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■ Decrease Latency – process a single workload faster (= speedup)

■ Increase Throughput – process more workloads in the same time
Ø Both are Performance metrics

■ Scalability: make best use of additional resources

□ Scale Up: Utilize additional resources on a machine

□ Scale Out: Utilize resources on additional machines

■ Cost/Energy Efficiency: 
□ minimize cost/energy requirements for given performance objectives
□ alternatively: maximize performance for given cost/energy budget

■ Utilization: minimize idle time (=waste) of available resources

■ Precision-Tradeoffs: trade performance for precision of results
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■ Two basic approaches to scaling computing hardware:
□ Scale-Up: combine more resources (memory or cores) in a tightly 

coupled system
Ø User perceives a single large shared-memory system

Non-Uniform Memory Access
Context: Scalability
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■ Two basic approaches to scaling computing hardware:
□ Scale-Out: connect more machines in a loosely coupled network

Ø User perceives multiple communicating machines in a shared-
nothing system

Non-Uniform Memory Access
Context: Scalability
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■ Recent coherent interconnect technologies enable hybrid systems with 
both scale-up and scale-out characteristics:
□ Example: Gen-Z strives to connect an entire datacenter of machines 

coherently
Ø User perceives a shared-memory system, but with the performance 

characteristics (communication latency and bandwidth) of a shared-
nothing system

Non-Uniform Memory Access
Context: Scalability
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Non-Uniform Memory Access
Context: Uniform Memory Access Machines
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Non-Uniform Memory Access
Context: Uniform Memory Access Machines
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Non-Uniform Memory Access
Context: Uniform Memory Access Machines
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Non-Uniform Memory Access
Context: Uniform Memory Access Machines
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Non-Uniform Memory Access
Context: Uniform Memory Access Machines
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Non-Uniform Memory Access
Concept
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■ Part of the main memory is directly attached to a socket (local memory)

■ Memory attached to a different socket can be accessed indirectly via the other 
socket‘s memory controller and interconnect (remote memory)

■ Socket + local memory form a NUMA node
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Non-Uniform Memory Access
Characteristics
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■ Local memory access does not involve 
inter-socket links, but they are shared 
for remote requests

Ø Local performance can suffer from 
remote activity

■ Remote memory access involves one or 
more inter-socket links, as they need 
not form a complete graph

Ø Access to different remote memory 
regions is non-uniform as well
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■ Multiple point to point links between sockets scale better than a shared 
interconnect

■ Multiple memory controllers partition address space and provide a higher
total memory bandwidth
(though the bandwidth to a single local region remains the same)

■ Access to local memory behaves exactly like UMA system
■ Access to remote memory traverses more hops (local interconnect → inter-

socket link → remote interconnect → remote memory controller)
Ø Certainly higher access latency

Ø Probably lower bandwidth, as inter-socket link is likely not as wide as on 
chip connections

Ø Predominant architecture for current multi-socket machines
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Physical Perspective
1. Hardware Thread
2. Core
3. Chip, Die
4. Multichip Module
5. Socket, Package, Processor, CPU
6. Mainboard
7. Machine, System
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Non-Uniform Memory Access
Terminology

Logical Perspective
■ Core, CPU, Processing Unit, 

Processing Element

■ NUMA Node/Region
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Non-Uniform Memory Access
Example: SGI UV 300H

■ 240 Cores

■ 12 TB RAM
■ 16 Sockets

What is a Killer Application for such a 
machine?

Ø In-Memory Databases!
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Non-Uniform Memory Access
Example: SGI UV 300H
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Experiment: NUMA behavior when scaling a workload
■ Machine has 16 sockets x 15 cores x 2-way SMT (allocated in locality order)
Ø Performance degrades when using more than two sockets!
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Non-Uniform Memory Access
Characteristics

Chart 13
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■ Unsuitable access patterns can severely degrade 
performance:
□ Inter-socket link contention on excessive 

remote memory accesses
□ Local memory controller contention on 

excessive combined local and remote 
memory accesses

□ Local interconnect contention also on 
excessive multi-hop forward traffic
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Non-Uniform Memory Access
Data Access Patterns
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Non-Uniform Memory Access
Data Access Patterns
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Non-Uniform Memory Access
Data Access Patterns
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Non-Uniform Memory Access
Data Access Patterns
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Non-Uniform Memory Access
Data Access Patterns
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Non-Uniform Memory Access
Data Access Patterns
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Non-Uniform Memory Access
Local Bandwidth Characteristics
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Experiment on SGI UV 300H:
Threads on a single socket generate 
independent memory traffic

■ Significant flattening of the curve after 
6~8 active threads

Ø Local memory bandwidth exhausted, 
scaling beyond 8 threads has no 
benefits
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Non-Uniform Memory Access 
System Bandwidth Characteristics

Chart 20

Experiments on SGI UV 300 H:

memory on single node accessed by
threads on local node

51.1 GB/s

memory on single node accessed by
threads on local and one remote node

56.5 GB/s

memory on all 16 nodes accessed by
threads on local nodes

816.0 GB/s

memory on all 16 nodes accessed by
threads on local and remote nodes (random pattern)

185.0 GB/s

110.6%

1597.5% ~ ×16

22.7%

Ø Huge performance potential,
provided thread and memory placement
is chosen adequately



Avoid data movement
■ Remote memory accesses across long distances take time → high latency →

wasted cycles
■ High volume will cause contention → high latency for accessing threads →

wasted cycles

Avoid contention
■ Balance utilization of resources (memory controllers, interconnect, ...)
Analzye data access patterns
■ Decompose loosely coupled tasks → increase flexibility of placement
■ Agglomerate tightly coupled tasks → reduce communication overhead

■ Identify shared and private data chunks and place accordingly

■ Identify read-only, read-write, write-only access patterns
■ Consider benefits of dynamic adaption during runtime

Ø Maximize data locality

Felix Eberhardt
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Non-Uniform Memory Access 
Placement Decisions
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Tradeoff:
computational load balancing ◊ data locality

■ Possible on different granularities (Process ● Thread ● Task)

■ Realized in the OS through an Affinity Mask:

A bitmask to specify on which logical cpu the process or threads in a process can 
be scheduled

□ Pinning (= only a single bit set)

■ Affinity mask can be adjusted at runtime:

Ø Computation follows data

Felix Eberhardt
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Non-Uniform Memory Access
Thread Placement
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■ Placement granularity is a page (4k, 64k, ... 64GB)

■ Static at allocation time:
Placement policies or specific requests govern page location for every allocation

□ First-touch – defacto standard policy
□ Allocate on fixed node(s)

□ Interleaving

□ (Page replication on multiple nodes, consistency!)
■ Dynamic at runtime:

Pages can migrate between different nodes after allocation

Ø Data follows computation
Felix Eberhardt
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Non-Uniform Memory Access
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numactl wraps application and enforces specific placement policies

■ Thread Placement set default affinity mask for a given process
□ numactl --physcpubind=<cpus>

□ numactl --cpunodebind=<nodes>

<cpus> is a comma delimited list of cpu numbers or A-B ranges or all

□ taskset is another tool to control the affinity mask, able to modify affinity 
masks of running processes

■ Data Placement
□ numactl --interleave=<nodes>

□ numactl --membind=<nodes>

<nodes> is a comma delimited list of node numbers or A-B ranges or all Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
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Thread Placement
Systemcall
□ sched_setaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask)

Pthread
□ pthread_setaffinity_np(pthread_t thread, size_t cpusetsize, const

cpu_set_t *cpuset)

libnuma
□ numa_run_on_node(int node)

Data Placement
libnuma
□ void *numa_alloc_onnode(size_t size, int node)

□ void *numa_alloc_interleaved(size_t size)

□ int numa_move_pages(int pid, unsigned long count, void **pages, const int
*nodes, int *status, int flags);

Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
Internal Placement Control

libnuma
>man 3 numa
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■ Thread visits all NUMA nodes in the system

■ Allocates memory on current node and touches the memory on next node
■ To determine location of memory page we use:

move_pages(pid, count, **pages, *nodes, *status, flags);

Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
Experiment: First-Touch Placement Policy

int main(void) {
...
int n = numa_max_node();
for (int i = 1; i <= n; i++){

...
while(

numa_node_of_cpu(sched_getcpu()) != i){
sleep(1);

}
...
check_address(array[0]);

}

void check_address(void* addr){
int status[1] = { -1 };

int ret = move_pages( 0, 1, &addr, NULL, status, 0);
...

}
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Non-Uniform Memory Access - Toolbox
Experiment: First-Touch Placement Policy
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Tools for topology discovery:
■ ACPI distance values

■ Linux sysfs
■ Libnuma: numactl

■ Hwloc lstopo
■ MLC (Memory Latency Checker)
■ …

Tools for analyzing the runtime behaviour:

■ Intel Performance Counter Monitor
■ numatop
■ … numatop: top focused on NUMA-related 

information Felix Eberhardt

Non-Uniform Memory Access - Toolbox
Topology Discovery

Chart 28
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Information provided:
■ NUMA nodes

■ ACPI distance values 
of nodes and cores

■ Mapping of cores
to nodes

■ Cache sizes, levels, 
associativity, cache line size

■ Cache sharing of CPUs

■ Restrictions:
□ Linux only

Felix Eberhardt

Non-Uniform Memory Access - Toolbox
Topology Discovery: Linux sysfs
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■ numa_max_node() get the number of the highest node in the system
■ numa_num_configured_nodes() get the total number of NUMA nodes in the

system
■ numa_num_configured_cpus() get the total number of cores in the system
■ numa_distance(int node1, int node2) get the distance between two

nodes as reported by ACPI
■ numa_node_to_cpus(int node, struct bitmask *mask) get a bitmask of all 

cores associated with the given NUMA node
■ numa_node_of_cpu(int cpu) get the node associated with the given core

id

Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
Topology Discovery: libnuma



Information provided:
■ NUMA Nodes

■ ACPI distance values 
of nodes and cores

■ Mapping of cores
to nodes

■ Restrictions:
■ Linux only

■ Available as library to 
be used in applications 
to query system devices

Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
Topology Discovery: numactl
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Information provided:
■ NUMA Nodes 

■ ACPI distance values 
of nodes and cores

■ Mapping of cores 
to nodes

■ Grouping of nodes according 
to distance values

■ Memory hierarchy (Caches)

Restrictions:
■ Several platforms: 

Windows, Linux, BSD, ...
■ Available as library to 

be used in applications to 
query system devices

Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
Topology Discovery: hwloc / lstopo
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Empirical information provided:
■ Latencies to local memory hierarchy

■ Bandwidth to local memory hierachy
■ Latencies between NUMA nodes

■ Bandwidth between NUMA nodes
■ Latencies of Cache-to-Cache transfers
■ Latencies under load

Restrictions:

■ Only on Intel Processors
■ No source code available

Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
Topology Discovery: Memory Latency Checker
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Non-Uniform Memory Access
Topology Examples: SGI UV-300H
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ACPI Distance Values
■ Can be acquired with 

numactl --hardware
■ Clusters relate to blades in 

the system
■ Seem to be related to 

latency and bandwidth 
characteristics
(see next slide)

Felix Eberhardt
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Non-Uniform Memory Access
Topology Examples: SGI UV300H 
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Non-Uniform Memory Access
Topology Examples: SGI UV-300H
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Measured Latency
■ Intel MLC used

■ Clusters relate to blades in 
the system

■ 3 classes of latencies:
□ Local: ~110 ns
□ Neighbor: ~200 ns

□ Blade: ~230 ns
□ Far remote: ~480 ns

Factor of ~4x between local 
and far remote!
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Non-Uniform Memory Access
Topology Examples: SGI UV-300H

Chart 37

Measured Bandwidth
■ Intel MLC used

■ Clusters relate to blades in 
the system

■ 3 classes of distances:
□ Local: ~51 GB/s
□ Neighbour: ~12.5 GB/s

□ Blade: ~11.5 GB/s
□ Far remote: 11.3 GB/s

Difference between remote 
nodes and far remote nodes 
not that big. However local 
and remote have a factor of 
~4x in between!



Non-Uniform Memory Access
Topology Examples: NUMA on Chip (Single Socket)
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https://www.servethehome.com/wp-content/uploads/2017/08/AMD-EPYC-Infinity-Fabric-Topology-Mapping.jpg
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Information provided:
■ Similar to top tool

■ Shows NUMA specific metrics
■ Uses instruction sampling

■ Memory view to find out 
which memory addresses 
are accessed frequently 
by remote nodes

■ Ability to collect 
stack traces

Restrictions:

■ Linux only, Kernel 3.9 
or later

Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
System Performance: numatop
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Information provided:
■ API for Intel specific 

performance counters
■ Core and Uncore events

■ QPI links and memory 
controller utilization

■ Many other tools available

□ PCIe
□ Cache allocation

□ …
■ https://github.com/opcm/pcm

Restrictions:
■ Available on Windows and Linux

■ Intel processors only

Felix Eberhardt
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Non-Uniform Memory Access - Toolbox
System Performance: Intel Processor Counter Monitor

Chart 40

https://github.com/opcm/pcm

