
Parallel Programming and Heterogeneous Computing
A4 – Workloads & Foster’s Methodology

Max Plauth, Sven Köhler, Felix Eberhardt, Lukas Wenzel, and Andreas Polze
Operating Systems and Middleware Group

Computing the n-th Fibonacci number:

Fn = Fn-1 + Fn-2, with F0 = 0, F1 = 1

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 2

Example: Can You Easily Parallelize … ?

Cannot be obviously parallelized, due to data dependency: the result
of one step depends on an earlier step to have produced a result.

: Data Dependency

Searching an unsorted, discrete problem space for a specific value.

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 3

Example: Can You Easily Parallelize … ?

Found!
Stop!

Model space as a tree, parallelize search walk on sub-trees.
Might require communication (“don’t go there”, “stop all”).

I keep
left

Approximating π using a

Monte Carlo method?

Pick random points 0 ≤ x, y ≤ 1.
Point is in circle if x2 + y2 ≤ 1.
P(X): how likely a point ends in X.

π = 4 * P(circle) / P(square)

≈ 4 * #ptsInCircle / #ptsTotal

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 4

Example: Can You Easily Parallelize … ?

Parallel action for each point completely
independend, no commucation
required (embarrassingly parallel).

The Landscape of Parallel Computing Research: A
View from Berkeley

Krste Asanovic
Ras Bodik
Bryan Christopher Catanzaro
Joseph James Gebis
Parry Husbands
Kurt Keutzer
David A. Patterson
William Lester Plishker
John Shalf
Samuel Webb Williams
Katherine A. Yelick

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-183
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

December 18, 2006

Last two slides showed
typical examples of different
classes of parallel algorithms.

We’ll revisit them at the end
of this semester, but you
can already read up on them.

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 5

Sidenote: Berkeley Dwarfs [Berkeley2006]

()

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 6

Workloads

“task-level parallelism”

■ Different tasks being
performed at the same time

■ Might originate from the
same or different programs

“data-level parallelism”

■ Parallel execution of the
same task on disjoint data
sets

Task / data size can be coarse-grained or fine-grained.
Size decision depends on algorithm design or configuration of execution unit.

■ Sometimes also “flow parallelism” added

□ Overlapping work on data stream
□ Examples: Pipelines, assembly line model

■ Sometimes also “functional parallelism” added
□ Distinct functional units of your algorithm,

exchanging data in a cyclic communication graph

For those four terms no clear distinction in literature.

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 7

Workloads

tim
e task1

task2
task3

Parallelization Methods Overview

� Data Parallelism

� Functional Parallelism

Lecture 2 – Parallelization Fundamentals

[4] 2013 SMU HPC Summer Workshop [5] Parallel Computing Tutorial

8 / 31

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 8

Execution Environment Mapping

Lukas Wenzel

ParProg 2020 A2
Parallel Hardware

Chart 3

Hardware Taxonomy [Flynn1966]

Multiple
Data Streams

M
u

lt
ip

le

In
st

ru
ct

io
n

 S
tr

ea
m

s

MISD
Multiple Instruction streams

Single Data stream

MIMD
Multiple Instruction streams

Multiple Data streams

DD DDDD

I
I

I
I

DDDD

D
D
D

D
D
D

D DDDD

I
I

I
I

D DDDD
D DDDD

DDDDD
DDDDD
DDDDD

I

DDD DDDD

I
I

I
I

DDDD
DD DDDD

I
I

I
I

DDDD
DD DDDD

I
I

I
I

DDDD

DD
DD

DD
I

I
I

D D
D

I

I
I

I
I

I
I

I
I

DDDD

I
I

I
I

DDDD

II

DDDD

DDDD

SISD
Single Instruction stream

Single Data stream

SIMD
Single Instruction stream

Multiple Data streams

Lukas Wenzel

ParProg 2020 A2
Parallel Hardware

Chart 3

Hardware Taxonomy [Flynn1966]

Multiple
Data Streams

M
u

lt
ip

le

In
st

ru
ct

io
n

 S
tr

ea
m

s

MISD
Multiple Instruction streams

Single Data stream

MIMD
Multiple Instruction streams

Multiple Data streams

DD DDDD

I
I

I
I

DDDD

D
D
D

D
D
D

D DDDD

I
I

I
I

D DDDD
D DDDD

DDDDD
DDDDD
DDDDD

I

DDD DDDD

I
I

I
I

DDDD
DD DDDD

I
I

I
I

DDDD
DD DDDD

I
I

I
I

DDDD

DD
DD

DD
I

I
I

D D
D

I

I
I

I
I

I
I

I
I

DDDD

I
I

I
I

DDDD

II

DDDD

DDDD

SISD
Single Instruction stream

Single Data stream

SIMD
Single Instruction stream

Multiple Data streams

ta
sk

 p
ar

al
le

lis
m

da
ta

 p
ar

al
le

lis
m

maps well to

maps well to

Execution environments are optimized for one kind of workload, event though
they can also be used for other ones.

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 9

Execution Environment Mapping

Shared Memory (SM) Shared Nothing/
Distributed Memory (DM)

Data
Parallel

SM-SIMD Systems
SSE, AltiVec, CUDA

DM-SIMD Systems
Hadoop, systolic arrays

Task
Parallel

SM-MIMD Systems
ManyCore/SMP systems

DM-MIMD Systems
Clusters, MPP systems

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 10

The Parallel Programming Problem

Execution EnvironmentParallel Application Match ?

C
onfiguration

Type

■ Map workload problem on an execution environment
□ Concurrency for speedup
□ Data locality for speedup
□ Scalability

■ Best parallel solution typically
differs massively from the
sequential version of an algorithm

■ Foster defines four distinct stages
of a methodological approach

■ We will use this as a guide in the
upcoming discussions

■ Note: Foster talks about communication,
we use the term synchronization instead Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 11

Designing Parallel Algorithms [Foster]

■ Reduce a set of elements into one, given an operation,
e.g. summation: f(a, b) = a + b

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 12

Example: Parallel Reduction

1 2 3 4 5 6 7

5 9 13

22

0

1

6

28

■ A) Search for concurrency and scalability
□ Partitioning

Decompose computation and data into the smallest possible tasks
□ Communication

Define necessary coordination of task execution

■ B) Search for locality and other performance-related issues
□ Agglomeration

Consider performance and implementation costs
□ Mapping

Maximize execution unit utilization, minimize communication

■ Might require backtracking or parallel investigation of steps
Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 13

Designing Parallel Algorithms [Foster]

■ Expose opportunities for parallel execution –
fine-grained decomposition

■ Good partition keeps computation and data together
□ Data partitioning leads to data parallelism
□ Computation partitioning leads task parallelism

□ Complementary approaches, can lead to different algorithms
□ Reveal hidden structures of the algorithm that have potential
□ Investigate complementary views on the problem

■ Avoid replication of either computation or data, can be revised later to reduce
communication overhead

■ Step results in multiple candidate solutions
Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 14

Partitioning Step [Foster]

1 2 3 4 5 6 7

5 9 13

0

1

a + b

■ Domain Decomposition
□ Define small data fragments
□ Specify computation for them
□ Different phases of computation

on the same data are handled separately

□ Rule of thumb:
First focus on large or frequently used data structures

■ Functional Decomposition
□ Split up computation into disjoint

tasks, ignore the data accessed
for the moment

□ With significant data overlap,
domain decomposition is more
appropriate

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 15

Partitioning - Decomposition Types
Parallelization Methods Overview

� Data Parallelism

� Functional Parallelism

Lecture 2 – Parallelization Fundamentals

[4] 2013 SMU HPC Summer Workshop [5] Parallel Computing Tutorial

8 / 31

■ Checklist for resulting partitioning scheme
□ Order of magnitude more tasks than processors?

-> Keeps flexibility for next steps
□ Avoidance of redundant computation and storage requirements?

-> Scalability for large problem sizes

□ Tasks of comparable size?
-> Goal to allocate equal work to processors

□ Does number of tasks scale with the problem size?
-> Algorithm should be able to solve larger tasks with more processors

■ Resolve bad partitioning by estimating performance behavior,
and eventually reformulating the problem

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 16

Partitioning - Checklist

■ Specify links between data consumers and data producers
■ Specify kind and number of messages on these links
■ Domain decomposition problems might have tricky communication

infrastructures, due to data dependencies
■ Communication in functional decomposition problems can easily be modeled

from the data flow between the tasks
■ Categorization of communication patterns

□ Local communication (few neighbors) vs.
global communication

□ Structured communication (e.g. tree) vs.
unstructured communication

□ Static vs. dynamic communication structure
□ Synchronous vs. asynchronous communication

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 17

Communication Step [Foster]

■ Distribute computation and communication,
don‘t centralize algorithm
□ Bad example: Central manager for parallel summation
□ Divide-and-conquer helps as mental model to identify concurrency

■ Unstructured communication is hard to agglomerate,
better avoid it

■ Checklist for communication design
□ Do all tasks perform the same amount of communication?

-> Distribute or replicate communication hot spots
□ Does each task perform only local communication?

□ Can communication happen concurrently?
□ Can computation happen concurrently? Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 18

Communication - Hints

■ Algorithm so far is correct,
but not specialized for some execution environment

■ Check again partitioning and communication decisions

□ Agglomerate tasks for efficient execution on some machine
□ Replicate data and / or computation for efficiency reasons

■ Resulting number of tasks can still be greater than the number of processors

■ Three conflicting guiding decisions
□ Reduce communication costs by coarser granularity of computation and

communication
□ Preserve flexibility with respect to later mapping decisions

□ Reduce software engineering costs (serial -> parallel version)

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 19

Agglomeration Step [Foster]

1 2 3 4 5 6 7

22

0

6

addh4 a,b,c,d

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 20

Agglomeration [Foster]

■ Reduce communication costs by coarser granularity
□ Sending less data
□ Sending fewer messages (per-message initialization costs)
□ Agglomerate, especially if tasks cannot run concurrently

– Reduces also task creation costs

□ Replicate computation to avoid communication
(helps also with reliability)

■ Preserve flexibility
□ Flexible large number of tasks still prerequisite for scalability

■ Define granularity as compile-time or run-time parameter

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 21

Agglomeration –
Granularity vs. Flexibility

■ Communication costs reduced by increasing locality ?
■ Does replicated computation outweighs its costs in all cases ?
■ Does data replication restrict the range of problem sizes / processor counts ?
■ Does the larger tasks still have similar computation / communication costs ?
■ Does the larger tasks still act with sufficient concurrency ?

■ Does the number of tasks still scale with the problem size ?
■ How much can the task count decrease, without disturbing load balancing,

scalability, or engineering costs ?
■ Is the transition to parallel code worth the engineering costs ?

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 22

Agglomeration - Checklist

■ Only relevant for shared-nothing systems, since shared memory systems
typically perform automatic task scheduling

■ Minimize execution time by
□ Place concurrent tasks on different nodes
□ Place tasks with heavy communication on the same node

■ Conflicting strategies, additionally restricted by resource limits
□ In general, NP-complete bin packing problem

■ Set of sophisticated (dynamic) heuristics for load balancing
□ Preference for local algorithms that do not need global scheduling state

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 23

Mapping Step [Foster]

■ A) Search for concurrency and scalability
□ Partitioning

Decompose computation and data into the smallest possible tasks
□ Communication

Define necessary coordination of task execution

■ B) Search for locality and other performance-related issues
□ Agglomeration

Consider performance and implementation costs
□ Mapping

Maximize execution unit utilization, minimize communication

■ Might require backtracking or parallel investigation of steps
Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 24

Designing Parallel Algorithms [Foster]

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 25

Surface-To-Volume Effect
[Foster, Breshears]

[nicerweb.com]

Visualize the data to be
processed (in parallel) as
sliced 3D cube

■ Synchronization requirements of a task
□ Proportional to the surface of the data slice it operates upon
□ Visualized by the amount of ,borders‘ of the slice

■ Computation work of a task
□ Proportional to the volume of the data slice it operates upon

□ Represents the granularity of decomposition
■ Ratio of synchronization and computation

□ High synchronization, low computation, high ratio à bad
□ Low synchronization, high computation, low ratio à good

□ Ratio decreases for increasing data size per task

■ Coarse granularity by agglomerating tasks in all dimensions
□ For given volume, the surface then goes down à good

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 26

Surface-To-Volume Effect
[Foster, Breshears]

[Berkeley2006]
"The Landscape of Parallel Computing research: A View from Berkeley.”
Asanovic, Krste, et al. (2006) Technical Report No. UCB/EECS-2006-183

[Foster1995]
"Designing and Building Parallel Programs" Foster, Ian (1995) Addison-
Wesley

[Breshears2009]
"The Art of Concurrency" Breshears, Clay. O'Reilly Media Inc. 2009

Sven Köhler

ParProg20 A4
Foster’s
Methodology

Chart 27

Literature

And now for a break and
a cup of espresso*.

*or beverage of your choice

