

begin
i_inputStage : entity work.PipelineStage

port map (pi_clk => pi_clk, pi_rst_n => pi_rst_n,
pi_inData => pi_inData, pi_inValid => pi_inValid, po_inReady => po_inReady,
po_outData => s_data, po_outValid => s_valid, pi_outReady => s_ready);

process(s_data)
begin

for v_idx in 0 to 15 loop
s_result(v_idx*32+31 downto v_idx*32) <= s_data(v_idx*32+31 downto v_idx*32) + pi_offset;

end loop;
end process;

i_outputStage : entity work.PipelineStage
port map (pi_clk => pi_clk, pi_rst_n => pi_rst_n,

pi_inData => s_result, pi_inValid => s_valid, po_inReady => s_ready,
po_outData => po_outData, po_outValid => po_outValid, pi_outReady => pi_outReady);

end StreamAdder;

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 31.2

Accelerator Design Example
A Data Stream Adder

StreamAdder

offset

inData

inValid
inReady

+

+

+

outData

outValid
outReady

32

512 512...

HLS Implementation

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 32.1

Accelerator Design Example
A Data Stream Adder

void StreamAdder(stream &in, stream &out, uint32_t offset) {
#pragma HLS INTERFACE axis port=in name=axis_input
#pragma HLS INTERFACE axis port=out name=axis_output
#pragma HLS INTERFACE s_axilite port=offset bundle=control offset=0x60
#pragma HLS INTERFACE s_axilite port=return bundle=control

stream_element element;
do {

element = in.read();

for (int i = 0; i < 16; ++i) {
auto current = element.data(i * 32 + 31, i * 32);
element.data(i * 32 + 31, i * 32) = current + offset;

}

out.write(element);
} while (!element.last);

}

StreamAdder

offset

inData

inValid
inReady

+

+

+

outData

outValid
outReady

32

512 512...

HLS Implementation

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 32.2

Accelerator Design Example
A Data Stream Adder

void StreamAdder(stream &in, stream &out, uint32_t offset) {
#pragma HLS INTERFACE axis port=in name=axis_input
#pragma HLS INTERFACE axis port=out name=axis_output
#pragma HLS INTERFACE s_axilite port=offset bundle=control offset=0x60
#pragma HLS INTERFACE s_axilite port=return bundle=control

stream_element element;
do {

element = in.read();

for (int i = 0; i < 16; ++i) {
auto current = element.data(i * 32 + 31, i * 32);
element.data(i * 32 + 31, i * 32) = current + offset;

}

out.write(element);
} while (!element.last);

}

StreamAdder

offset

inData

inValid
inReady

+

+

+

outData

outValid
outReady

32

512 512...

+

?

■ AXI Streams are convenient and efficient to decompose a design

■ Top-level descriptions of stream-based designs share a similar structure

■ Host software interacts with the accelerator through low-level registers

Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 33

Accelerator Design Example
Takeaways

Metal FS is an FPGA accelerator framework developed at the OSM group.

Concepts:

■ Operators consume, produce or transform a data stream

■ Crossbar Switch defines operator execution order at runtime

■ AXI Streams are convenient and efficient to decompose a design

➢ Metal FS is built around data streams

■ Top-level descriptions of stream-based designs share a similar structure

➢ Metal FS is an FPGA overlay, providing common facilities by default

■ Host software interacts with the accelerator through low-level registers

➢ Metal FS maps the FPGA accelerator to a userspace filesystem
Lukas Wenzel

ParProg 2020 C3
FPGA Accelerators

Chart 34

Metal FS

$ cat ~/test.bin | /fpga/op/stream_add --offset=108 > ~/out1.bin

And now for a break and
another bowl of Bancha.

*or beverage of your choice

