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The Power of GPU Compute Devices 

ParProg | GPU Computing | FF2013 

5 

Fluids NBody 

RadixSort 



Wide Varity of Application Domains 
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Why GPU Compute Devices? 
Short Term View: Cheap Performance 

Performance 

 

 

 

 

 

 

 

 

Energy / Price 

■ Cheap to buy and to maintain 

■ GFLOPS per watt: Fermi 1,5 / Keppler 5 / Maxwell 15 
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Problem Size (Number of Sudoku Places) 

Intel E8500 CPU

AMD R800 GPU

NVIDIA GT200 GPU

lower means faster 



Why GPU Compute Devices? 
Middle Term View: More Performance 
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Why GPU Compute Devices? 
Long Term View: Hybrid Computing 

Dealing with massivly multi-core: 

■ New architectures are evaluated (Intel SCC) 

■ Accelerators that accompany common general 

purpose CPUs (Hybrid Systems) 

 

Hybrid Systems 

■ GPU Compute Devices:  

High Performance Computing (3 of top 5 

supercomputers are GPU-based!),  

Business Servers, Home/Desktop Computers, 

Mobile and Embedded Systems 

■ Special-Purpose Accelerators: 

(de)compression, XML parsing, (en|de)cryption, 

regular expression matching 
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History of GPU Computing 
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• 1980s-1990s; configurable, not programmable; 
first APIs (DirectX, OpenGL); Vertex Processing 

Fixed Function 
Graphic Pipelines 

• Since 2001: APIs for Vertex Shading, Pixel 
Shading and access to texture; DirectX9 

Programmable Real-
Time Graphics 

• 2006: NVIDIAs G80; unified processors arrays; 
three programmable shading stages; DirectX10 

Unified Graphics and 
Computing Processors 

• compute problem as native graphic operations; 
algorithms as shaders; data in textures 

General Purpose GPU 
(GPGPU) 

• Programming CUDA; shaders programmable; 
load and store instructions; barriers; atomics 

GPU Computing 



CPU vs. GPU Architecture 
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Open Compute Language (OpenCL) 
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AMD 

ATI 

NVIDIA 

Intel 

Apple 

Merged, needed 
commonality across 
products 

GPU vendor – wants 
to steal market 
share from CPU 

Was tired of recoding 
for many core, GPUs. 
Pushed vendors to 
standardize. 

CPU vendor – wants 
to steal market 
share from GPU 

Wrote 
a 

draft 
straw 
man 
API 

Khronos 
Compute 

Group 
formed 

Ericsson 

Nokia 

IBM 

Sony 

Blizzard 

Texas 
Instruments 

… 
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OpenCL Platform Model 

 

 

 

 

 

 

 

 

 

 

 

■ OpenCL exposes CPUs, GPUs, and other Accelerators as “devices” 

■ Each “device” contains one or more “compute units”, i.e. cores, SMs,... 

■ Each “compute unit” contains one or more SIMD “processing elements” 
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OpenCL Execution Model 

■ Parallel work is submitted to devices by launching kernels 

■ Kernels run over global dimension index ranges (NDRange), broken up 

into “work groups”, and “work items” 

■ Work items executing within the same work group can synchronize with 

each other with barriers or memory fences 

■ Work items in different work groups can’t sync with each other, except 

by launching a new kernel 
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OpenCL Execution Model 

 

 

 

 

 

 

 

 

 

 

 

 

An example of an NDRange index space showing work-items, their global IDs 

and their mapping onto the pair of work-group and local IDs. 
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OpenCL Execution Model 

An OpenCL kernel is executed by an array of work items. 

■ All work items run the same code (SPMD) 

■ Each work item has an index that it uses to compute memory 

addresses and make control decisions 
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Work Groups: Scalable Cooperation 

Divide monolithic work item array into work groups 

■ Work items within a work group cooperate via shared 

memory, atomic operations and barrier synchronization 

■ Work items in different work groups cannot cooperate 
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OpenCL Memory Architecture 

 

Private  

Per work-item 

 

Local  

Shared within 

a workgroup 

 

Global/ 

Constant 

Visible to  

all workgroups 

 

Host Memory 

On the CPU 
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OpenCL Memory Architecture 

■ Memory management is explicit: you must move data from host 

→ global → local… and back 
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Memory 
Type 

Keyword Description/Characteristics 

Global 
Memory 

__global Shared by all work items; read/write; may be 
cached (modern GPU), else slow; huge 

Private 
Memory 

__private For local variables; per work item; may be 
mapped onto global memory (Arrays on GPU) 

Local 
Memory 

__local Shared between workitems of a work group; 
may be mapped onto global memory (not 
GPU), else fast; small 

Constant 
Memory 

__constant Read-only, cached; add. special kind for GPUs: 
texture memory 



Live Demo 
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Development Support 

Software development kits: NVIDIA and AMD; Windows and Linux 

 

Special libraries: AMD Core Math Library, BLAS and FFT libraries by NVIDIA, 

OpenNL for numerics and CULA for linear algebra; NVIDIA Performance 

Primitives library: a sink for common GPU accelerated algorithms 

 

Profiling and debugging tools: 

■ NVIDIAs Parallel Nsight for Microsoft Visual Studio 

■ AMDs ATI Stream Profiler 

■ AMDs Stream KernelAnalyzer:  

 displays GPU assembler code, detects execution bottlenecks 

■ gDEBugger (platform-independent) 

 

Big knowledge bases with tutorials, examples, articles, show cases, and 

developer forums 
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GPU Computing Platforms 

AMD 

R700, R800, R900 

 

 

 

 

NVIDIA 

G80, G92, GT200, GF100, GF110 

 

Geforce, Quadro, 

Tesla, ION 
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GF10 
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GPU 
Hardware 
in Detail 
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GF100 
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GF100 

L2 Cache 



GF100 
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GF100 



GF100 
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GF100 



GF100 
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… [9] 

GF100 



GF100 
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GF100 



GT200 – previous architecture 
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Simpler architecture, but same principles 

 

Several Work Groups reside on one SM 

■ Amount depends on available resources (Shared 

Memory (=Local Memory in OpenCL), Registers) 

■ More Work Groups → better latency hiding 

□ Latencies occur for memory accesses, 

pipelined floating-point arithmetic and branch 

instructions 

 

Thread execution in “Warps” (called “wavefronts” on AMD) 

■ Native execution size (32 Threads for NVIDIA) 

■ Zero-Overhead Thread Scheduling: If one warp 

stalls (accesses memory) next warp is selected for 

execution 

 

Instruction Cache 

Constant Cache 

Warp Scheduler 
and Registers 



Warp Execution Example 

Application creates 200.000 „Tasks“ 

 → Global Work Group Size: 200.000 Work Items 

 

Programmer decides to use a Local Work Group Size of 100 Work Items 

 → Number of Work Groups: 2.000 Work Groups 

 

One Work Item requires 10 registers and 20 byte of Shared Memory; a SM has 

16 KB of Shared Memory and 16.384 registers 

 → Number of Work Items per SM: 16KB/20B = 819 Work Items 

 → Number of Work Groups per SM: 819/100 = 8 Work Groups per SM 

 

Even if 7 Work Groups are waiting for memory, 1 can be executed. 
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Warp Execution Example 

Each of the Work Groups contains 100 Work Items; the Warp Size (native 

execution size of a SM) is 32 

 → Number of Threads Executed in parallel: 32 Threads 

 → Number of „Rounds“ to execute a Work Group: 100/32 = 4 

 → Threads running in the first 3 rounds: 32 Threads 

 → Threads running in the last round: 100-32*4=4 Threads 

 

 

If one of the threads accesses memory: whole warp stalls 

If one of the threads follows a differing execution path: it is executed in an 

additional seperate round 
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Compute Capability by version 

 

 

 

 

 

 

 

 

 

 

 

Plus: varying amounts of cores, global memory sizes, bandwidth, 

clock speeds (core, memory), bus width, memory access penalties … 

ParProg | GPU Computing | FF2013 

43 

1.0 1.1 1.2 1.3 2.0 

double precision floating 
point operations 

No Yes 

caches No Yes 

max # concurrent kernels 1 8 

max # threads per block 512 1024 

max # Warps per MP 24 32 48 

max # Threads per MP 768 1024 1536 

register count (32 bit) 8192 16384 32768 

max shared mem per MP 16KB 48KB 

# shared memory banks 16 32 



The Power of GPU Computing 
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Problem Size (Number of Sudoku Places) 
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* less is better 

big performance gains for small problem sizes 



The Power of GPU Computing 
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Problem Size (Number of Sudoku Places) 

Intel

E8500
CPU

AMD
R800
GPU

NVIDIA
GT200
GPU

* less is better 

small/moderate performance gains for large problem sizes 

→ further optimizations needed 



Best Practices for Performance Tuning 

•Asynchronous, Recompute, Simple Algorithm Design 

•Chaining, Overlap Transfer & Compute Memory Transfer 

•Divergent Branching, Predication Control Flow 

• Local Memory as Cache, rare resource Memory Types 

•Coalescing, Bank Conflicts Memory Access 

•Execution Size, Evaluation Sizing 

•Shifting, Fused Multiply, Vector Types Instructions 

•Native Math Functions, Build Options Precision 
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Divergent Branching and Predication 

Divergent Branching 

■ Flow control instruction (if, switch, do, for, while) can result in 

different execution paths 

 Data parallel execution → varying execution paths will be serialized 

 Threads converge back to same execution path after completion 

 

Branch Predication 

■ Instructions are associated with a per-thread condition code (predicate) 

□ All instructions are scheduled for execution  

□ Predicate true: executed normally 

□ Predicate false: do not write results, do not evaluate addresses, do 

not read operands 

■ Compiler may use branch predication for if or switch statements 

■ Unroll loops yourself (or use #pragma unroll for NVIDIA) 
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Coalesced Memory Accesses 

Simple Access Pattern 

■ Can be fetched in a single 64-byte 

transaction (red rectangle) 

■ Could also be permuted * 

 

Sequential but Misaligned Access 

■ Fall into single 128-byte segment: 

single 128-byte transaction,  

else: 64-byte transaction + 32-

byte transaction * 

 

Strided Accesses 

■ Depending on stride from 1 (here) 

up to 16 transactions * 

* 16 transactions with compute capability 1.1 
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Use Caching: Local, Texture, Constant 

Local Memory 

■ Memory latency roughly 100x lower than global memory latency 

■ Small, no coalescing problems, prone to memory bank conflicts 

 

Texture Memory 

■ 2-dimensionally cached, read-only 

■ Can be used to avoid uncoalesced loads  

form global memory 

■ Used with the image data type 

 

Constant Memory 

■ Lineary cached, read-only, 64 KB 

■ as fast as reading from a register for the same address 

■ Can be used for big lists of input arguments 
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Memory Bank Conflicts 

■ Access to (Shared) Memory is implemented 

via hardware memory banks 

 

■ If a thread accesses a memory address this 

is handled by the responsible memory 

bank 

 

 

■ Simple Access Patterns like this one are 

fetched in a single transaction 
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Memory Bank Conflicts 

Permuted Memory Access (left) 

■ Still one transaction on 

cards with compute 

capability >=1.2; 

otherwise 16 transactions 

are required 

 

 

Strided Memory Access (right) 

■ Still one transaction on 

cards with compute 

capability >=1.2; 

otherwise 16 transactions 

are required 
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Memory Bank Conflicts 

Bank conflicts 

 

■ Left figure: 2 bank 

conflicts → resulting 

bandwidth is ½ of the 

original bandwidth 

 

■ Right figure: 8 bank 

conflicts → resulting 

bandwidth is 1/8 of the 

original bandwidth 
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Sizing: 
What is the right execution layout? 
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■ Local work item count should be a multiple of native execution 

size (NVIDIA 32, AMD 64), but not to big 

■ Number of work groups should be multiple of the number of 

multiprocessors (hundreds or thousands of work groups) 

 

■ Can be configured in 1-, 2- or 3-dimensional layout: consider 

access patterns and caching 

■ Balance between latency hiding  

and resource utilization 

 

■ Experimenting is 

required! 



Instructions and Precision 

■ Single precision floats provide best performance 

■ Use shift operations to avoid expensive division and modulo calculations 

■ Special compiler flags 

■ AMD has native vector type implementation; NVIDIA is scalar 

■ Use the native math library whenever speed trumps precision 
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Functions Throughput 

single-precision floating-point add, 
multiply, and multiply-add  

8 operations per clock cycle 

single-precision reciprocal, 
reciprocal square root, and  
native_logf(x)  

2 operations per clock cycle 

native_sin, native_cos, native_exp  1 operation per clock cycle 



Further Readings 

 

http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/ 
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General-Purpose GPU Programming . 1 ed. Addison-Wesley Professional. 

■ [4] Munshi, A. (ed.), 2010. The OpenCL Specification - v1.1. The Khronos Group Inc. 

■ [5] Mattson, T., 2010. The Future of Many Core Computing: Software for 

many core processors. 

■ [6] NVIDIA, 2009. NVIDIA OpenCL Best Practices Guide - Version 2.3. 

■ [7] Rob Farber, 2008. CUDA, Supercomputing for the Masses. Dr. Dobb’s 

■ [8] NVIDIA, 2010. OpenCL Programming for the CUDA Architecture - Version 3.1 

■ [9] Ryan Smith, NVIDIA’s GeForce GTX 480 and GTX 470: 6 Months Late, Was It 

Worth the Wait? 
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