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Introduction
Mapping Workloads to Hardware

LD R0, #0
loop:
LD R1, [f + R0]
SUB R2, #1, R1
LD R3, [a + R0]
LD R4, [b + R0]
MUL R5, R3, R1
MUL R6, R4, R2
ADD R5, R5, R6
ST [r + R0], R5
ADD R0, R0, #1
BLT R0, #N, loop
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General Purpose Hardware

Example:

Given Arrays a, b, and f calculate r[i] = a[i] × f[i] + b[i] × (1 - f[i])

Custom Hardware
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■ Truly custom hardware built as Application-Specific Integrated Circuits (ASICs) is 
extremely expensive to design and manufacture

➢ Only feasible for high production volumes

➢ Usually requires at least some general-purpose aspects to fit many use-cases

■ Field Programmable Gate Arrays (FPGAs) are manufactured as general-purpose 
integrated circuits, and thus far less expensive than equivalent ASICs

■ FPGAs can be configured to realize a custom hardware architecture
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Mapping Workloads to Hardware

+

× ×

−== =



■ Regular fixed-function integrated circuits implement a single and usually highly 
optimized hardware architecture (e.g. CPUs, GPUs, …)
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FPGA Characteristics
Hardware Structure

■ FPGA fabric is a regular structure of hardware 
primitives and an interconnect for signal lines

□ Interconnect can be configured to connect 
signals lines between primitives

□ Primitives can be configured to select 
variations of their basic behavior

➢ Appropriate configurations can make the 
FPGA behave like any custom hardware 
design (within fabric capacity) 

              

            



Hardware primitives include:

■ Logic Blocks (CLB) with Flipflops, Lookup 
Tables, Multiplexers, …

■ Memory Blocks (BRAM) to act as single port, 
dual port or FIFO memories

■ Arithmetic Blocks (DSP) with hardware 
multipliers, adders, shifters, …

■ Clock Management Blocks (MMCM) to derive 
clock signals with specific frequency and 
phase relations

■ IO Banks with logic for various signaling 
standards
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FPGA Characteristics
Hardware Structure

CLB in a Xilinx UltraScale FPGA
(from: Xilinx UG 474, Figure 5-1)



Floorplan of a Xilinx Kintex Ultra Scale XCKU060 FPGA
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Hardware Structure



Example: Accumulator (2 bit)
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FPGA Characteristics
Hardware Structure
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■ Fixed-function hardware is rated by maximum operating clock frequency

■ FPGAs have no uniform clock frequency rating:

□ FPGA fabric supports multiple clock signals in different regions

□ Specific configurations define combinatorial paths of varying lengths

➢ Maximum clock frequency is design specific and constrained by the longest 
combinatorial path delay

■ Specific primitives like BRAMs can have maximum clock frequency ratings

□ BRAMs on current Xilinx FPGAs run at up to 800MHz

■ Individual logic delays range from 0.1ns to 0.5ns

➢ Small and tightly coupled design sections may run at 1GHz

■ Common frequency for complete designs is 250MHz Lukas Wenzel
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FPGA Characteristics
Performance



Example: Accumulator (2 bit)

■ Combinatorial paths begin and 
end at flipflops

■ Clock period must be longer that 
the maximum path delay 

Maximum delay:

𝐦𝐚𝐱{𝒕𝜹} = 𝟕𝐧𝐬

Clock frequency:

𝒇 ≤
𝟏

𝐦𝐚𝐱 𝒕𝜹
= 𝟏𝟒𝟑𝐌𝐇𝐳
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Performance
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FPGA designs operate at up to an order of magnitude lower clock frequencies than 
ASIC accelerators!

How do FPGAs achieve speedups over fixed function hardware?

➢ Avoid overheads of general-purpose hardware:

□ CPUs invest a large amount of logic and cycles into fetching and decoding
general-purpose instructions

□ CPUs must accommodate a wide variety of applications by providing a 
compromise set of execution facilities (i.e. function units, forwarding 
paths, …)
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Any program can be transformed into an equivalent hardware design:

■ Variables and operations are realized in the datapath

■ Control flow is realized through a finite state machine (FSM) controlling the 
datapath
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FPGA Design
Basic Patterns

int proc(int a, int b, int f)
{

int f_inv = 1 - f;
a *= f;
b *= f_inv;
return a + b;

}

+

×

−

rA

rB

rF

rI
1

a

b

f

ret

S0 S1𝐫𝐀 ← 𝐚
𝐫𝐁 ← 𝐛
𝐫𝐅 ← 𝐟

S2𝐫𝐀 ← 𝐫𝐀× 𝐫𝐅
𝐫𝐈 ← 𝟏 − 𝐫𝐅

𝐫𝐁 ← 𝐫𝐁 × 𝐫𝐈
𝐫𝐞𝐭 ← 𝐫𝐀+ 𝐫𝐁S3

Control Signals Status Signals



Strictly reproducing the original control flow always yields a correct hardware 
implementation for a program.

! Resulting design is rarely efficient, as original control flow is ignorant of 
datapath utilization and does not capture data dependencies

➢ Efficient designs leverage pipelining and replication of operations to maximize 
computational throughput 

Lukas Wenzel

ParProg 2020 C3 
FPGA Accelerators

Chart 13

FPGA Design
Basic Patterns

S0 S1𝐫𝐀 ← 𝐚
𝐫𝐁 ← 𝐛
𝐫𝐅 ← 𝐟

S2𝐫𝐀 ← 𝐫𝐀× 𝐫𝐅
𝐫𝐈 ← 𝟏 − 𝐫𝐅

𝐫𝐁 ← 𝐫𝐁 × 𝐫𝐈
𝐫𝐞𝐭 ← 𝐫𝐀+ 𝐫𝐁S3=

int proc(int a, int b, int f)
{

int f_inv = 1 - f;
a *= f;
b *= f_inv;
return a + b;

}



■ Dataflow is a computational model based on streams of data units, that are 
processed by traversing a network of operators

➢ Enables a flexible kind of task parallelism, where operations are not 
orchestrated by control flow but availability of data operands
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FPGA Design
Dataflow Model

Input A

Input F

Input B

+ Output R

×

−
×1

Data Flow

int proc(int a, int b, int f)
{

int f_inv = 1 - f;
a *= f;
b *= f_inv;
return a + b;

}

Control Flow

➢ Workloads with an efficient dataflow representation usually yield an 
efficient hardware implementation!



HDLs share syntactic features with programming languages:

■ VHDL is related to Ada, Verilog to C

HDLs have fundamentally different semantics to programming languages:

■ Statements are not executed in sequential order,
but applied concurrently, whenever their input values change

■ Function calls have no meaning,
closest equivalent are module instantiations,
that like inline functions copy the module to the place of instantiation

Lukas Wenzel

ParProg 2020 C3 
FPGA Accelerators

Chart 15

FPGA Development
Hardware Description Languages



Each (synthesizable) HDL construct translates to specific hardware structures:

□ Conditional Statements → Multiplexer

□ Signals that change value only on clock events → Flipflops

□ Arithmetic operations → Adder circuits, DSP Blocks

□ Reading and writing large arrays → Distributed RAM, BRAM
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FPGA Development
Hardware Description Languages

process (s_sel)
begin

if s_sel = '0' then
s_out <= s_inA;

else
s_out <= s_inB;

end if;
end process;

s_sel

s_inA

s_inB

s_out=

➢ Designers need to know relations between HDL and hardware constructs 
to produce correct and efficient designs
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FPGA Development
Hardware Description Languages

process (s_clk)
begin

if s_clk'event and s_clk = '1' then
if s_rst = '1' then

s_out <= '0';
else

s_out <= s_inD;
end if;

end if;
end process;

s_clk
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s_inD s_out

R

=
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to produce correct and efficient designs
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➢ Designers need to know relations between HDL and hardware constructs 
to produce correct and efficient designs

process (s_inA, s_inB)
begin

s_sum <= s_inA + s_inB;
end process;

=
s_inA

s_sum+
s_inB



Each (synthesizable) HDL construct translates to specific hardware structures:

□ Conditional Statements → Multiplexer
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□ Arithmetic operations → Adder circuits, DSP Blocks

□ Reading and writing large arrays → Distributed RAM, BRAM
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➢ Designers need to know relations between HDL and hardware constructs 
to produce correct and efficient designs

process (s_clk)
begin

if s_clk'event and s_clk = '1' then
if s_wr = '1' then

s_buf(to_integer(s_adr)) <= s_di;
end if;
s_do <= s_buf(to_integer(s_adr));

end if;
end process;

=
s_clk

s_adr

s_di s_dos_buf

s_wr



Hardware development toolchains and workflows are significantly different 
from software development.

Final artifacts are not executable binaries but hardware configurations.
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Workflow



HDLs operate at a very low level of abstraction:

■ HDL development requires rare skillset in developers
as well as much time and effort

➢ Increase productivity by raising level of abstraction of design method
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FPGA Development
High-Level Design Methods

+ No transition from software mindset
+ Well suited for algorithmic specification

− No fine-grained control over hardware
− Not suited for structural specification

+ Intuitive graphical method
+ Well suited for structural specification

− Relies on already defined modules
− Not suited for algorithmic specification

Block Designs (BD):

■ Instantiate and connect existing hardware modules in a block diagram editor

High-Level Synthesis (HLS):

■ Automatically translate programs (usually restricted subset of C/C++) into
equivalent hardware descriptions
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FPGA Development
Workflow

High-level design methods extend the frontend of traditional workflows.

They usually produce HDL descriptions as intermediate artifacts.



And now for a break and
a bowl of Bancha.

*or beverage of your choice 



FPGA accelerator cards provide a host system interface as well as local memory 
and IO resources.

■ DRAM modules to complement the limited BRAM capacity on the FPGA

■ Flash Storage

■ Network Interfaces

■ Video and Peripheral Ports

■ Auxilliary Accelerators like Crypto Units or A/V Codecs

…
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FPGA Accelerators



Device Attached Accelerators:

■ Accelerator acts as a device in host system

■ Accelerator can only access local resources

➢ Host must copy data via DMA
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Processor

Memory

FPGA

Memory

Application

Input

Coherently Attached Accelerators:

■ Accelerator connected to the coherent memory interconnect on the host system

□ CAPI (OpenPOWER), CCIX (ARM), Gen-Z, CXL (Intel)

■ Accelerator can autonomously access host memory

➢ Enables more fine-grained interaction patterns
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Host

CAPI Interaction Scheme:

■ Accelerator is attached to a host process

■ Accelerator can access virtual memory space of host process

■ Host process can access control registers exposed by the accelerator

SNAP Framework:

■ Wraps low-level CAPI interface and local resources into a homogeneous environment
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User Design Environment:

Consists of multiple random-access interfaces,
each to a separate address space.

■ Host Memory Interface, controlled by user design (master)

■ Local Memory Interface, controlled by user design (master)

■ Control Register Interface, controlled by host (slave)

□ Host writes configuration

□ Host reads status

□ Host can initiate user design activity
by setting bits in specific control registers

■ Optionally, SNAP can implement an NVMe controller to 
access non-volatile local storage

■ Further card peripherals can be accessed via custom 
controllers Lukas Wenzel
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■ The Advanced Microcontroller Bus Architecture (AMBA) was originally defined for 
ARM SoC designs → now widely adopted in FPGA designs

■ Channels are a basic construct, used throughout the protocol family

□ Payload signals are transferred from a source to a destination

□ Valid handshake signal indicates that source presents new payload data

□ Ready handshake signal indicates that destination accepts transfer
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■ The Advanced Extensible Interface Stream (AXI Stream) protocol uses a 
single AMBA channel to transmit sequential data streams from a master to a slave

■ The Advanced Extensible Interface (AXI) protocol requires five AMBA channels 
to give a master random access to a slave address space
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Excursion
AMBA Protocol Family

Master SlaveT Channel

Write

Master Slave

AR Channel

AW Channel

W Channel

R Channel

B Channel

Read



■ AXI supports burst transactions:
single read or write request initiates multiple contiguous data transfers
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Excursion
AMBA Protocol Family

■ AXI Lite is a simplified variant of the AXI protocol:

□ Same 5-channel structure

□ No burst capability 

➢ Suitable for peripheral register interfaces

Master Slave

AR

AW

W

R

B

Read 4
at 0x3F00

Data
0xd0

Data
0xd0

Data
0xd1

Data
0xd2

Data
0xd3

Write 2
at 0xC080

Data
0xd1

Done



Example: Add a configurable offset to a stream of unsigned 32bit integers

■ Data stream is read from and written to buffers in host memory

□ hmem interface is used, lmem remains inactive
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Accelerator Design Example
A Data Stream Adder

0x40..44 Read Address

0x48 Read Size (x64Byte)

0x50..54 Write Address

0x58 Write Size (x64Byte)

0x60 Offset Value

SNAP Core

User Design

lmem

hmem

ctrl

AxiWriter

StreamAdder

Registers

0x40..480x60 0x50..58

■ Conversion between AXI and AXI 
Stream through AxiReader and 
AxiWriter modules

□ AxiSplitter separates read and 

write channels for both modules

■ Actual implementation resides in 
StreamAdder module

■ Control interface to host is realized in 
Registers module

□ Configures offset value and stream 
buffer addresses

AxiSplitter

AxiReader



entity StreamAdder is
port (

pi_clk : in std_logic;
pi_rst_n : in std_logic;

pi_offset : in unsigned (31 downto 0);

pi_inData : in unsigned (511 downto 0);
pi_inValid : in std_logic;
po_inReady : out std_logic;

po_outData : out unsigned (511 downto 0);
po_outValid : out std_logic;
pi_outReady : in std_logic);

end StreamAdder;
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A Data Stream Adder
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architecture StreamAdder of StreamAdder is
signal s_data : unsigned (511 downto 0);
signal s_result : unsigned (511 downto 0);
signal s_valid : std_logic;
signal s_ready : std_logic;

begin
i_inputStage : entity work.PipelineStage

port map (pi_clk => pi_clk, pi_rst_n => pi_rst_n,
pi_inData => pi_inData,  pi_inValid => pi_inValid,  po_inReady => po_inReady,
po_outData => s_data,     po_outValid => s_valid,     pi_outReady => s_ready);

process(s_data)
begin

for v_idx in 0 to 15 loop
s_result(v_idx*32+31 downto v_idx*32) <= s_data(v_idx*32+31 downto v_idx*32) + pi_offset;

end loop;
end process;

i_outputStage : entity work.PipelineStage
port map (pi_clk => pi_clk, pi_rst_n => pi_rst_n,

pi_inData => s_result,   pi_inValid => s_valid,     po_inReady => s_ready,
po_outData => po_outData, po_outValid => po_outValid, pi_outReady => pi_outReady);

end StreamAdder;
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architecture StreamAdder of StreamAdder is
signal s_data : unsigned (511 downto 0);
signal s_result : unsigned (511 downto 0);
signal s_valid : std_logic;
signal s_ready : std_logic;

begin
i_inputStage : entity work.PipelineStage

port map (pi_clk => pi_clk, pi_rst_n => pi_rst_n,
pi_inData => pi_inData,  pi_inValid => pi_inValid,  po_inReady => po_inReady,
po_outData => s_data,     po_outValid => s_valid,     pi_outReady => s_ready);

process(s_data)
begin

for v_idx in 0 to 15 loop
s_result(v_idx*32+31 downto v_idx*32) <= s_data(v_idx*32+31 downto v_idx*32) + pi_offset;

end loop;
end process;

i_outputStage : entity work.PipelineStage
port map (pi_clk => pi_clk, pi_rst_n => pi_rst_n,

pi_inData => s_result,   pi_inValid => s_valid,     po_inReady => s_ready,
po_outData => po_outData, po_outValid => po_outValid, pi_outReady => pi_outReady);

end StreamAdder;
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HLS Implementation
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void StreamAdder(stream &in, stream &out, uint32_t offset) {
#pragma HLS INTERFACE axis      port=in     name=axis_input
#pragma HLS INTERFACE axis      port=out    name=axis_output
#pragma HLS INTERFACE s_axilite port=offset bundle=control offset=0x60
#pragma HLS INTERFACE s_axilite port=return bundle=control

stream_element element;
do {

element = in.read();

for (int i = 0; i < 16; ++i) {
auto current = element.data(i * 32 + 31, i * 32);
element.data(i * 32 + 31, i * 32) = current + offset;

}

out.write(element);
} while (!element.last);

}
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HLS Implementation
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void StreamAdder(stream &in, stream &out, uint32_t offset) {
#pragma HLS INTERFACE axis      port=in     name=axis_input
#pragma HLS INTERFACE axis      port=out    name=axis_output
#pragma HLS INTERFACE s_axilite port=offset bundle=control offset=0x60
#pragma HLS INTERFACE s_axilite port=return bundle=control

stream_element element;
do {

element = in.read();

for (int i = 0; i < 16; ++i) {
auto current = element.data(i * 32 + 31, i * 32);
element.data(i * 32 + 31, i * 32) = current + offset;

}

out.write(element);
} while (!element.last);

}
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■ AXI Streams are convenient and efficient to decompose a design

■ Top-level descriptions of stream-based designs share a similar structure

■ Host software interacts with the accelerator through low-level registers
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Metal FS is an FPGA accelerator framework developed at the OSM group.

Concepts:

■ Operators consume, produce or transform a data stream

■ Crossbar Switch defines operator execution order at runtime

■ AXI Streams are convenient and efficient to decompose a design

➢ Metal FS is built around data streams

■ Top-level descriptions of stream-based designs share a similar structure

➢ Metal FS is an FPGA overlay, providing common facilities by default

■ Host software interacts with the accelerator through low-level registers

➢ Metal FS maps the FPGA accelerator to a userspace filesystem
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Metal FS

$ cat ~/test.bin | /fpga/op/stream_add --offset=108 > ~/out1.bin



And now for a break and
another bowl of Bancha.

*or beverage of your choice 


