
Parallel Programming and Heterogeneous Computing
SIMD: Integrated Accelerators

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel, and Andreas Polze
Operating Systems and Middleware Group

1SIMD
& AltiVec

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 2

D

D

D

D

D

D

D DDDD

I

I

I

I

D DDDD

D DDDD

DDDDD

DDDDD

DDDDD

Definition SIMD

SIMD ::=

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 3

Single Instruction Multiple Data
The same instruction is performed simultaneously on
multiple data points (fit for data-level parallelism).

First proposed for ILLIAC IV, University of Illinois (1966).
Today many architectures provide SIMD instruction set extensions.

Intel: MMX, SSE, AVX
ARM: VPF, NEON, SVE
POWER: AltiVec (VMX), VSX

Scalar vs. SIMD

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

A0

A1

A2

A3

+

B0

B1

B2

B3

=

C0

C1

C2

C3

4 additions

8 loads

4 stores

1 addition

2 loads

1 store

How many instructions are needed to add four numbers from memory?

scalar 4 element SIMD

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 4

Vector Registers on POWER8 (1)

32 vector registers containing 128 bits each.

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 5

3. Vector Processing—AltiVec and VSX

Al
tiV

ec
/V

M
X VS

X

vr0 vsr32
vr1 vsr33
… …
vr31 vsr63

Double Word 0 Double Word 1

Word 0 Word 3 …
Half
Word 0

Half
Word 7

…

Byte 0 Byte 15 …

Quad Word 0

fpr1 vsr1
fpr0 vsr0

fpr31 vsr31
… …

Figure 3.1.: POWER8’s unified SIMD register file. It consists of 32 VMX registers and additional 32 VSX
registers, that extend general purpose floating point registers. They consist of 128-bit each and can be
interpreted as 8, 16, or 32-bit (un)signed integers, floating points, ARGB-pixel, or logical values. VSX
allows for 64-bit values. Furthermore, Power ISA 2.07 B introduced 128-bit integers in VMX.

interpreted as logical values or 16-bit ARGB pixels. A distinction is made by choosing an
instruction fitting the desired word size, where applicable.

IBM introduced with its vector-scalar floating-point extension (VSX) additional 152 instructions,
as of Power ISA 2.07 B [110, page 326]. VSX instructions can additionally interpret the same
vector registers as 64-bit values—either integer or double-precision floating point. Furthermore,
VSX rearranges the register file by extending and repurposing scalar, double-precision floating
point registers to an additional number of thirty-two 128-bit registers. The original VMX
registers are mapped behind them in terms of addressing—creating a total of 64 vector registers
available.

It is crucial to understand, that these two instruction sets have distinct instruction formats [110,
sec. 1. 6]—allowing for either only the VMX or all of the 64 VSX registers to be addressed (see
table 3.1). However, several acceleration instructions introduced can be found to comply with
the VX-instruction format (see chapter 6 for details). As a result, these instruction are limited
to the smaller VMX register file, requiring additional moves of operands and results from a
VSX-space to VMX and potentially back. Although this movement may be either solved in
microcode (see section 3.1.1) or preferably left to the compiler, it should be always considered
as lingering cost when performing microoptimizations and employing intrinsics.

12All VSX instructions construct the register index referred to by combining a 5-bit value (R-value) with another bit
(X-bit) that indicates whether the extended general purpose registers or the regular AltiVec registers should be
used.

16

These are also used by
several coprocessors:

VSX SHA2 AES …

Vector Registers on POWER8 (2)

32 vector registers containing 128 bits each.
Depending on the instruction they are interpreted as

16 (un)signed bytes
8 (un)signed shorts
4 (un)signed integers of 32bit
4 single precision floats
2 (un)signed long integers of 64bit
2 double precision floats

or 2, 4, 8, 16 logic values
Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 6

AltiVec Instruction Reference

For all instructions, registers
and usage see

PowerISA 2.07(B), chapter 6 & 7

Chapter 6. Vector Facility [Category: Vector]

Version 2.07 B

229

6.7.2 Vector Load Instructions
The aligned byte, halfword, word, or quadword in
storage addressed by EA is loaded into register VRT.

Load Vector Element Byte Indexed X-form
lvebx VRT,RA,RB

if RA = 0 then b I 0
else b I (RA)
EA I b + (RB)
eb I EA60:63

VRT I undefined
if Big-Endian byte ordering then
 VRT8×eb:8×eb+7 I MEM(EA,1)
else
 VRT120-(8×eb):127-(8×eb) I MEM(EA,1)

Let the effective address (EA) be the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte eb of register VRT. The
remaining bytes in register VRT are set to undefined
values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte 15-eb of register VRT. The
remaining bytes in register VRT are set to undefined
values.

Special Registers Altered:
None

Load Vector Element Halfword Indexed
X-form
lvehx VRT,RA,RB

if RA = 0 then b I 0
else b I (RA)
EA I (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFE
eb I EA60:63

VRT I undefined
if Big-Endian byte ordering then
 VRT8×eb:8×eb+15 I MEM(EA,2)
else
 VRT112-(8×eb):127-(8×eb) I MEM(EA,2)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFE with the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

– the contents of the byte in storage at address EA
are placed into byte eb of register VRT,

– the contents of the byte in storage at address
EA+1 are placed into byte eb+1 of register VRT,
and

– the remaining bytes in register VRT are set to
undefined values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access,

– the contents of the byte in storage at address EA
are placed into byte 15-eb of register VRT,

– the contents of the byte in storage at address
EA+1 are placed into byte 14-eb of register VRT,
and

– the remaining bytes in register VRT are set to
undefined values.

Special Registers Altered:
None

The Load Vector Element instructions load the
specified element into the same location in the
target register as the location into which it would
be loaded using the Load Vector instruction.

Programming Note

31 VRT RA RB 7 /
0 6 11 16 21 31 31 VRT RA RB 39 /

0 6 11 16 21 31

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 7

2C-Interface

#include <altivec.h>

gcc -maltivec -mabi=altivec
gcc -mvsx

xlc –qaltivec –qarch=auto

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 8

Vector Data Types

The C-Interface introduces new keywords and data types:

vector unsigned char vector unsigned long
vector signed char vector signed long
vector bool char vector double

vector unsigned short
vector signed short
vector bool short
vector pixel

vector unsigned int
vector signed int
vector bool int
vector float

gcc -maltivec gcc -mvsx

16x 1 byte

8x 2 bytes

4x 4 bytes

2 x 8 bytes

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 9

vector int va = {1, 2, 3, 4};

int data[] = {1, 2, 3, 4, 5, 6, 7, 8};
vector int vb = *((vector int *)data);

int output[4];
*((vector int *)output) = va;

printf("vb = {%d, %d, %d, %d};\n",
vb[0], vb[1], vb[2], vb[3]);

Vector Data Types Initialization, Loading and Storing

Can be very slow!

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 10

Aligned Addresses

Historically memory addresses required be aligned at 16 byte boundaries
for efficiency reasons. (Although POWER8 has improved unaligned
load/store and modern compilers will support you.)

int data[] __attribute__((aligned(16))) = {1, 2, 3, 4,
5, 6, 7, 8};
int *output = aligned_alloc(16, NUM * sizeof(int));

vector int va = vec_ld(0, data);
vec_st(va, 0, output);

(compiler specific)

addressindex + (truncated to 16)

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 11

Operations are available through a rich set1 of “overloaded functions”
(actually intrinsics):

vector int va = {4, 3, 2, 1};
vector int vb = {1, 2, 3, 4};
vector int vc = vec_add(va, vb);

vector float vfa = {4, 3, 2, 1};
vector float vfb = {1, 2, 3, 4};
vector float vfc = vec_add(vfa, vfb);

Vector Intrinsics

A0

A1

A2

A3

+

B0

B1

B2

B3

=

C0

C1

C2

C3

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 12

1https://gcc.gnu.org/onlinedocs/gcc-8.4.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html

vector signed char vec_add (vector bool char, vector signed char);
vector signed char vec_add (vector signed char, vector bool char);
vector signed char vec_add (vector signed char, vector signed char);
vector unsigned char vec_add (vector bool char, vector unsigned char);
vector unsigned char vec_add (vector unsigned char, vector bool char);
vector unsigned char vec_add (vector unsigned char, vector unsigned char);
vector signed short vec_add (vector bool short, vector signed short);
vector signed short vec_add (vector signed short, vector bool short);
vector signed short vec_add (vector signed short, vector signed short);
vector unsigned short vec_add (vector bool short, vector unsigned short);
vector unsigned short vec_add (vector unsigned short, vector bool short);
vector unsigned short vec_add (vector unsigned short, vector unsigned short);
vector signed int vec_add (vector bool int, vector signed int);
vector signed int vec_add (vector signed int, vector bool int);
vector signed int vec_add (vector signed int, vector signed int);
vector unsigned int vec_add (vector bool int, vector unsigned int);
vector unsigned int vec_add (vector unsigned int, vector bool int);
vector unsigned int vec_add (vector unsigned int, vector unsigned int);
vector float vec_add (vector float, vector float);
vector double vec_add (vector double, vector double);
vector long long vec_add (vector long long, vector long long);
vector unsigned long long vec_add (vector unsigned long long, vector unsigned long long);

Vector Intrinsics: Lots of overloads

()Attention: No implicit conversion!
Also not all types for every operation.

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 13

1https://gcc.gnu.org/onlinedocs/gcc-8.4.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html

Get Help: Programming Interface Manual

AltiVec Technology Programming Interface Manual

Generic and Specific AltiVec Operations

vec_add vec_add
Vector Add

d = vec_add(a,b)
• Integer add:

n ¨ number of elements
do i=0 to n-1
di ¨ ai + bi
end

• Floating-point add:

do i=0 to 3
di ¨ ai +fp bi
end

Each element of a is added to the corresponding element of b. Each sum is placed in the
corresponding element of d.

For vector float argument types, if VSCR[NJ] = 1, every denormalized operand element
is truncated to a 0 of the same sign before the operation is carried out, and each
denormalized result element is truncated to a 0 of the same sign.

The valid combinations of argument types and the corresponding result types for
d = vec_add(a,b) are shown in Figure 4-12, Figure 4-13, Figure 4-14, and Figure 4-15.

Figure 4-12. Add Sixteen Integer Elements (8-bit)

+ +++++++++++++++

a

b

d

0ElementÆ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d a b maps to

vector unsigned char

vector unsigned char vector unsigned char

vaddubm d,a,b

vector unsigned char vector bool char

vector bool char vector unsigned char

vector signed char

vector signed char vector signed char

vector signed char vector bool char

vector bool char vector signed char

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Highly helpful resource:

□ Name of operation
□ Pseudocode description
□ Text description
□ Graphical description
□ Type table and according

assembly instruction

http://www.nxp.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 14

Get Help: IBM Knowledge Center

IBM has an online documentation
of the extended standard,

not fully implemented by GCC.

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 15

Some Example Instructions Working on Elements

vec_add(a, b) Add a and b element-wise
vec_sub(a, b) Subtract a and b element-wise
vec_mul(a, b) Multiply a and b element-wise (gcc: float only)
vec_madd(a, b, c) Multiply a and b element-wise and add elements of c
vec_min(a, b) Select element-wise the minimum of a and b
vec_re(a) Compute reciprocals of elements
vec_sqrt(a) Calculate square root of elements
vec_sr(a, b) Right-shift elements of vector a depending on

certain bits in b Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 16

<What is the idea behind this?>Idea behind this: Fixed-point numbers of n digits.
For just plain conversion use n = 0.

Conversion of Floating-Point Types

vec_ctf(a, n) Divides the elements of integer vector a

by 2n and converts them into floating-point values.
vec_ctu(a, n) Multiplies the elements of floating-point vector a

by 2n and converts them into unsigned integers.

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 17

Vector Data Realignment and Permutation (1)

Sometimes memory is not correctly ordered for a certain tasks.
Example: Squared absolute of 2D points (r2 = px

2 + py
2)

X0

X1

X2

X3

*

X0

X1

X2

X3

+

R0

R1

R2

R3

Y0

Y1

Y2

Y3

*

Y0

Y1

Y2

Y3

=

Y0 Y1 Y2 Y3X0 X1 X2 X3in registers:

X0 Y0 X1 Y1 X2 Y2 X3 Y3in memory: struct point2d[];
Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 18

Vector Data Realignment and Permutation (2)

res = vec_perm(a, b, pattern)

Bytewise rearrange two vectors according to provided pattern.
pattern denotes indices in assumed 32 byte array of concatenated a and b.

A0 A1 A2 A3 A14 A15

0 15 16

B0 B1 B12 B13 B14 B15

31

16 0 28 2 17 1 29 15 31 2 14 30pattern:

B0 A0 B12 A2 B1 A1 B13 A15 B15 A2 A14 B14res:
Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 19

Vector Bit Selection (1)

Sometimes two vectors should be combined, but their bytes not moved.
Example: Every even element of a vector should be rounded up, and
every odd one rounded down.

ceil(X0)

floor(X1)

ceil(X2)

floor(X3)

ceil floor

X0

X1

X2

X3

?

vector float a = vec_ceil(X);
vector float b = vec_floor(X);
vector unsigned int pattern = {0, 0xffffffff, 0, 0xffffffff};
vector float res = vec_sel(a, b, pattern);

X0

X1

X2

X3

000…000

111…111

000…000

111…111

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 20

Vector Bit Selection (2)

res = vec_sel(a, b, pattern)

Bit-wise pick contents from a or b, depending if corresponding bit
in pattern is 0 or 1.

A

B

…

…

…

…

00000000111111110010101100001111

a =

b =

pattern =

res =

res[bit i] = a[bit i] if pattern[bit i] == 0 else b[bit i]

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 21

Conditional Programming (1)

There are no branches for element computation in AltiVec.

calculation 1

calculation 2

vec_sel

compute cond

calculation 1 calculation 2

cond?
true false

compute cond

Instead compute both variants and then use bit-wise select.

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 22

Conditional Programming (2)

Remember the vector types?

vector unsigned char
vector signed char
vector bool char

vector unsigned short
vector signed short
vector bool short
vector pixel

vector unsigned int
vector signed int
vector bool int
vector float

16x false (= 0x0) or true (0xff)

8x false (= 0x0) or true (0xffff)

4x false (= 0x0) or true (0xffffffff)
Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 23

Conditional Programming (3)

vector bool int res = vec_cmpgt(a, b);

0

0

0

0

2

-3

4

-2

>

true

false

true

false

=

11111…11111

00000…00000

11111…11111

00000…00000

vec_cmpgt >
vec_cmpge >=(for gcc on floats only)
vec_cmpeq ==
vec_cmple <=(for gcc on floats only)
vec_cmplt <

vec_and (a & b)
vec_or (a | b)
vec_nand ~(a & b)
vec_orc (a | ~b)
...

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 24

Conditional Programming (4)

vector signed int calc_abs(vector signed int a)
{

vector signed int vzero = {0, 0, 0, 0};
vector signed int neg_a = vec_sub(vzero, a);
vector bool int vpat = vec_cmpgt(vzero, a);

return vec_sel(a, neg_a, vpat);
}

Y U NO vec_abs(a)
Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 25

0 < a: false 0 < a: true

3Learning by example Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 26

void scale(float *input, int num,
float scale)

{
int i;
for (i = 0; i < num; i++) {

input[i] *= scale;
}

}

Scale an Array by Factor (Vector)

void scale(float *input, int num, float scale)
{

int i;
vector float vscale = {scale, scale, scale, scale};
for (i = 0; i < num; i += 4) {

vector float *current = ((vector float *)&input[i]);
*current = vec_mul(vscale, *current);

}
}

<Do you see a problem?> Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 27

Scale an Array by Factor (Vector, Safe)

void scale(float *input, int num, float scale)
{

int i;
vector float vscale = {scale, scale, scale, scale};
for (i = 0; i < num - 4; i += 4) {

vector float *current = ((vector float *)&input[i]);
*current = vec_mul(vscale, *current);

}
for (; i < num; i++) {

input[i] = scale * input[i];
}

}
Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 28

Scale an Array by Factor (Vector, Safe, Alternative)

void scale(float *input, int num, float scale)
{

int i;
vector float vscale = {scale, scale, scale, scale};
vector float *vinput = (vector float *)input;
for (i = 0; i < num / 4; i++) {

vinput[i] = vec_mul(vscale, vinput[i]);
}
for (i = (num / 4) * 4; i < num; i++) {

input[i] = scale * input[i];
}

}
Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 29

Squared Absolute of Points (1)

struct point2d {
float x, y;

};

void squared_2d_abs(struct point2d *input,
float *output, int num);

32 byte (256 bit)

Y0 Y1 Y2 Y3X0 X1 X2 X3in registers:

X0 Y0 X1 Y1 X2 Y2 X3 Y3in memory: …

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 30

X0 Y0 X1 Y1 X2 Y2

Squared Absolute of Points (2)
– Permute Bytes to Get X

va

0 4 8 12 16 20

X0-0 X0-1 X0-2 X0-3 Y0-0 Y0-1 Y0-2 Y0-3 Y1-0 Y1-1 Y1-2 Y1-3 Y2-0 Y2-1 Y2-2 Y2-3

vb

0 1 2 3

X0-0 X0-1 X0-2 X0-3

X1-0 X1-1 X1-2 X1-3

8 9 10 11

X1-0 X1-1 X1-2 X1-3

X2-0 X2-1 X2-2 X2-3

16 17 18 19

X2-0 X2-1 X2-2 X2-3

24 25 26 27

X3-0 X3-1 X3-2 X3-3

vx = vec_perm(va, vb, patx);

patx

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 31

X0 Y0 X1 Y1 X2 Y2

Squared Absolute of Points (2)
– Permute Bytes to Get Y

va

0 4 8 12 16 20

X0-0 X0-1 X0-2 X0-3 Y0-0 Y0-1 Y0-2 Y0-3 Y1-0 Y1-1 Y1-2 Y1-3 Y2-0 Y2-1 Y2-2 Y2-3

vy = vec_perm(va, vb, paty);

vb

4 5 6 7

Y0-0 Y0-1 Y0-2 Y0-3

X1-0 X1-1 X1-2 X1-3

12 13 14 15

Y1-0 Y1-1 Y1-2 Y1-3

X2-0 X2-1 X2-2 X2-3

20 21 22 23

Y2-0 Y2-1 Y2-2 Y2-3

28 29 30 31

Y3-0 Y3-1 Y3-2 Y3-3

paty

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 32

Squared Absolute of Points (4) – Patterns in C

vector unsigned char patx = {0x00, 0x01, 0x02, 0x03,
0x08, 0x09, 0x0a, 0x0b,
0x10, 0x11, 0x12, 0x13,
0x18, 0x19, 0x1a, 0x1b};

vector unsigned char paty = {0x04, 0x05, 0x06, 0x07,
0x0c, 0x0d, 0x0e, 0x0f,
0x14, 0x15, 0x16, 0x17,
0x1c, 0x1d, 0x1e, 0x1f};

<Any endianness issues here?>
Rule of thumb: No element size or storage for platform change

=> No endianness issues!

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 33

Squared Absolute of Points (5) – The Loop

int i;
vector float *vinput = (vector float *)input;
vector float *voutput = (vector float *)output;

for (i = 0; i < num / 4; i++) {
vector float va = vinput[2 * i];
vector float vb = vinput[2 * i + 1];

vector float vx = vec_perm(va, vb, patx);
vector float vy = vec_perm(va, vb, paty);
voutput[i] = vec_add(vec_mul(vx, vx), vec_mul(vy, vy));

}

for (i = 4 * (num / 4); i < num; i++) {
output[i] = input[i].x * input[i].x

+ input[i].y * input[i].y;
}

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 34

4Short overview of
SS[S]E[2,3,4]/AVX[-2,-512] Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 35

Overlapping register files for each ISA extension.
With AVX-512 extended to 32 registers.

New C data types:

__m128 4 floats
__m128d 2 doubles
__m128i multiple (un)signed integers (8-128bit)
__m256 8 floats
__m256d 4 doubles
__m256i multiple (un)signed integers (8-128bit)
__m512 …

Instructions typically use input registers as output:
mulps r0, r1 ::= r0 *= r1

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 36

Vector registers on Intel architectures

Dedicated intrinsic names for data types (mirrors instructions):

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 37

Intrinsic function name patterns (ICC/GCC/MSVC)

_mm[result_bit_width]_<name>_<data_type>
skipped for 128 bit (SSE)

ps vectors contain floats (packed single-precision)
pd vectors contain doubles (packed double-precision)
epi8/epi16/epi32/epi64

vectors contain 8-bit/16-bit/32-bit/64-bit signed integers
epu8/epu16/epu32/epu64

vectors contain 8-bit/16-bit/32-bit/64-bit unsigned integers
si128/si256

unspecified 128-bit vector or 256-bit vector [e.g. loads]
m128/m128i/m128d/m256/m256i/m256d

identifies input vector types, when different from
the type of the returned vector

#include <x86intrin.h> or #include <[version]mmintrin.h>

Memory loads require vector aligned addresses:

Values, again, can be cast too native pointers to be used for storing:

int *output = (int *)&vec;

__m256 *dst = (__m256 *)aligned_buffer;
dst[0] = vec;

_mm256_store[u]_ps(dst, vec);

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 38

Loading and Storing Memory

__m256 vec = _mm256_load_ps(data);
throws GP exception if unaligned

__m256 vec = _mm256_loadu_ps(data);
slower, but handles unaligned data

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 39

Scalar operations in vector registers

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 40

Intel Intrinsics Guide

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

5Autovectorization Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 41

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 42

Enable Autovectorization and Logging (GCC)

-ftree-vectorize -m<arch> enable automatic code vectorization (part of –O3)

-fopt-info-vec[-optimized] log loops optimized.
-fopt-info-vec-missed log loops failed to optimized detailed information.
-fopt-info-vec-note verbose info on loops and optimizations done
-fopt-info-vec-all enable all above

example4.c:14:10: optimized: loop vectorized using 16 byte vectors
example4.c:9:6: note: vectorized 1 loops in function.

autovector.cpp:22:22: missed: couldn't vectorize loop
autovector.cpp:25:14: missed: not vectorized: complicated access
pattern.

■ Countable loops
■ Static counts (length does not change)
■ Single entry and single exit (read: no data-depended break)
■ All function calls can be in-lined, or are math intrinsics (sin, floor, …)
■ Straight-line code (no switch-statements), mask-able if/continue

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 43

What loops can be vectorized

for (int i=0; i<length; i++) {
float s = b[i]*b[i] - 4*a[i]*c[i];
if (s >= 0) {

s = sqrt(s) ;
x2[i] = (-b[i]+s)/(2.*a[i]);
x1[i] = (-b[i]-s)/(2.*a[i]);

} else {
x2[i] = 0.;
x1[i] = 0.;

}
}

■ Non-contiguous Memory Accesses (often in nested loops)
□ for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];
□ for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[index[i]];

■ Data dependencies within vector length
□ x[i] = x[i-1]*2; (read-after-write)
□ x[i-1] = x[i] *2; (write-after-read)
□ Except: sum = sum + x[j] * y[j] (reduction)

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 44

What cannot be vectorized

https://software.intel.com/sites/default/files/m/4/8/8/2/a/31848-CompilerAutovectorizationGuide.pdf
https://software.intel.com/en-us/articles/common-vectorization-tips

https://software.intel.com/sites/default/files/m/4/8/8/2/a/31848-CompilerAutovectorizationGuide.pdf
https://software.intel.com/en-us/articles/common-vectorization-tips

Sven Köhler

ParProg20 C1
Integrated
Accelerators

Chart 45

Helping your compiler to vectorize

void mul(float * c, float * a, float * b, size_t size)
for (int i = 0; i < size; i++) {

c[i] = a[i] * b[i];
}

}

<Do you see a problem?>
What happens if a, b, or c overlap?
What if any of them is not aligned?

__restrict____attribute__ ((__aligned__(16)))

...

And now for a break and
a cup of Ceylon with milk*.

*or beverage of your choice

