
Parallel Programming and Heterogeneous Computing
Shared-Memory: Profiling

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel, and Andreas Polze
Operating Systems and Middleware Group

Profiling

Sven Köhler

ParProg20 B5
Profiling

Chart 2

■ Many available profiling tools for shared-memory parallelism
■ Sampling profiler

□ Sporadic recording of application state
□ Time-driven: Uniform time period between samples
□ Event-driven: Uniform event number between samples
□ Original code remains unchanged
□ Small impact on execution behavior, can uncover race conditions
□ Low overhead (hardware-based ~ 2%, software-based ~ 5%)

■ Instrumenting profiler (tracing)
□ Modification of original application with measurement code
□ Allows gathering of all possible events
□ Higher accuracy than sampling, but also higher overhead

■ Data gathering is one part, visualization a different one

Profiling Taxonomy

ParProg20 B5
Profiling
Sven Köhler

Chart 3

profiling

samplingtracing

source
instrumentation

binary
instrumentation

rtdsc
std::chrono::
libpapi
perf_events_open

valgrind
perf record

execution

vtune
gprof
perf stat

perf annotate
perf record

instruction
based

1
Hardware Performance Counters

ParProg20 B5
Profiling
Sven Köhler

Chart 4

Hardware Performance Counters, part of

Performance Measurement Units
Performance Monitoring Units
Performance Monitor Counters
Performance Counter Events
…

Intel

ARM

IBM

AMD

Hardware Performance Counters (Power8)

Sven Köhler

ParProg20 B5
Profiling

Chart 5

Figure 2 shows the instruction flow in POWER8 processor core.

Hardware Performance Counters (Power8)

Sven Köhler

ParProg20 B5
Profiling

Chart 6

PMC1
PMC2
PMC3
PMC4

Instructions
Cycles

32 63

~1000 events
programmable

event selection

■ Low-overhead measurements, non-overhead to program execution
■ Usually requires kernel privileges to be read
■ Libraries and tools abstracting different vendors: perf, hwlock, libpapi
■ Event cycling (round-robin) when measured more than present registers

2
Linux: perf

ParProg20 B5
Profiling
Sven Köhler

Chart 7
Alternative for instrumentation: see man 2 perf_event_open

Perf Event Counting (scalar vs vector example)

Sven Köhler

ParProg20 B5
Profiling

Chart 8

$ perf stat –r 10 -e cache-misses,instructions,branches ./sum_scalar
Performance counter stats for './sum_scalar' (10 runs):

127197342 cache-misses (+- 0.12%)
1630311051 instructions (+- 0.01%)
271443407 branches (+- 0.01%)

0.512781785 seconds time elapsed (+- 0.18%)

sample statistics repeat 10 times sampled commandevent selection

standard deviation

Perf Event Counting (scalar vs vector example)

Sven Köhler

ParProg20 B5
Profiling

Chart 9

$ perf stat –r 10 -e cache-misses,instructions,branches ./sum_vector4
Performance counter stats for './sum_vector4' (10 runs):

144145872 cache-misses (+- 0.03%)
422847600 instructions (+- 0.00%)
226690657 branches (+- 0.02%)

0.429783986 seconds time elapsed (+- 0.12%)

sample statistics repeat 10 times sampled commandevent selection

standard deviation

Determine available events

Sven Köhler

ParProg20 B5
Profiling

Chart 10

$ perf list
List of pre-defined events (to be used in -e):
branch-instructions OR branches [Hardware event]
branch-misses [Hardware event]
cache-misses [Hardware event]
cache-references [Hardware event]
cpu-cycles OR cycles [Hardware event]
instructions [Hardware event]
...

Raw Events

Sven Köhler

ParProg20 B5
Profiling

Chart 11

$ perf stat -e ra09c:ppp,ra09e:ppp ./sum_scalar
0 ra09c:ppp
0 ra09e:ppp

$ perf stat -e ra09c:ppp,ra09e:ppp ./sum_vector4
33719464 ra09c:ppp
33392615 ra09e:ppp

■ Many vendors provide special events, that not map to symbolic names

https://github.com/open-power/power-pmu-events/blob/master/events/power8.json
cross-platform: libpapi’s src/libpfm4/examples/showevtinfo

EventCode: 0xa09c
EventName: PM_VSU0_4FLOP
BriefDescription: SP vector versions of single flop instructions

There are two symmetric Vector-and-Scalar
Units (VSU) pipelines on POWER

skid (see next section)

3
Instruction Based Sampling

ParProg20 B5
Profiling
Sven Köhler

Chart 12

44 3. MEASURING HARDWARE COUNTERS ON MULTIPLE PLATFORMS

unit mask bit description

0 IC fill

1 DC fill

2 TLB fill (page table walks)

3 NB probe request

4 cancelled request

5 reserved

6 L2 cache prefetcher request

7 reserved

Table 3.2: Exemplary unit mask bits for the event PMC x07D (requests to L2 cache). A

customization of the counting mode can be achieved by setting the respective bits [1].

execution time

sampled events

selected events

sampling trigger register

0316

event counting register

xxxx

=

randomizereset

generate interrupt

Σ

Figure 3.1: IBS sampling. A counter is incremented for every selected event. If the

sampling counter is surpassed, an interrupt is generated and the lower 4 bits of the

sampling rate are altered randomly.

© Ch. Sterz

To overcome sampling errors
(tight loops, etc), as you cannot
increase the sampling rate without
causing much interrupt overhead

perf record -> perf.data -> perf annotate

Sven Köhler

ParProg20 B5
Profiling

Chart 13

Caution!
prone to skid and shadowing

Skid ::
Small delay of unknown duration, which is the time between issuing an
instruction and detecting the PMU event [1].
Causes the instruction pointer to spread around the
actual address of the event triggering instruction.
Use eventname:ppp in perf to reduce the sampling trigger.

Shadowing ::
Instructions causing long stalls (e.g. TLB misses or NUMA remote accesses)
get sampled disproportionally more often than shorter instructions and
appear to cause a higher number of events than actually happened [2].

Problems with ISB

Sven Köhler

ParProg20 B5
Profiling

Chart 14
[1] Paul Drongowski et al. “Incorporating instruction-based sampling into AMD CodeAnalyst”. In: Performance Analysis of Systems &
Software (ISPASS), 2010 IEEE International Symposium on. IEEE. 2010, pp. 119–120
[2] Dehao Chen et al. “Taming hardware event samples for FDO compilation”. In: Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization. ACM. 2010, pp. 42–52.

Event Flame Graph

Sven Köhler

ParProg20 B5
Profiling

Chart 15

mysql

Recommended: KDAB hotspot (operating on perf record data)
https://github.com/KDAB/hotspot

https://github.com/KDAB/hotspot

And now for a break and
a cup of cappuccino*.

*or beverage of your choice

