
Parallel Programming Concepts

GPU Compute Devices

Frank Feinbube

Operating Systems and Middleware

Prof. Dr. Andreas Polze

The Power of GPU Compute Devices

ParProg | GPU Computing | FF2013

5

Fluids NBody

RadixSort

Wide Varity of Application Domains

ParProg | GPU Computing | FF2013

6

h
ttp

://w
w

w
.n

v
id

ia
.c

o
m

/o
b
je

c
t/c

u
d
a
_
a
p
p
s
_
fla

s
h
_
n
e
w

.h
tm

l
h
ttp

://w
w

w
.n

v
id

ia
.c

o
m

/o
b
je

c
t/te

s
la

_
te

s
tim

o
n
ia

ls
.h

tm
l

http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/tesla_testimonials.html
http://www.nvidia.com/object/tesla_testimonials.html
http://www.nvidia.com/object/tesla_testimonials.html

Why GPU Compute Devices?
Short Term View: Cheap Performance

Performance

Energy / Price

■ Cheap to buy and to maintain

■ GFLOPS per watt: Fermi 1,5 / Keppler 5 / Maxwell 15

ParProg | GPU Computing | FF2013

7

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000

E
x
e
c
u

ti
o
n

 T
im

e
 i
n

M

il
li

s
e
c
o

n
d

s

Problem Size (Number of Sudoku Places)

Intel E8500 CPU

AMD R800 GPU

NVIDIA GT200 GPU

lower means faster

Why GPU Compute Devices?
Middle Term View: More Performance

ParProg | GPU Computing | FF2013

8

[8]

Why GPU Compute Devices?
Long Term View: Hybrid Computing

Dealing with massivly multi-core:

■ New architectures are evaluated (Intel SCC)

■ Accelerators that accompany common general

purpose CPUs (Hybrid Systems)

Hybrid Systems

■ GPU Compute Devices:

High Performance Computing (3 of top 5

supercomputers are GPU-based!),

Business Servers, Home/Desktop Computers,

Mobile and Embedded Systems

■ Special-Purpose Accelerators:

(de)compression, XML parsing, (en|de)cryption,

regular expression matching

ParProg | GPU Computing | FF2013

9

History of GPU Computing

ParProg | GPU Computing | FF2013

10

• 1980s-1990s; configurable, not programmable;
first APIs (DirectX, OpenGL); Vertex Processing

Fixed Function
Graphic Pipelines

• Since 2001: APIs for Vertex Shading, Pixel
Shading and access to texture; DirectX9

Programmable Real-
Time Graphics

• 2006: NVIDIAs G80; unified processors arrays;
three programmable shading stages; DirectX10

Unified Graphics and
Computing Processors

• compute problem as native graphic operations;
algorithms as shaders; data in textures

General Purpose GPU
(GPGPU)

• Programming CUDA; shaders programmable;
load and store instructions; barriers; atomics

GPU Computing

CPU vs. GPU Architecture

ParProg | GPU Computing | FF2013

11

Open Compute Language (OpenCL)

ParProg | GPU Computing | FF2013

12

AMD

ATI

NVIDIA

Intel

Apple

Merged, needed
commonality across
products

GPU vendor – wants
to steal market
share from CPU

Was tired of recoding
for many core, GPUs.
Pushed vendors to
standardize.

CPU vendor – wants
to steal market
share from GPU

Wrote
a

draft
straw
man
API

Khronos
Compute

Group
formed

Ericsson

Nokia

IBM

Sony

Blizzard

Texas
Instruments

…

[5]

OpenCL Platform Model

■ OpenCL exposes CPUs, GPUs, and other Accelerators as “devices”

■ Each “device” contains one or more “compute units”, i.e. cores, SMs,...

■ Each “compute unit” contains one or more SIMD “processing elements”

ParProg | GPU Computing | FF2013

15

[4]

OpenCL Execution Model

■ Parallel work is submitted to devices by launching kernels

■ Kernels run over global dimension index ranges (NDRange), broken up

into “work groups”, and “work items”

■ Work items executing within the same work group can synchronize with

each other with barriers or memory fences

■ Work items in different work groups can’t sync with each other, except

by launching a new kernel

ParProg | GPU Computing | FF2013

17

[4]

OpenCL Execution Model

An example of an NDRange index space showing work-items, their global IDs

and their mapping onto the pair of work-group and local IDs.

ParProg | GPU Computing | FF2013

18

[4]

OpenCL Execution Model

An OpenCL kernel is executed by an array of work items.

■ All work items run the same code (SPMD)

■ Each work item has an index that it uses to compute memory

addresses and make control decisions

ParProg | GPU Computing | FF2013

19

[1]

Work Groups: Scalable Cooperation

Divide monolithic work item array into work groups

■ Work items within a work group cooperate via shared

memory, atomic operations and barrier synchronization

■ Work items in different work groups cannot cooperate

ParProg | GPU Computing | FF2013

20

[1]

OpenCL Memory Architecture

Private

Per work-item

Local

Shared within

a workgroup

Global/

Constant

Visible to

all workgroups

Host Memory

On the CPU

ParProg | GPU Computing | FF2013

21

[4]

OpenCL Memory Architecture

■ Memory management is explicit: you must move data from host

→ global → local… and back

ParProg | GPU Computing | FF2013

22

Memory
Type

Keyword Description/Characteristics

Global
Memory

__global Shared by all work items; read/write; may be
cached (modern GPU), else slow; huge

Private
Memory

__private For local variables; per work item; may be
mapped onto global memory (Arrays on GPU)

Local
Memory

__local Shared between workitems of a work group;
may be mapped onto global memory (not
GPU), else fast; small

Constant
Memory

__constant Read-only, cached; add. special kind for GPUs:
texture memory

Live Demo

ParProg | GPU Computing | FF2013

31

Development Support

Software development kits: NVIDIA and AMD; Windows and Linux

Special libraries: AMD Core Math Library, BLAS and FFT libraries by NVIDIA,

OpenNL for numerics and CULA for linear algebra; NVIDIA Performance

Primitives library: a sink for common GPU accelerated algorithms

Profiling and debugging tools:

■ NVIDIAs Parallel Nsight for Microsoft Visual Studio

■ AMDs ATI Stream Profiler

■ AMDs Stream KernelAnalyzer:

 displays GPU assembler code, detects execution bottlenecks

■ gDEBugger (platform-independent)

Big knowledge bases with tutorials, examples, articles, show cases, and

developer forums

 ParProg | GPU Computing | FF2013

32

GPU Computing Platforms

AMD

R700, R800, R900

NVIDIA

G80, G92, GT200, GF100, GF110

Geforce, Quadro,

Tesla, ION

ParProg | GPU Computing | FF2013

33

GF10

ParProg | GPU Computing | FF2013

34

GPU
Hardware
in Detail

[9]

GF100

ParProg | GPU Computing | FF2013

35

[9]

GF100

L2 Cache

GF100

ParProg | GPU Computing | FF2013

36

[9]

GF100

GF100

ParProg | GPU Computing | FF2013

37

[9]

GF100

GF100

ParProg | GPU Computing | FF2013

38

… [9]

GF100

GF100

ParProg | GPU Computing | FF2013

39

… [9]

GF100

GT200 – previous architecture

ParProg | GPU Computing | FF2013

40

[9]

Simpler architecture, but same principles

Several Work Groups reside on one SM

■ Amount depends on available resources (Shared

Memory (=Local Memory in OpenCL), Registers)

■ More Work Groups → better latency hiding

□ Latencies occur for memory accesses,

pipelined floating-point arithmetic and branch

instructions

Thread execution in “Warps” (called “wavefronts” on AMD)

■ Native execution size (32 Threads for NVIDIA)

■ Zero-Overhead Thread Scheduling: If one warp

stalls (accesses memory) next warp is selected for

execution

Instruction Cache

Constant Cache

Warp Scheduler
and Registers

Warp Execution Example

Application creates 200.000 „Tasks“

 → Global Work Group Size: 200.000 Work Items

Programmer decides to use a Local Work Group Size of 100 Work Items

 → Number of Work Groups: 2.000 Work Groups

One Work Item requires 10 registers and 20 byte of Shared Memory; a SM has

16 KB of Shared Memory and 16.384 registers

 → Number of Work Items per SM: 16KB/20B = 819 Work Items

 → Number of Work Groups per SM: 819/100 = 8 Work Groups per SM

Even if 7 Work Groups are waiting for memory, 1 can be executed.

ParProg | GPU Computing | FF2013

41

Warp Execution Example

Each of the Work Groups contains 100 Work Items; the Warp Size (native

execution size of a SM) is 32

 → Number of Threads Executed in parallel: 32 Threads

 → Number of „Rounds“ to execute a Work Group: 100/32 = 4

 → Threads running in the first 3 rounds: 32 Threads

 → Threads running in the last round: 100-32*4=4 Threads

If one of the threads accesses memory: whole warp stalls

If one of the threads follows a differing execution path: it is executed in an

additional seperate round

ParProg | GPU Computing | FF2013

42

Compute Capability by version

Plus: varying amounts of cores, global memory sizes, bandwidth,

clock speeds (core, memory), bus width, memory access penalties …

ParProg | GPU Computing | FF2013

43

1.0 1.1 1.2 1.3 2.0

double precision floating
point operations

No Yes

caches No Yes

max # concurrent kernels 1 8

max # threads per block 512 1024

max # Warps per MP 24 32 48

max # Threads per MP 768 1024 1536

register count (32 bit) 8192 16384 32768

max shared mem per MP 16KB 48KB

shared memory banks 16 32

The Power of GPU Computing

ParProg | GPU Computing | FF2013

44

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000

E
x
e
c
u

ti
o
n

 T
im

e
 i
n

 M
il

li
s
e
c
o

n
d

s

Problem Size (Number of Sudoku Places)

Intel

E8500
CPU

AMD
R800

GPU

NVIDIA
GT200
GPU

* less is better

big performance gains for small problem sizes

The Power of GPU Computing

ParProg | GPU Computing | FF2013

45

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 200000 400000 600000

E
x
e
c
u

ti
o
n

 T
im

e
 i
n

 M
il

li
s
e
c
o

n
d

s

Problem Size (Number of Sudoku Places)

Intel

E8500
CPU

AMD
R800
GPU

NVIDIA
GT200
GPU

* less is better

small/moderate performance gains for large problem sizes

→ further optimizations needed

Best Practices for Performance Tuning

•Asynchronous, Recompute, Simple Algorithm Design

•Chaining, Overlap Transfer & Compute Memory Transfer

•Divergent Branching, Predication Control Flow

• Local Memory as Cache, rare resource Memory Types

•Coalescing, Bank Conflicts Memory Access

•Execution Size, Evaluation Sizing

•Shifting, Fused Multiply, Vector Types Instructions

•Native Math Functions, Build Options Precision

ParProg | GPU Computing | FF2013

46

Divergent Branching and Predication

Divergent Branching

■ Flow control instruction (if, switch, do, for, while) can result in

different execution paths

 Data parallel execution → varying execution paths will be serialized

 Threads converge back to same execution path after completion

Branch Predication

■ Instructions are associated with a per-thread condition code (predicate)

□ All instructions are scheduled for execution

□ Predicate true: executed normally

□ Predicate false: do not write results, do not evaluate addresses, do

not read operands

■ Compiler may use branch predication for if or switch statements

■ Unroll loops yourself (or use #pragma unroll for NVIDIA)

ParProg | GPU Computing | FF2013

47

Coalesced Memory Accesses

Simple Access Pattern

■ Can be fetched in a single 64-byte

transaction (red rectangle)

■ Could also be permuted *

Sequential but Misaligned Access

■ Fall into single 128-byte segment:

single 128-byte transaction,

else: 64-byte transaction + 32-

byte transaction *

Strided Accesses

■ Depending on stride from 1 (here)

up to 16 transactions *

* 16 transactions with compute capability 1.1

ParProg | GPU Computing | FF2013

48

[6]

Use Caching: Local, Texture, Constant

Local Memory

■ Memory latency roughly 100x lower than global memory latency

■ Small, no coalescing problems, prone to memory bank conflicts

Texture Memory

■ 2-dimensionally cached, read-only

■ Can be used to avoid uncoalesced loads

form global memory

■ Used with the image data type

Constant Memory

■ Lineary cached, read-only, 64 KB

■ as fast as reading from a register for the same address

■ Can be used for big lists of input arguments

 ParProg | GPU Computing | FF2013

49

0 1 2 3

64 65 66 67

128 129 130 131

192 193 194 195

…

…

…

…

Memory Bank Conflicts

■ Access to (Shared) Memory is implemented

via hardware memory banks

■ If a thread accesses a memory address this

is handled by the responsible memory

bank

■ Simple Access Patterns like this one are

fetched in a single transaction

ParProg | GPU Computing | FF2013

50

[8]

Memory Bank Conflicts

Permuted Memory Access (left)

■ Still one transaction on

cards with compute

capability >=1.2;

otherwise 16 transactions

are required

Strided Memory Access (right)

■ Still one transaction on

cards with compute

capability >=1.2;

otherwise 16 transactions

are required

ParProg | GPU Computing | FF2013

51

[8]

Memory Bank Conflicts

Bank conflicts

■ Left figure: 2 bank

conflicts → resulting

bandwidth is ½ of the

original bandwidth

■ Right figure: 8 bank

conflicts → resulting

bandwidth is 1/8 of the

original bandwidth

ParProg | GPU Computing | FF2013

52

[8]

Sizing:
What is the right execution layout?

ParProg | GPU Computing | FF2013

53

[4]

■ Local work item count should be a multiple of native execution

size (NVIDIA 32, AMD 64), but not to big

■ Number of work groups should be multiple of the number of

multiprocessors (hundreds or thousands of work groups)

■ Can be configured in 1-, 2- or 3-dimensional layout: consider

access patterns and caching

■ Balance between latency hiding

and resource utilization

■ Experimenting is

required!

Instructions and Precision

■ Single precision floats provide best performance

■ Use shift operations to avoid expensive division and modulo calculations

■ Special compiler flags

■ AMD has native vector type implementation; NVIDIA is scalar

■ Use the native math library whenever speed trumps precision

ParProg | GPU Computing | FF2013

54

Functions Throughput

single-precision floating-point add,
multiply, and multiply-add

8 operations per clock cycle

single-precision reciprocal,
reciprocal square root, and
native_logf(x)

2 operations per clock cycle

native_sin, native_cos, native_exp 1 operation per clock cycle

Further Readings

http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/

■ [1] Kirk, D. B. & Hwu, W. W., 2010. Programming Massively Parallel

Processors: A Hands-on Approach. 1 ed. Morgan Kaufmann.

■ [2] Herlihy, M. & Shavit, N., 2008. The Art of Multiprocessor Programming.

■ [3] Sanders, J. & Kandrot, E., 2010. CUDA by Example: An Introduction to

General-Purpose GPU Programming . 1 ed. Addison-Wesley Professional.

■ [4] Munshi, A. (ed.), 2010. The OpenCL Specification - v1.1. The Khronos Group Inc.

■ [5] Mattson, T., 2010. The Future of Many Core Computing: Software for

many core processors.

■ [6] NVIDIA, 2009. NVIDIA OpenCL Best Practices Guide - Version 2.3.

■ [7] Rob Farber, 2008. CUDA, Supercomputing for the Masses. Dr. Dobb’s

■ [8] NVIDIA, 2010. OpenCL Programming for the CUDA Architecture - Version 3.1

■ [9] Ryan Smith, NVIDIA’s GeForce GTX 480 and GTX 470: 6 Months Late, Was It

Worth the Wait?

ParProg | GPU Computing | FF2013

55

http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/

