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Computing the n-th Fibonacci number:

Fn = Fn-1 + Fn-2, with F0 = 0, F1 = 1
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Example: Can You Easily Parallelize … ?

Cannot be obviously parallelized, due to data dependency: the result
of one step depends on an earlier step to have produced a result.

: Data Dependency



Searching an unsorted, discrete problem space for a specific value.
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Example: Can You Easily Parallelize … ?

Found!
Stop! 

Model space as a tree, parallelize search walk on sub-trees.
Might require communication (“don’t go there”, “stop all”).

I keep
left



Approximating π  using a 

Monte Carlo method?

Pick random points 0 ≤ x, y ≤ 1.
Point is in circle if x2 + y2 ≤ 1.
P(X): how likely a point ends in X.

π = 4 * P(circle) / P(square)

≈ 4 * #ptsInCircle / #ptsTotal
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Example: Can You Easily Parallelize … ?

Parallel action for each point completely
independend, no commucation
required (embarrassingly parallel).
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Last two slides showed
typical examples of different
classes of parallel algorithms.

We’ll revisit them at the end
of this semester, but you
can already read up on them.
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Sidenote: Berkeley Dwarfs [Berkeley2006]

( )
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Workloads

“task-level parallelism”

■ Different tasks being 
performed at the same time

■ Might originate from the 
same or different programs

“data-level parallelism”

■ Parallel execution of the 
same task on disjoint data 
sets



Task / data size can be coarse-grained or fine-grained.
Size decision depends on algorithm design or configuration of execution unit.

■ Sometimes also “flow parallelism” added

□ Overlapping work on data stream 
□ Examples: Pipelines, assembly line model

■ Sometimes also  “functional parallelism” added
□ Distinct functional units of your algorithm,

exchanging data in a cyclic communication graph

For those four terms no clear distinction in literature.

Sven Köhler

ParProg20 A4 
Foster’s 
Methodology

Chart 7

Workloads

tim
e task1

task2
task3

Parallelization Methods Overview

� Data Parallelism

� Functional Parallelism

Lecture 2 – Parallelization Fundamentals

[4] 2013 SMU HPC Summer Workshop [5] Parallel Computing Tutorial

8 / 31



Sven Köhler

ParProg20 A4 
Foster’s 
Methodology

Chart 8

Execution Environment Mapping
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Hardware Taxonomy [Flynn1966]
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Hardware Taxonomy [Flynn1966]
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Execution environments are optimized for one kind of workload, event though 
they can also be used for other ones.
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Execution Environment Mapping

Shared Memory (SM) Shared Nothing/ 
Distributed Memory (DM)

Data 
Parallel

SM-SIMD Systems
SSE, AltiVec, CUDA

DM-SIMD Systems
Hadoop, systolic arrays

Task 
Parallel

SM-MIMD Systems
ManyCore/SMP systems

DM-MIMD Systems
Clusters, MPP systems
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The Parallel Programming Problem

Execution EnvironmentParallel Application Match ?

C
onfiguration

Type



■ Map workload problem on an execution environment
□ Concurrency for speedup
□ Data locality for speedup
□ Scalability

■ Best parallel solution typically 
differs massively from the 
sequential version of an algorithm

■ Foster defines four distinct stages 
of a methodological approach

■ We will use this as a guide in the
upcoming discussions

■ Note: Foster talks about communication, 
we use the term synchronization instead Sven Köhler
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Designing Parallel Algorithms [Foster]



■ Reduce a set of elements into one, given an operation,
e.g. summation: f(a, b) = a + b
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Example: Parallel Reduction
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■ A) Search for concurrency and scalability
□ Partitioning

Decompose computation and data into the smallest possible tasks
□ Communication

Define necessary coordination of task execution

■ B) Search for locality and other performance-related issues
□ Agglomeration

Consider performance and implementation costs
□ Mapping

Maximize execution unit utilization, minimize communication

■ Might require backtracking or parallel investigation of steps
Sven Köhler
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Designing Parallel Algorithms [Foster]



■ Expose opportunities for parallel execution –
fine-grained decomposition

■ Good partition keeps computation and data together
□ Data partitioning leads to data parallelism
□ Computation partitioning leads task parallelism

□ Complementary approaches, can lead to different algorithms
□ Reveal hidden structures of the algorithm that have potential
□ Investigate complementary views on the problem

■ Avoid replication of either computation or data, can be revised later to reduce 
communication overhead

■ Step results in multiple candidate solutions
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Partitioning Step [Foster]
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■ Domain Decomposition
□ Define small data fragments
□ Specify computation for them
□ Different phases of computation 

on the same data are handled separately

□ Rule of thumb: 
First focus on large or frequently used data structures

■ Functional Decomposition
□ Split up computation into disjoint 

tasks, ignore the data accessed 
for the moment

□ With significant data overlap, 
domain decomposition is more 
appropriate
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Partitioning - Decomposition Types
Parallelization Methods Overview

� Data Parallelism

� Functional Parallelism

Lecture 2 – Parallelization Fundamentals

[4] 2013 SMU HPC Summer Workshop [5] Parallel Computing Tutorial
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■ Checklist for resulting partitioning scheme
□ Order of magnitude more tasks than processors? 

-> Keeps flexibility for next steps
□ Avoidance of redundant computation and storage requirements?

-> Scalability for large problem sizes

□ Tasks of comparable size?
-> Goal to allocate equal work to processors

□ Does number of tasks scale with the problem size?
-> Algorithm should be able to solve larger tasks with more processors

■ Resolve bad partitioning by estimating performance behavior, 
and eventually reformulating the problem
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Partitioning - Checklist



■ Specify links between data consumers and data producers
■ Specify kind and number of messages on these links
■ Domain decomposition problems might have tricky communication 

infrastructures, due to data dependencies
■ Communication in functional decomposition problems can easily be modeled 

from the data flow between the tasks
■ Categorization of communication patterns

□ Local communication (few neighbors) vs. 
global communication

□ Structured communication (e.g. tree) vs. 
unstructured communication

□ Static vs. dynamic communication structure
□ Synchronous vs. asynchronous communication
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Communication Step [Foster]



■ Distribute computation and communication, 
don‘t centralize algorithm
□ Bad example: Central manager for parallel summation
□ Divide-and-conquer helps as mental model to identify concurrency

■ Unstructured communication is hard to agglomerate, 
better avoid it

■ Checklist for communication design
□ Do all tasks perform the same amount of communication?

-> Distribute or replicate communication hot spots
□ Does each task perform only local communication?

□ Can communication happen concurrently?
□ Can computation happen concurrently? Sven Köhler
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Communication - Hints



■ Algorithm so far is correct, 
but not specialized for some execution environment

■ Check again partitioning and communication decisions 

□ Agglomerate tasks for efficient execution on some machine
□ Replicate data and / or computation for efficiency reasons

■ Resulting number of tasks can still be greater than the number of processors

■ Three conflicting guiding decisions
□ Reduce communication costs by coarser granularity of computation and 

communication 
□ Preserve flexibility with respect to later mapping decisions

□ Reduce software engineering costs (serial -> parallel version)
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Agglomeration Step [Foster]
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Agglomeration [Foster]



■ Reduce communication costs by coarser granularity
□ Sending less data
□ Sending fewer messages (per-message initialization costs)
□ Agglomerate, especially if tasks cannot run concurrently

– Reduces also task creation costs

□ Replicate computation to avoid communication
(helps also with reliability)

■ Preserve flexibility
□ Flexible large number of tasks still prerequisite for scalability

■ Define granularity as compile-time or run-time parameter
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Agglomeration –
Granularity vs. Flexibility



■ Communication costs reduced by increasing locality ?
■ Does replicated computation outweighs its costs in all cases ?
■ Does data replication restrict the range of problem sizes / processor counts ?
■ Does the larger tasks still have similar computation / communication costs ?
■ Does the larger tasks still act with sufficient concurrency ?

■ Does the number of tasks still scale with the problem size ?
■ How much can the task count decrease, without disturbing load balancing, 

scalability, or engineering costs ?
■ Is the transition to parallel code worth the engineering costs ?
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Agglomeration - Checklist



■ Only relevant for shared-nothing systems, since shared memory systems 
typically perform automatic task scheduling

■ Minimize execution time by
□ Place concurrent tasks on different nodes
□ Place tasks with heavy communication on the same node 

■ Conflicting strategies, additionally restricted by resource limits
□ In general, NP-complete bin packing problem

■ Set of sophisticated (dynamic) heuristics for load balancing
□ Preference for local algorithms that do not need global scheduling state
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Mapping Step [Foster]



■ A) Search for concurrency and scalability
□ Partitioning

Decompose computation and data into the smallest possible tasks
□ Communication

Define necessary coordination of task execution

■ B) Search for locality and other performance-related issues
□ Agglomeration

Consider performance and implementation costs
□ Mapping

Maximize execution unit utilization, minimize communication

■ Might require backtracking or parallel investigation of steps
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Designing Parallel Algorithms [Foster]
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Surface-To-Volume Effect 
[Foster, Breshears]

[nicerweb.com]

Visualize the data to be 
processed (in parallel) as 
sliced 3D cube



■ Synchronization requirements of a task
□ Proportional to the surface of the data slice it operates upon
□ Visualized by the amount of ,borders‘ of the slice

■ Computation work of a task
□ Proportional to the volume of the data slice it operates upon

□ Represents the granularity of decomposition
■ Ratio of synchronization and computation

□ High synchronization, low computation, high ratio à bad
□ Low synchronization, high computation, low ratio à good

□ Ratio decreases for increasing data size per task

■ Coarse granularity by agglomerating tasks in all dimensions
□ For given volume, the surface then goes down à good
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Surface-To-Volume Effect 
[Foster, Breshears]
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Literature



And now for a break and
a cup of espresso*.

*or beverage of your choice 


