

IT Systems Engineering | Universität Potsdam

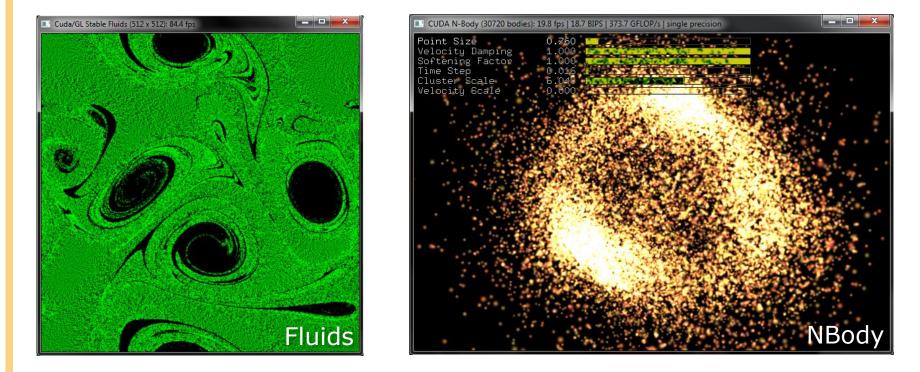
Parallel Programming Concepts

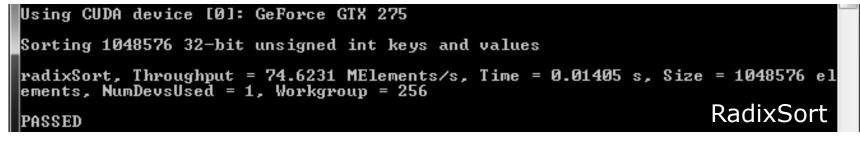
GPU Compute Devices

Frank Feinbube

Operating Systems and Middleware Prof. Dr. Andreas Polze

The Power of GPU Compute Devices





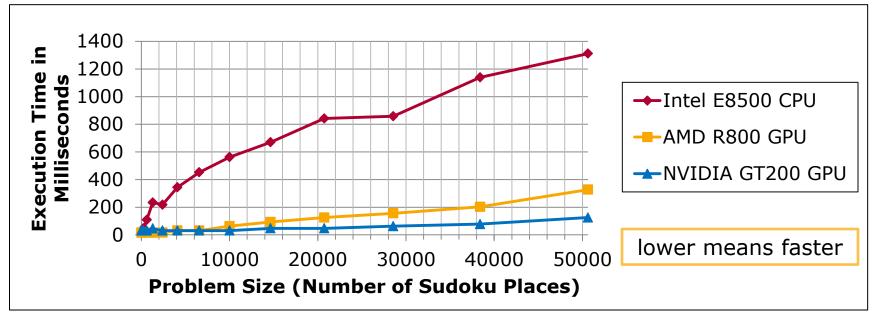
Wide Varity of Application Domains

6

Why GPU Compute Devices? Short Term View: Cheap Performance

Performance

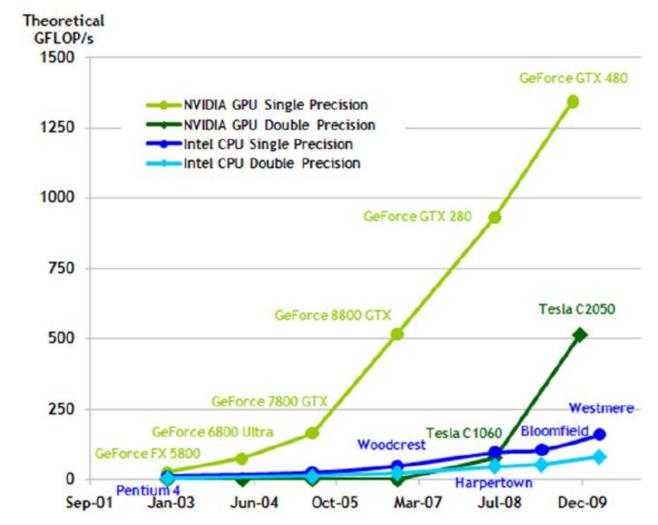
7



Energy / Price

- Cheap to buy and to maintain
- GFLOPS per watt: Fermi 1,5 / Keppler 5 / Maxwell 15

Why GPU Compute Devices? Middle Term View: More Performance



ParProg | GPU Computing | FF2013

8

Why GPU Compute Devices? Long Term View: Hybrid Computing

Dealing with massivly multi-core:

- New architectures are evaluated (Intel SCC)
- Accelerators that accompany common general purpose CPUs (Hybrid Systems)

Hybrid Systems

GPU Compute Devices:

High Performance Computing (3 of top 5 supercomputers are GPU-based!), Business Servers, Home/Desktop Computers, Mobile and Embedded Systems

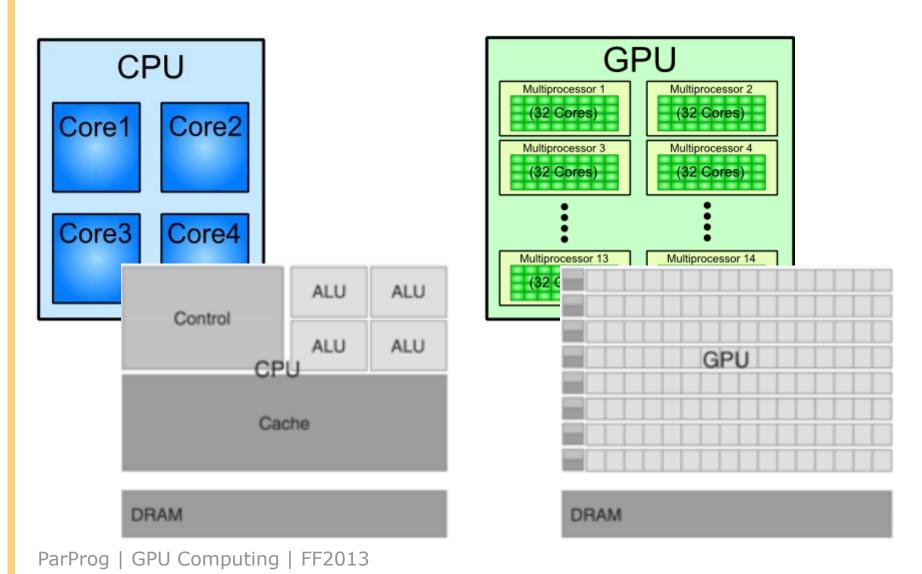
Special-Purpose Accelerators: (de)compression, XML parsing, (en|de)cryption, regular expression matching

History of GPU Computing

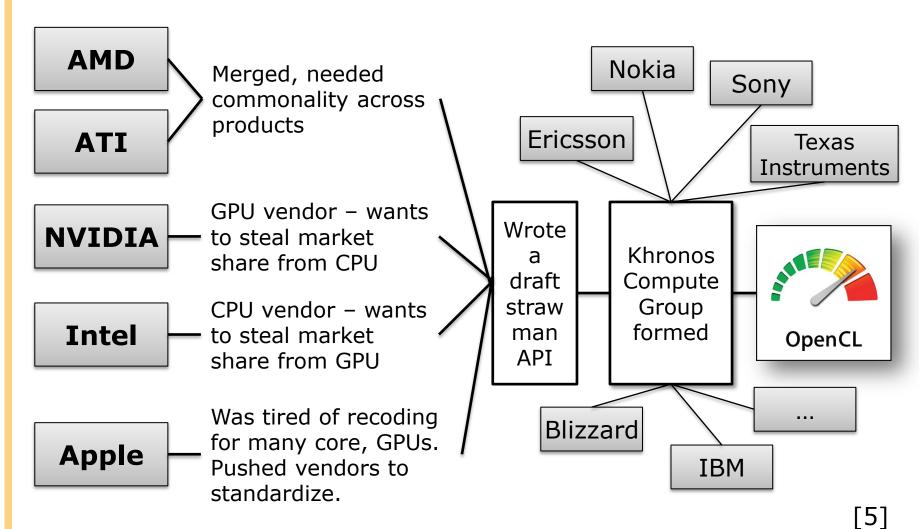
Fixed Function Graphic Pipelines	 1980s-1990s; configurable, not programmable; first APIs (DirectX, OpenGL); Vertex Processing
Programmable Real- Time Graphics	 Since 2001: APIs for Vertex Shading, Pixel Shading and access to texture; DirectX9
Unified Graphics and Computing Processors	• 2006: NVIDIAs G80; unified processors arrays; three programmable shading stages; DirectX10
General Purpose GPU (GPGPU)	 compute problem as native graphic operations; algorithms as shaders; data in textures
GPU Computing	 Programming CUDA; shaders programmable; load and store instructions; barriers; atomics

CPU vs. GPU Architecture

11

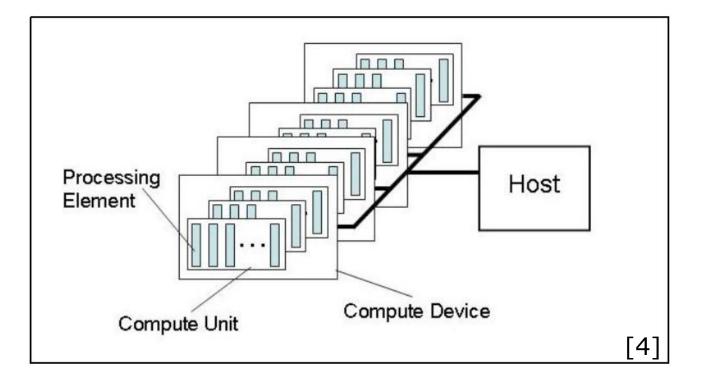


Open Compute Language (OpenCL)



OpenCL Platform Model

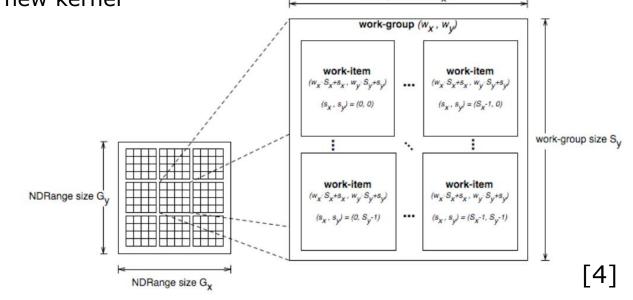
15



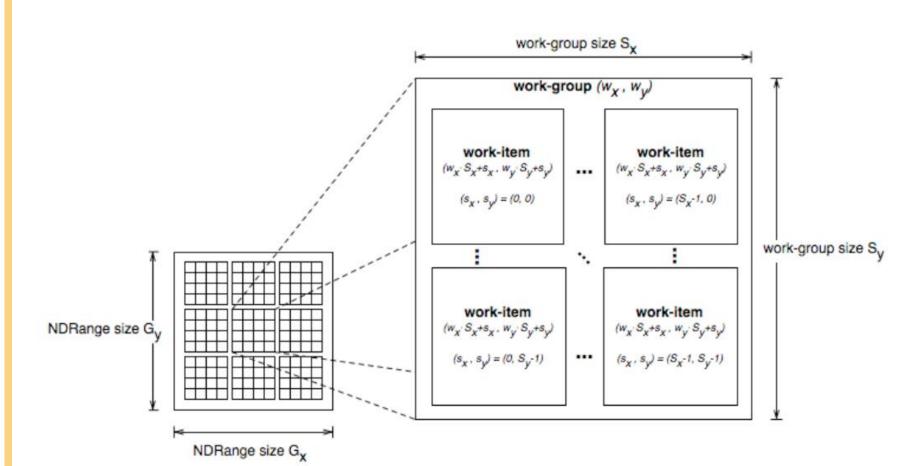
- OpenCL exposes CPUs, GPUs, and other Accelerators as "devices"
- Each "device" contains one or more "compute units", i.e. cores, SMs,...
- Each "compute unit" contains one or more SIMD "processing elements"

OpenCL Execution Model

- Parallel work is submitted to devices by launching kernels
- Kernels run over global dimension index ranges (NDRange), broken up into "work groups", and "work items"
- Work items executing within the same work group can synchronize with each other with barriers or memory fences
- Work items in different work groups can't sync with each other, except by launching a new kernel



OpenCL Execution Model

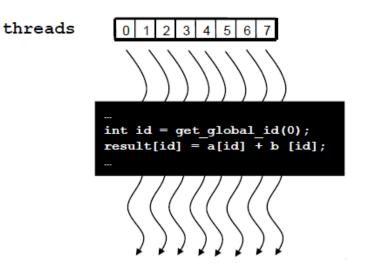


An example of an NDRange index space showing work-items, their global IDs and their mapping onto the pair of work-group and local IDs. [4]

19

An OpenCL kernel is executed by an array of work items.

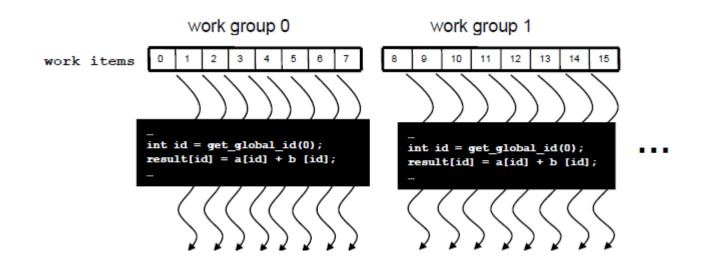
- All work items run the same code (SPMD)
- Each work item has an index that it uses to compute memory addresses and make control decisions



[1]

Divide monolithic work item array into work groups

- Work items within a work group cooperate via shared memory, atomic operations and barrier synchronization
- Work items in different work groups cannot cooperate



OpenCL Memory Architecture



22

Memory management is explicit: you must move data from host
 \rightarrow global \rightarrow local... and back

Memory Type	Keyword	Description/Characteristics
Global Memory	global	Shared by all work items; read/write; may be cached (modern GPU), else slow; huge
Private Memory	private	For local variables; per work item; may be mapped onto global memory (Arrays on GPU)
Local Memory	local	Shared between workitems of a work group; may be mapped onto global memory (not GPU), else fast; small
Constant Memory	constant	Read-only, cached; add. special kind for GPUs: texture memory

Live Demo

OpenCL "Hello Device"

OpenCL "Sudoku Validator"

Software development kits: NVIDIA and AMD; Windows and Linux

Special libraries: AMD Core Math Library, BLAS and FFT libraries by NVIDIA, OpenNL for numerics and CULA for linear algebra; NVIDIA Performance Primitives library: a sink for common GPU accelerated algorithms

Profiling and debugging tools:

- NVIDIAs Parallel Nsight for Microsoft Visual Studio
- AMDs ATI Stream Profiler
- AMDs Stream KernelAnalyzer: displays GPU assembler code, detects execution bottlenecks
- gDEBugger (platform-independent)

Big knowledge bases with tutorials, examples, articles, show cases, and developer forums

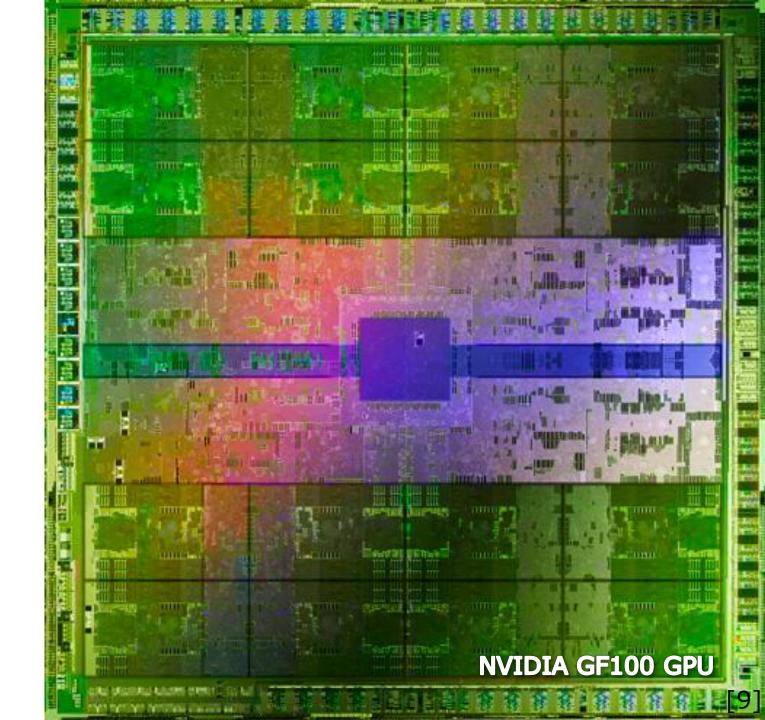
GPU Computing Platforms

AMD R700, R800, R900

G80, G92, GT200, GF100, GF110

Geforce, Quadro, Tesla, ION NVIDIA Tesla

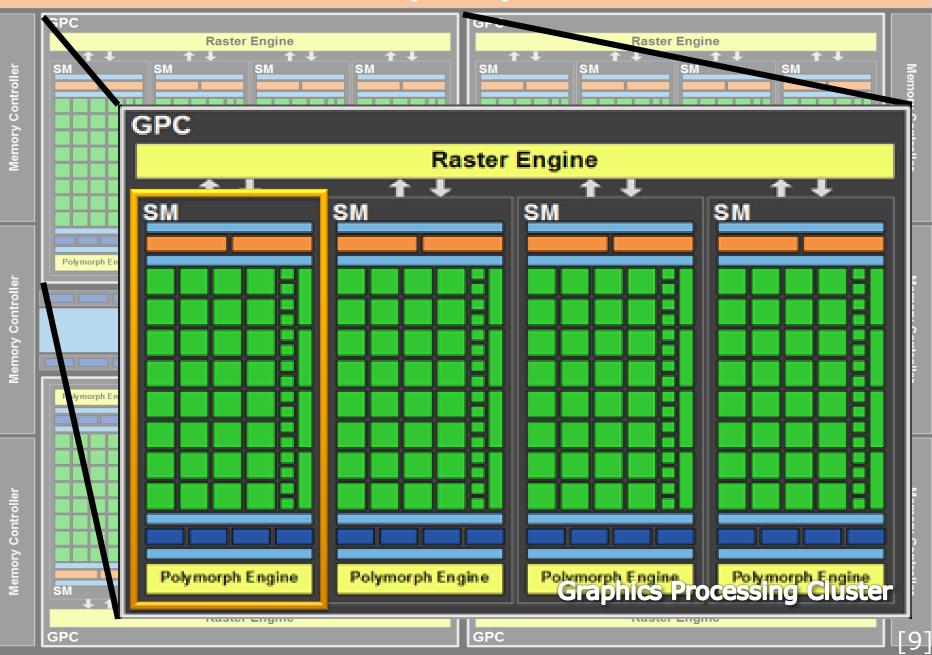
GPU Hardware in Detail

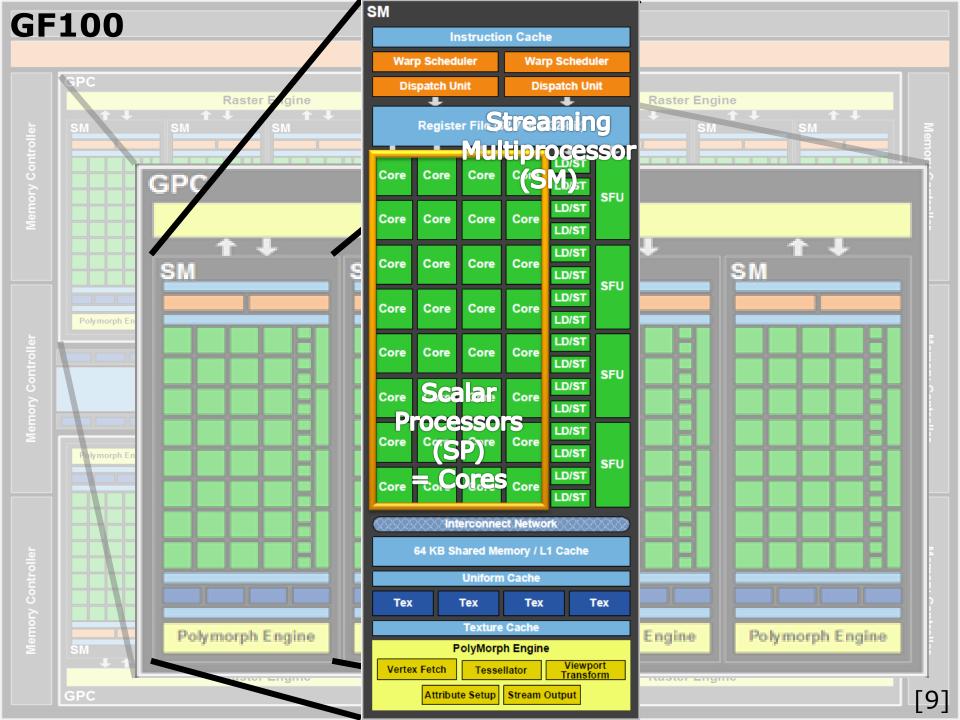


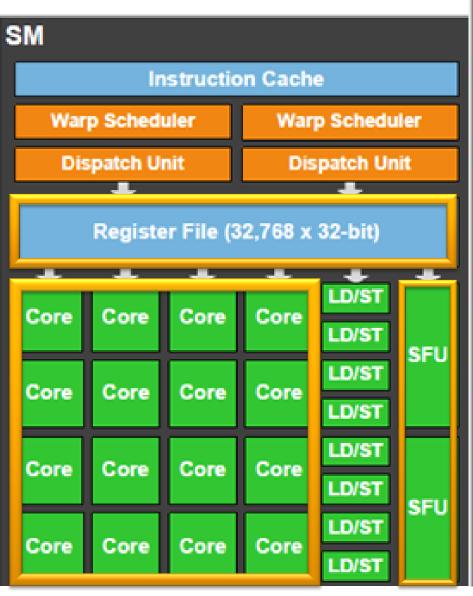
Host Interface

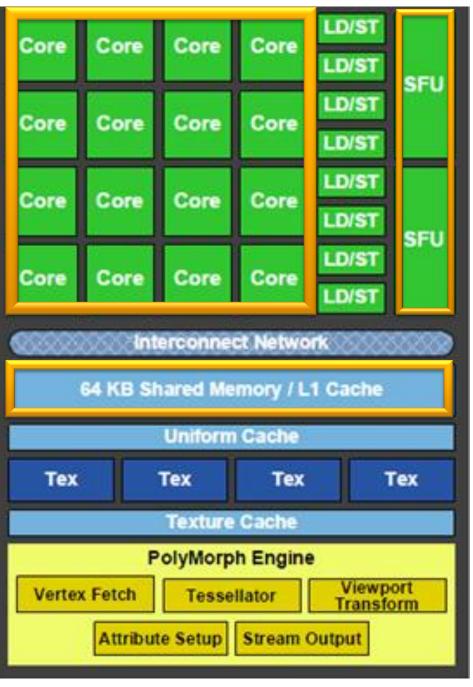
Host Interface

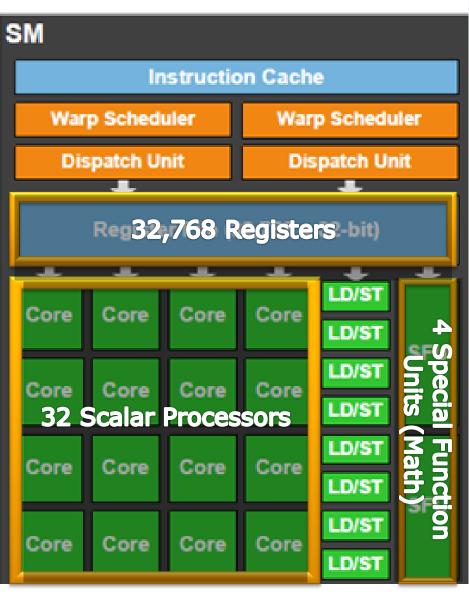
GigaThread Engine

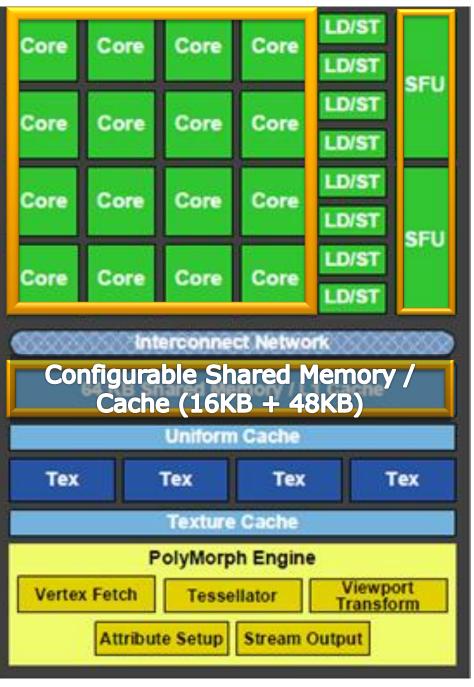












GT200 – previous architecture

40

Simpler architecture, but same principles

Several Work Groups reside on one SM

- Amount depends on available resources (Shared Memory (=Local Memory in OpenCL), Registers)
- More Work Groups → better latency hiding
 - Latencies occur for memory accesses, pipelined floating-point arithmetic and branch instructions

Thread execution in "Warps" (called "wavefronts" on AMD)

- Native execution size (32 Threads for NVIDIA)
- Zero-Overhead Thread Scheduling: If one warp stalls (accesses memory) next warp is selected for execution

Streaming Multiprocessor (SM) Instruction Cache Warp Scheduler and Registers **Constant Cache** SP SP SFU SFU Shared Memory

Application creates 200.000 "Tasks"

 \rightarrow Global Work Group Size: 200.000 Work Items

Programmer decides to use a Local Work Group Size of 100 Work Items

 \rightarrow Number of Work Groups: 2.000 Work Groups

One Work Item requires 10 registers and 20 byte of Shared Memory; a SM has 16 KB of Shared Memory and 16.384 registers

 \rightarrow Number of Work Items per SM: 16KB/20B = 819 Work Items

 \rightarrow Number of Work Groups per SM:819/100 = 8 Work Groups per SM

Even if 7 Work Groups are waiting for memory, 1 can be executed.

42

Each of the Work Groups contains 100 Work Items; the Warp Size (native execution size of a SM) is 32

- \rightarrow Number of Threads Executed in parallel: 32 Threads
- \rightarrow Number of "Rounds" to execute a Work Group: 100/32 = 4
- \rightarrow Threads running in the first 3 rounds: 32 Threads
- \rightarrow Threads running in the last round: 100-32*4=4 Threads

If one of the threads accesses memory: whole warp stalls

If one of the threads follows a differing execution path: it is executed in an additional seperate round

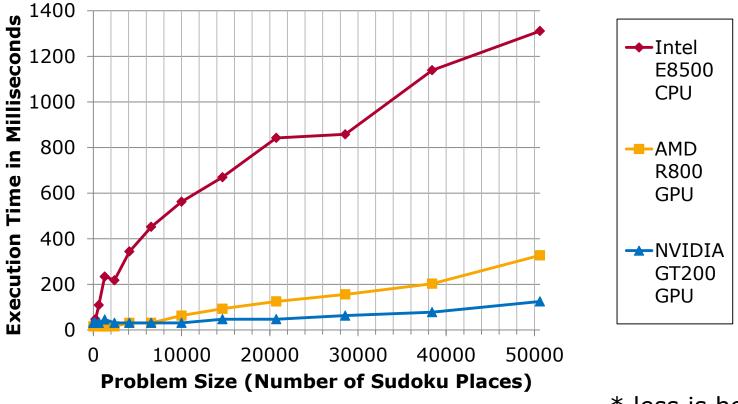
Compute Capability by version

	1.0	1.1	1.2	1.3	2.0
double precision floating point operations	No		Yes		
caches	No			Yes	
max # concurrent kernels	1			8	
max # threads per block	512			1024	
max # Warps per MP	2	4	3	2	48
max # Threads per MP	76	58	10	24	1536
register count (32 bit)	81	92	163	384	32768
max shared mem per MP	16KB		48KB		
# shared memory banks	16			32	

Plus: varying amounts of cores, global memory sizes, bandwidth, clock speeds (core, memory), bus width, memory access penalties ...

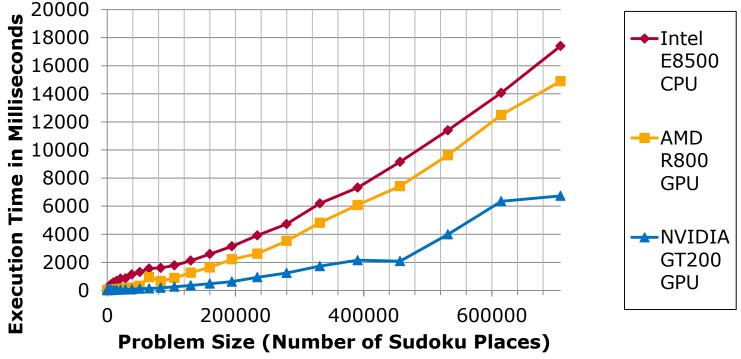
The Power of GPU Computing

big performance gains for small problem sizes



^{*} less is better

small/moderate performance gains for large problem sizes \rightarrow further optimizations needed



^{*} less is better

Algorithm Design	 Asynchronous, Recompute, Simple
Memory Transfer	• Chaining, Overlap Transfer & Compute
Control Flow	 Divergent Branching, Predication
Memory Types	 Local Memory as Cache, rare resource
Memory Access	 Coalescing, Bank Conflicts
Sizing	 Execution Size, Evaluation
Instructions	 Shifting, Fused Multiply, Vector Types
Precision	Native Math Functions, Build Options

Divergent Branching

- Flow control instruction (if, switch, do, for, while) can result in different execution paths
- \blacktriangleright Data parallel execution \rightarrow varying execution paths will be serialized
- > Threads converge back to same execution path after completion

Branch Predication

- Instructions are associated with a per-thread condition code (predicate)
 - All instructions are scheduled for execution
 - Predicate true: executed normally
 - Predicate false: do not write results, do not evaluate addresses, do not read operands
- Compiler may use branch predication for if or switch statements
- Unroll loops yourself (or use #pragma unroll for NVIDIA)

Coalesced Memory Accesses

Simple Access Pattern

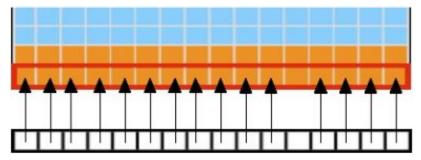
- Can be fetched in a single 64-byte transaction (red rectangle)
- Could also be permuted *

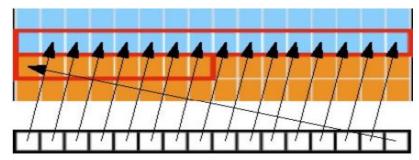
Sequential but Misaligned Access

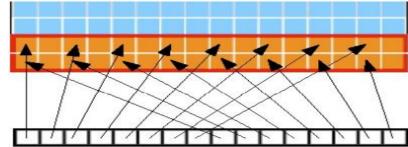
 Fall into single 128-byte segment: single 128-byte transaction, else: 64-byte transaction + 32byte transaction *

Strided Accesses

- Depending on stride from 1 (here) up to 16 transactions *
- * 16 transactions with compute capability 1.1





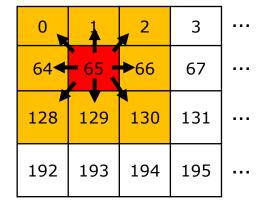


Local Memory

- Memory latency roughly 100x lower than global memory latency
- Small, no coalescing problems, prone to memory bank conflicts

Texture Memory

- 2-dimensionally cached, read-only
- Can be used to avoid uncoalesced loads form global memory
- Used with the image data type



Constant Memory

- Lineary cached, read-only, 64 KB
- as fast as reading from a register for the same address
- Can be used for big lists of input arguments

Memory Bank Conflicts

50

- Access to (Shared) Memory is implemented via hardware memory banks
- If a thread accesses a memory address this is handled by the responsible memory bank

 Simple Access Patterns like this one are fetched in a single transaction

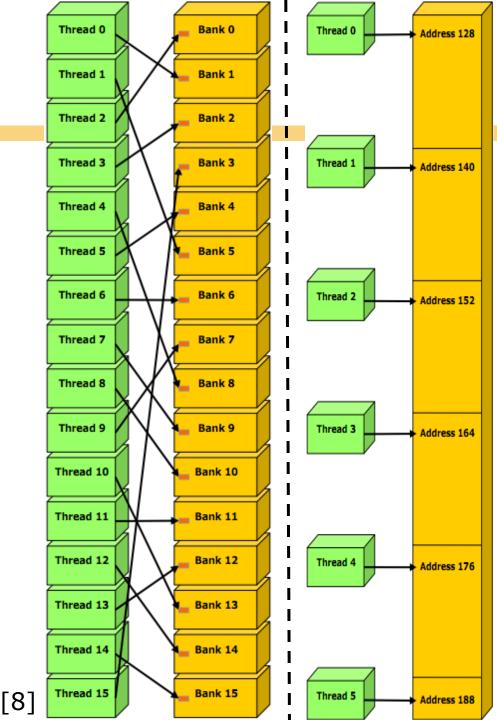
Memory Bank Conflicts

Permuted Memory Access (left)

 Still one transaction on cards with compute capability >=1.2; otherwise 16 transactions are required

Strided Memory Access (right)

 Still one transaction on cards with compute capability >=1.2; otherwise 16 transactions are required

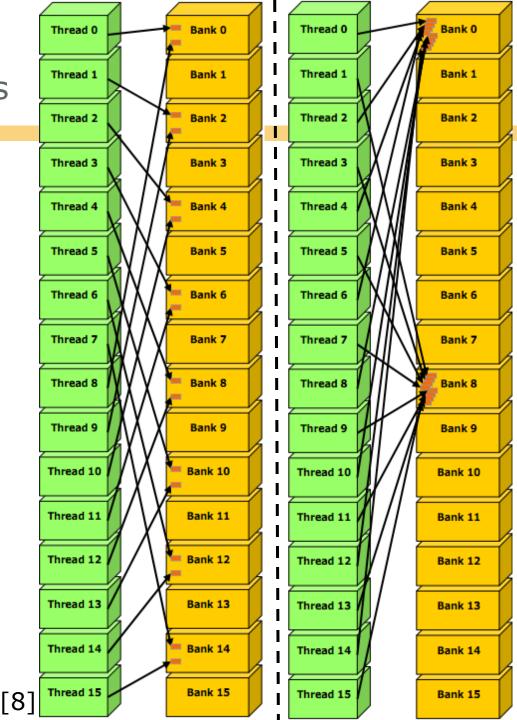


Memory Bank Conflicts

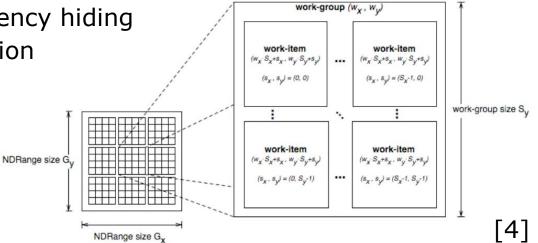
52

Bank conflicts

- Left figure: 2 bank conflicts → resulting bandwidth is ½ of the original bandwidth
- Right figure: 8 bank conflicts → resulting bandwidth is 1/8 of the original bandwidth



- Local work item count should be a multiple of native execution size (NVIDIA 32, AMD 64), but not to big
- Number of work groups should be multiple of the number of multiprocessors (hundreds or thousands of work groups)
- Can be configured in 1-, 2- or 3-dimensional layout: consider access patterns and caching
- Balance between latency hiding and resource utilization
- Experimenting is required!



Instructions and Precision

- Single precision floats provide best performance
- Use shift operations to avoid expensive division and modulo calculations
- Special compiler flags
- AMD has native vector type implementation; NVIDIA is scalar
- Use the native math library whenever speed trumps precision

Functions	Throughput
single-precision floating-point add, multiply, and multiply-add	8 operations per clock cycle
single-precision reciprocal, reciprocal square root, and native_logf(x)	2 operations per clock cycle
native_sin, native_cos, native_exp	1 operation per clock cycle
Prog CPU Computing FE2013	

55

http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/

- [1] Kirk, D. B. & Hwu, W. W., 2010. Programming Massively Parallel Processors: A Hands-on Approach. 1 ed. Morgan Kaufmann.
- [2] Herlihy, M. & Shavit, N., 2008. *The Art of Multiprocessor Programming*.
- [3] Sanders, J. & Kandrot, E., 2010. CUDA by Example: An Introduction to General-Purpose GPU Programming . 1 ed. Addison-Wesley Professional.
- [4] Munshi, A. (ed.), 2010. The OpenCL Specification v1.1. The Khronos Group Inc.
- [5] Mattson, T., 2010. The Future of Many Core Computing: Software for many core processors.
- [6] NVIDIA, 2009. NVIDIA OpenCL Best Practices Guide Version 2.3.
- [7] Rob Farber, 2008. CUDA, Supercomputing for the Masses. Dr. Dobb's
- [8] NVIDIA, 2010. OpenCL Programming for the CUDA Architecture Version 3.1
- [9] Ryan Smith, NVIDIA's GeForce GTX 480 and GTX 470: 6 Months Late, Was It Worth the Wait?