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Why GPU Compute Devices? ﬂ Hasso
Short Term View: Cheap Performance

Institut
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Middle Term View: More Performance
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Why GPU Compute Devices? ﬂ Hasso

Long Term View: Hybrid Computing

Dealing with massivly multi-core:
m New architectures are evaluated (Intel SCC)

m Accelerators that accompany common general
purpose CPUs (Hybrid Systems)

Hybrid Systems

m GPU Compute Devices:
High Performance Computing (3 of top 5
supercomputers are GPU-based!),
Business Servers, Home/Desktop Computers,
Mobile and Embedded Systems

m Special-Purpose Accelerators:
(de)compression, XML parsing, (en|de)cryption,
regular expression matching

ParProg | GPU Computing | FF2013



Plattner

Hasso
History of GPU Computing ﬂ Institut

10

Fixed Function e 1980s-1990s; configurable, not programmable;
Graphic Pipelines first APIs (DirectX, OpenGL); Vertex Processing

dyelelr=1nalna 1ol (SHGCE|BI « Since 2001: APIs for Vertex Shading, Pixel
Time Graphics Shading and access to texture; DirectX9

WlallilSe e g=Tolal[eH=1a[¢ Ml « 2006: NVIDIAs G80; unified processors arrays;
®o]nalslfldls[eMdgelalcIYe)gl three programmable shading stages; DirectX10

1 [Sl=| WP Tgelo =M€V « compute problem as native graphic operations;
(GPGPU) algorithms as shaders; data in textures

e Programming CUDA; shaders programmable;
load and store instructions; barriers; atomics

GPU Computing

ParProg | GPU Computing | FF2013
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CPU vs. GPU Architecture
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Open Compute Language (OpenCL)

AMD

Merged, needed
commonality across

ATI

products

NVIDIA

GPU vendor - wants
— to steal market
share from CPU

Intel

CPU vendor - wants
— to steal market

share from GPU

Apple

Was tired of recoding
___ for many core, GPUs.
Pushed vendors to

standardize.
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Nokia Sony
Ericsson Texas
\ Instruments
Wrote
a Khronos “g;\ ,
draft Compute _.’ /‘
straw Group
man formed OpenCL
API
Blizzard \
IBM
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OpenCL Platform Model
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m OpenCL exposes CPUs, GPUs, and other Accelerators as “devices”
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m Each “device” contains one or more “compute units”, i.e. cores, SMs,...

m Each “"compute unit” contains one or more SIMD "“processing elements”

ParProg | GPU Computing | FF2013
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m Parallel work is submitted to devices by launching kernels

m Kernels run over global dimension index ranges (NDRange), broken up
into “work groups”, and “work items”

m Work items executing within the same work group can synchronize with
each other with barriers or memory fences

m Work items in different work groups can’t sync with each other, except
by launching a new kernel work-group size S,

work-group (w,, wy)
work-item work-item
Wy Sy+5y. Wy s_v's," e (Wy S8y Wy Sy‘s_'/
(Sy+ s}; =(0,0) (Sy. s},‘ = 'Sx-'. 0)
it work-group size Sy
work-item work-item
NDRange size Gy (Wy Sy#5y. W, S, #5) (wy Sy, W, 8,45
i L (5. 8,)=0.5,-1) | (5.5)=(5:1.5,1)
- T~ Y.
[ o 4
1) 1
NDRange size G [ ]
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NDRange size Gy
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NDRange size G,

work-group size Sx
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X

work-group (Wx N wy)

work-item

(WX SX.SX . Wy Sy’s.')

(5y.8,) =10.0)

work-item

(wy S+, . wy Syosy;

(Sy s’) = (0, Sy-')

work-item
(W, Sx-»sXA wr Syos:/

Sy syi = (Sx-v. 0)

work-item
(w, Sx‘sx' w), SyQS};

(9 s/: (8,1, Sy-U

work-group size S

An example of an NDRange index space showing work-items, their global IDs
and their mapping onto the pair of work-group and local IDs.
ParProg | GPU Computing | FF2013
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An OpenCL kernel is executed by an array of work items.

m All work items run the same code (SPMD)

m Each work item has an index that it uses to compute memory
addresses and make control decisions

threads 0l1]2]3]4 5|6‘T|

int id = get_global_id[ﬂ];

result[id] = a[id] + b [id];

[1]
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Divide monolithic work item array into work groups

m Work items within a work group cooperate via shared
memory, atomic operations and barrier synchronization

m Work items in different work groups cannot cooperate

work group 0 work group 1

work items 0 1 2 3 4 i) g 7 g g 10 11 12 13 14 15

int id = g’Et_g’thal_idtn} H int id = get._glubal_idi.'ﬂ]; -
result[id] = a[id] + b [id]; result[id] = alid] + b [id];

[1]
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OpenCL Memory Architecture
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Compute Device

Compute unit 7

!

Local
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memory N
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memory 7 memory M memory 7
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Private Per work-item

memory M
PE M Local
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4

Constant Memory

Compute Device Memory
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[4]
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m Memory management is explicit: you must move data from host
— global — local... and back

Memory | Keyword
Type

Description/Characteristics

Global
Memory

Private
Memory

Local
Memory

Constant
Memory

__global

___private

___local

__constant

Shared by all work items; read/write; may be
cached (modern GPU), else slow; huge

For local variables; per work item; may be
mapped onto global memory (Arrays on GPU)

Shared between workitems of a work group;
may be mapped onto global memory (not
GPU), else fast; small

Read-only, cached; add. special kind for GPUs:
texture memory
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OpenCL “Hello Device”

OpenCL “Sudoku Validator”

ParProg | GPU Computing | FF2013
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Software development kits: NVIDIA and AMD; Windows and Linux

Special libraries: AMD Core Math Library, BLAS and FFT libraries by NVIDIA,
OpenNL for numerics and CULA for linear algebra; NVIDIA Performance
Primitives library: a sink for common GPU accelerated algorithms

Profiling and debugging tools:
m NVIDIAs Parallel Nsight for Microsoft Visual Studio
m AMDs ATI Stream Profiler

m AMDs Stream KernelAnalyzer:
displays GPU assembler code, detects execution bottlenecks

m gDEBugger (platform-independent)

Big knowledge bases with tutorials, examples, articles, show cases, and
developer forums
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GPU Computing Platforms

AMD

AMD
R700, RSOO, RO0O0 The future |s fusion

% 0379 <2 NVIDIA.

G80, G92, GT200, GF100, GF110

Geforce, Quadro,
Tesla, ION

ParProg | GPU Computing | FF2013
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Host Interface
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GF100

PolyMorph Engine

‘ |—| Viewport
Vertex Fetch ‘ Tessellator H Transform |

‘Auribute Setup | | Stream Output ‘ [ 9 ]
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GT200 - previous architecture

40
Simpler architecture, but same principles

Several Work Groups reside on one SM

m Amount depends on available resources (Shared
Memory (=Local Memory in OpenCL), Registers)

m More Work Groups — better latency hiding

o Latencies occur for memory accesses,
pipelined floating-point arithmetic and branch

instructions

Thread execution in "Warps” (called “wavefronts” on AMD)
m Native execution size (32 Threads for NVIDIA)

m Zero-Overhead Thread Scheduling: If one warp
stalls (accesses memory) next warp is selected for
execution

ParProg | GPU Computing | FF2013

Streaming
Multiprocessor (SM)

Instruction Cache
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Shared
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Application creates 200.000 ,Tasks"
— Global Work Group Size: 200.000 Work Items

Programmer decides to use a Local Work Group Size of 100 Work Items
— Number of Work Groups: 2.000 Work Groups

One Work Item requires 10 registers and 20 byte of Shared Memory; a SM has
16 KB of Shared Memory and 16.384 registers

— Number of Work Items per SM: 16KB/20B = 819 Work Items
— Number of Work Groups per SM:819/100 = 8 Work Groups per SM

Even if 7 Work Groups are waiting for memory, 1 can be executed.
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Each of the Work Groups contains 100 Work Items; the Warp Size (native
execution size of a SM) is 32

— Number of Threads Executed in parallel: 32 Threads
— Number of ,Rounds" to execute a Work Group: 100/32 =4
— Threads running in the first 3 rounds: 32 Threads
— Threads running in the last round: 100-32*4=4 Threads

If one of the threads accesses memory: whole warp stalls

If one of the threads follows a differing execution path: it is executed in an
additional seperate round
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double precision floating

point operations e [E=
caches No Yes
max # concurrent kernels 1 8
max # threads per block 512 1024
max # Warps per MP 24 32 48
max # Threads per MP /768 1024 1536
register count (32 bit) 8192 16384 32768
max shared mem per MP 16KB 48KB
# shared memory banks 16 32

Plus: varying amounts of cores, global memory sizes, bandwidth,
clock speeds (core, memory), bus width, memory access penalties ...
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The Power of GPU Computing
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big performance gains for small problem sizes
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The Power of GPU Computing
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small/moderate performance gains for large problem sizes

— further optimizations needed
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e Asynchronous, Recompute, Simple

Algorithm Design

VE I AICISE® © Chaining, Overlap Transfer & Compute

Control Flow e Divergent Branching, Predication
M [STag[e)aVAAY/oISISH » Local Memory as Cache, rare resource
\VElaale]a"H Yoo <S5M » Coalescing, Bank Conflicts
Sizing e Execution Size, Evaluation
Instructions e Shifting, Fused Multiply, Vector Types

Precision e Native Math Functions, Build Options

ParProg | GPU Computing | FF2013
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Divergent Branching and Predication

47
Divergent Branching
m Flow control instruction (if, switch, do, for, while) can result in

different execution paths
» Data parallel execution — varying execution paths will be serialized

» Threads converge back to same execution path after completion

Branch Predication
m Instructions are associated with a per-thread condition code (predicate)

o All instructions are scheduled for execution

o Predicate true: executed normally
o Predicate false: do not write results, do not evaluate addresses, do
not read operands
m Compiler may use branch predication for if or switch statements

m Unroll loops yourself (or use #pragma unroll for NVIDIA)
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Coalesced Memory Accesses

Simple Access Pattern

m Can be fetched in a single 64-byte
transaction (red rectangle)

m Could also be permuted *

Sequential but Misaligned Access

m Fall into single 128-byte segment:
single 128-byte transaction,
else: 64-byte transaction + 32-
byte transaction *

Strided Accesses

m Depending on stride from 1 (here)
up to 16 transactions *

* 16 transactions with compute capability 1.1

ParProg | GPU Computing | FF2013
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Use Caching: Local, Texture, Constant

49
Local Memory
m Memory latency roughly 100x lower than global memory latency

m Small, no coalescing problems, prone to memory bank conflicts

Texture Memory
m 2-dimensionally cached, read-only

m Can be used to avoid uncoalesced loads
form global memory

m Used with the image data type 192 | 193 | 194 | 195

67

128 | 129 | 130 | 131

Constant Memory
m Lineary cached, read-only, 64 KB
m as fast as reading from a register for the same address

m Can be used for big lists of input arguments



Memory Bank Conflicts
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m Access to (Shared) Memory is implemented
via hardware memory banks

m If a thread accesses a memory address this
is handled by the responsible memory
bank

m Simple Access Patterns like this one are
fetched in a single transaction

[8]

Thread 0

Address 128

Thread 1

Address 132

Thread 2

Address 136

Thread 3

Address 140

Thread 4

Address 144

Thread 5

Address 148

Thread &

Address 152

Thread 7

Address 156

Thread 8

Address 160

Thread 9

Address 164

Thread 10

Address 168

Thread 11

Address 172

Thread 12

Address 176

Thread 13

Address 180

Thread 14

Address 184

Thread 15

Address 188




Memory Bank Conflicts
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Permuted Memory Access (left)

m Still one transaction on
cards with compute
capability >=1.2;
otherwise 16 transactions
are required

Strided Memory Access (right)

m Still one transaction on
cards with compute
capability >=1.2;
otherwise 16 transactions
are required

[8]
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Memory Bank Conflicts
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Bank conflicts

m Left figure: 2 bank
conflicts — resulting
bandwidth is 2 of the
original bandwidth

m Right figure: 8 bank
conflicts — resulting
bandwidth is 1/8 of the
original bandwidth

[8]
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Sizing:

What is the right execution layout?
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m Local work item count should be a multiple of native execution

size (NVIDIA 32, AMD 64), but not to big

m Number of work groups should be multiple of the number of

multiprocessors (hundreds or thousands of work groups)

m Can be configured in 1-, 2- or 3-dimensional layout: consider

access patterns and caching

m Balance between latency hiding
and resource utilization

m Experimenting is

req u I red | NDRange size G,

[
I

.|
1

NDRange size Gy

ParProg | GPU Computing | FF2013

work-group size Sx

work-group (W, wy)

work-item

Wy Sx-s‘. wy sva,,' s

( s ) =10 0
‘Sx,by o, o)

work-item
Gia g

Wy Sy#Sy . Wy, S#8)

Sy sy, = 'bx-', o)

Sy, 'y

work-item
Wy Sy*5, wy Syosy

s )={08.,1)
s,)=(0 y

work-item

w, S5, w, Sy’s‘/

s)=(5-18-1)

(55 5,0 =(5,¢1. S

w

ork-group size Sy

[4]
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m Single precision floats provide best performance

m Use shift operations to avoid expensive division and modulo calculations
m Special compiler flags

m AMD has native vector type implementation; NVIDIA is scalar

m Use the native math library whenever speed trumps precision

Functions | Throughput

single-precision floating-point add, 8 operations per clock cycle
multiply, and multiply-add

single-precision reciprocal, 2 operations per clock cycle
reciprocal square root, and
native_logf(x)

native_sin, native_cos, native_exp 1 operation per clock cycle
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