Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Parallel Programming Concepts

GPU Compute Devices

Frank Feinbube

Operating Systems and Middleware
Prof. Dr. Andreas Polze

Hasso
Plattner

The Power of GPU Compute Devices Institut

7 | Cuda/GL Stable Fluids (5

Soften
Time ¢

.Uﬂing CUDA device [B]1: GeForce GTH 275
Sorting 1848576 32-hit wunsigned int keys and values

radixSort, Throughput = 74.6231 MElementzsz, Time = B.01485 =, Size = 1848576 el
ements, MumDevzlUsed = 1, Workgroup = 256

PASSED RadixSort

Hasso
Wide Varity of Application Domains ﬂ institut

Temad ke Crmpic card

Gn;c P R E.’ig'_:m'q

Bioinformatics

Figurs 1, Madel of the graphics. pipeline

Statistical constraints on E i Braphic processors to speed-
binary black hole inspi... N up simulations for the...

Rasearch
Medical
Video and Photo |

' Enargy
Cmatch: Fast Bxact String G is |
Matching on the GPU : IFD nNARNEE Astrophysics (GraCCA)

Military

Braphic-Card Cluster for

oooo

[LU3J S[EIUOWINS9] B]591/109lq0/ W0 BIPIAU MMM //:d13y
[MaUu (se[J sdde epnd/10alqo/Wod BIpiAu MMM //:d13y

Quantum Chemistry Two- Accelerating Statistical Static Distributed Password Folding@home
Electron Integral Evolution Timing Analysis Recovery
260 x

ParProg | GPU Computing | FF2013

http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/tesla_testimonials.html
http://www.nvidia.com/object/tesla_testimonials.html
http://www.nvidia.com/object/tesla_testimonials.html

Why GPU Compute Devices? ﬂ Hasso
Short Term View: Cheap Performance

Institut

Performance

1400
1200 —

1000 // ——Intel E8500 CPU
800 [P AMD R800 GPU

600
400 rad -+-NVIDIA GT200 GPU

Milliseconds

Execution Time in

200 -
OQ_‘III*I—IIIIIIIIII‘_‘

0 10000 20000 30000 40000 50000
Problem Size (Number of Sudoku Places)

lower means faster

Energy / Price
m Cheap to buy and to maintain
m GFLOPS per watt: Fermi 1,5 / Keppler 5 / Maxwell 15

ParProg | GPU Computing | FF2013

Why GPU Compute Devices? ﬂ?‘%ﬁﬁer
Middle Term View: More Performance

Institut

Theoretical
GFLOP/s
1500

=== NVIDIA GPU Single Precision
1250 ==gp==NVIDIA GPU Double Precision

=== |ntel CPU Single Precision

==t |ntel CPU Double Precision

1000
750
Tesla C2050
500
250 seForce 7800 GTX C—"
5 Harpertown

Pentiuni4
Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

ParProg | GPU Computing | FF2013 [8]

Plattner
Institut

Why GPU Compute Devices? ﬂ Hasso

Long Term View: Hybrid Computing

Dealing with massivly multi-core:
m New architectures are evaluated (Intel SCC)

m Accelerators that accompany common general
purpose CPUs (Hybrid Systems)

Hybrid Systems

m GPU Compute Devices:
High Performance Computing (3 of top 5
supercomputers are GPU-based!),
Business Servers, Home/Desktop Computers,
Mobile and Embedded Systems

m Special-Purpose Accelerators:
(de)compression, XML parsing, (en|de)cryption,
regular expression matching

ParProg | GPU Computing | FF2013

Plattner

Hasso
History of GPU Computing ﬂ Institut

10

Fixed Function e 1980s-1990s; configurable, not programmable;
Graphic Pipelines first APIs (DirectX, OpenGL); Vertex Processing

dyelelr=1nalna 1ol (SHGCE|BI « Since 2001: APIs for Vertex Shading, Pixel
Time Graphics Shading and access to texture; DirectX9

WlallilSe e g=Tolal[eH=1a[¢ Ml « 2006: NVIDIAs G80; unified processors arrays;
®o]nalslfldls[eMdgelalcIYe)gl three programmable shading stages; DirectX10

1 [Sl=| WP Tgelo =M€V « compute problem as native graphic operations;
(GPGPU) algorithms as shaders; data in textures

e Programming CUDA; shaders programmable;
load and store instructions; barriers; atomics

GPU Computing

ParProg | GPU Computing | FF2013

Hasso
Plattner
Institut

CPU vs. GPU Architecture

11

P

Muﬂiimcessur 1 Murljirocesmr 2
Muﬂiimuessur 3 Murljirocessur !

G

ey e —
i i]] e il i ——
e e el]y f— Sy
< e e | | == = g T . S
—
e] pr— f— — | —
m 4 | ;.@— § [
o s g —
=
m Pl Pl e B f—y — f— D—
] e [S S N e ——

el] e s | | el e

ALU
ALU ALU

ParProg | GPU Computing | FF2013

12

Open Compute Language (OpenCL)

AMD

Merged, needed
commonality across

ATI

products

NVIDIA

GPU vendor - wants
— to steal market
share from CPU

Intel

CPU vendor - wants
— to steal market

share from GPU

Apple

Was tired of recoding
___ for many core, GPUs.
Pushed vendors to

standardize.

Hasso
Plattner
Institut

Nokia Sony
Ericsson Texas
\ Instruments
Wrote
a Khronos “g;\ ,
draft Compute _.’ /‘
straw Group
man formed OpenCL
API
Blizzard \
IBM

[5]

15

OpenCL Platform Model

Processing

-
==
—

: (0
Element \ I

Host

Compubé Unit

/

Compute Device

[4]

m OpenCL exposes CPUs, GPUs, and other Accelerators as “devices”

Hasso
Plattner
Institut

m Each “device” contains one or more “compute units”, i.e. cores, SMs,...

m Each “"compute unit” contains one or more SIMD "“processing elements”

ParProg | GPU Computing | FF2013

17

. attner
OpenCL Execution Model Institut

m Parallel work is submitted to devices by launching kernels

m Kernels run over global dimension index ranges (NDRange), broken up
into “work groups”, and “work items”

m Work items executing within the same work group can synchronize with
each other with barriers or memory fences

m Work items in different work groups can’t sync with each other, except
by launching a new kernel work-group size S,

work-group (w,, wy)
work-item work-item
Wy Sy+5y. Wy s_v's," e (Wy S8y Wy Sy‘s_'/
(Sy+ s}; =(0,0) (Sy. s},‘ = 'Sx-'. 0)
it work-group size Sy
work-item work-item
NDRange size Gy (Wy Sy#5y. W, S, #5) (wy Sy, W, 8,45
i L (5. 8,)=0.5,-1) | (5.5)=(5:1.5,1)
- T~ Y.
[o 4
1) 1
NDRange size G []

ParProg | GPU Computing | FF2013

OpenCL Execution Model

18

NDRange size Gy

_—

X

-
I

2

NDRange size G,

work-group size Sx

Hasso
Plattner
Institut

X

work-group (Wx N wy)

work-item

(WX SX.SX . Wy Sy’s.')

(5y.8,) =10.0)

work-item

(wy S+, . wy Syosy;

(Sy s’) = (0, Sy-')

work-item
(W, Sx-»sXA wr Syos:/

Sy syi = (Sx-v. 0)

work-item
(w, Sx‘sx' w), SyQS};

(9 s/: (8,1, Sy-U

work-group size S

An example of an NDRange index space showing work-items, their global IDs
and their mapping onto the pair of work-group and local IDs.
ParProg | GPU Computing | FF2013

y

[4]

Hasso
. Plattner
OpenCL Execution Model E Institut

19
An OpenCL kernel is executed by an array of work items.

m All work items run the same code (SPMD)

m Each work item has an index that it uses to compute memory
addresses and make control decisions

threads 0l1]2]3]4 5|6‘T|

int id = get_global_id[ﬂ];

result[id] = a[id] + b [id];

[1]

Hasso
. Plattner
Work Groups: Scalable Cooperation E Institut

20
Divide monolithic work item array into work groups

m Work items within a work group cooperate via shared
memory, atomic operations and barrier synchronization

m Work items in different work groups cannot cooperate

work group 0 work group 1

work items 0 1 2 3 4 i) g 7 g g 10 11 12 13 14 15

int id = g’Et_g’thal_idtn} H int id = get._glubal_idi.'ﬂ]; -
result[id] = a[id] + b [id]; result[id] = alid] + b [id];

[1]

21

OpenCL Memory Architecture

Hasso
Plattner
Institut

Compute Device

Compute unit 7

!

Local
memory 1

4I— " EE " EE
PE 71 PE M PE 1
Local
memory N

Compute unit Nf

Private Private Private
memory 7 memory M memory 7

Private
Private Per work-item

memory M
PE M Local

5

Shared within
a workgroup

[Global/Constant Memory Data Cache Global/
A A Constant
¥ Visible to

Global Memory all workgroups
4

Constant Memory

Compute Device Memory

Host Memory

[4]

ParProg | GPU Computing | FF2013

On the CPU

ﬂ Hasso
OpenCL Memory Architecture Institut

22

Plattner

m Memory management is explicit: you must move data from host
— global — local... and back

Memory | Keyword
Type

Description/Characteristics

Global
Memory

Private
Memory

Local
Memory

Constant
Memory

__global

___private

___local

__constant

Shared by all work items; read/write; may be
cached (modern GPU), else slow; huge

For local variables; per work item; may be
mapped onto global memory (Arrays on GPU)

Shared between workitems of a work group;
may be mapped onto global memory (not
GPU), else fast; small

Read-only, cached; add. special kind for GPUs:
texture memory

ﬂsﬁi"
Live Demo Institut

31

OpenCL “Hello Device”

OpenCL “Sudoku Validator”

ParProg | GPU Computing | FF2013

atiner
Development Support Institut

32
Software development kits: NVIDIA and AMD; Windows and Linux

Special libraries: AMD Core Math Library, BLAS and FFT libraries by NVIDIA,
OpenNL for numerics and CULA for linear algebra; NVIDIA Performance
Primitives library: a sink for common GPU accelerated algorithms

Profiling and debugging tools:
m NVIDIAs Parallel Nsight for Microsoft Visual Studio
m AMDs ATI Stream Profiler

m AMDs Stream KernelAnalyzer:
displays GPU assembler code, detects execution bottlenecks

m gDEBugger (platform-independent)

Big knowledge bases with tutorials, examples, articles, show cases, and
developer forums

33

GPU Computing Platforms

AMD

AMD
R700, RSOO, RO0O0 The future |s fusion

% 0379 <2 NVIDIA.

G80, G92, GT200, GF100, GF110

Geforce, Quadro,
Tesla, ION

ParProg | GPU Computing | FF2013

Hasso
Plattner
Institut

_ 3
S ==
2 .
L x el “xx_ Ty -
P - - AR
2] % -4
- N
q <.
n ~ ad b LB .
A =
i3 oy A =
2 g
o A 2
B L — N
: > = wv !
" : 3
- - ;2 | :
S
LSt T AN b :
- - b
r wJ y o~ pow
E s 208 -
) 11 -
‘ .
< .
:
T < -
- Syn |
T ———
“ i e P -
] - e 5 -
y ’
Ao E
. - =1 |
o0 L
)
2 ad R
kbl B o 2 WAH WL WA e
T TH T oMt | TR o1

g o NP Sy Sy -

1%

Lol

Host Interface

Memory Controller

Memory Controller

Memory Controller

(@)}
—

GPC

]
=
o
=
w
15
[
ol
%)
©
14

I I D
I EEEEEEEEEEEEE
_—llllllll
M_
(7))

Polymorph Engine

Polymorph Engine

EEEEEEER
()

ENEEEEER

AEEEEEER

EREEEEER
hLl---l

Polymorph Engine

HEEEEEEER
I I B
ENEEEENEEEEEEEEE
_JIIIIIIII
M _
(7]

Polymorph Engine

Raster Engine

I I I

I EEEEEEEEEEEEN
_JIIIIIIII
m—llllllll

—SisriE =

Polymorph Engine

I N . ——
ANNEENENEEEEEEEEN
_—llllllll
M _
(7))

I I N
ENNENENEEEEEEEEE
_JIIIIIIII
M _
)]

Folymorpn Engin

I I
EEEEEEEEEEEEEEEN
_Jl---l
m_ll-lllll

Polymorph Engine

Jajjodjuo g Alowspy ; 7

Polymorph Engine

I I N
ENNENENENENEEEER
llllllll—
— »
=
7))

Polymorph Engine

Polymorph Engine

%))
ENEREEER
ENEEEEER

IIIIIIII?F

Polymorph Engine

IIII
I---I--I--I
IIIIIIII1_
Illlllll—w

3

Raster Engine

GPC

Polymorph Engine

IIIIIIIIIIIIIIII
I---I--I--I
Illlllll1_
llllllll—w

Polymorph Engine

Polymorph Engine

I N . ——
AENERENEEEEEEERDE
llllllll1
_ =
1))

I I B
IIEEEEEEEEEEEERN
IIIIIIII1_
I
%))

Polymorph Engine

ENEEEEER
IIIIIIII?F

Raster Engine

GPC

Jajjojuog Alowapy

ENEEEEER
Jajjojuoy Alowsaly

Raster Engine

Fa |'r4r|r_|r;||‘;!: i e

Falamarph Eaging
0~ _ i Y]

Py Frecsrpls Emegirng

GF100

PolyMorph Engine

‘ |—| Viewport
Vertex Fetch ‘ Tessellator H Transform |

‘Auribute Setup | | Stream Output ‘ [9]

- Bl o T .

PolyMorph Engine

Arbute Sop

LDI/ST
LDIST
LDIST
LD/ST
—
LD/ST

Warp

Dispatch Unit
=

~=u32;768 Registers:-bii)

Core Core Core Core

B
ds ¥

Core Core Core Core
32 Scalar Processors

PolyMorph Engine
Atribute Setup

Lore LCore LCore Core

(YaeW) syu

L
uoipund [e|Pd

Core Core Core Core

i

GT200 - previous architecture

40
Simpler architecture, but same principles

Several Work Groups reside on one SM

m Amount depends on available resources (Shared
Memory (=Local Memory in OpenCL), Registers)

m More Work Groups — better latency hiding

o Latencies occur for memory accesses,
pipelined floating-point arithmetic and branch

instructions

Thread execution in "Warps” (called “wavefronts” on AMD)
m Native execution size (32 Threads for NVIDIA)

m Zero-Overhead Thread Scheduling: If one warp
stalls (accesses memory) next warp is selected for
execution

ParProg | GPU Computing | FF2013

Streaming
Multiprocessor (SM)

Instruction Cache

Constant Cache

Shared

41

- attner
Warp Execution Example Institut

Application creates 200.000 ,Tasks"
— Global Work Group Size: 200.000 Work Items

Programmer decides to use a Local Work Group Size of 100 Work Items
— Number of Work Groups: 2.000 Work Groups

One Work Item requires 10 registers and 20 byte of Shared Memory; a SM has
16 KB of Shared Memory and 16.384 registers

— Number of Work Items per SM: 16KB/20B = 819 Work Items
— Number of Work Groups per SM:819/100 = 8 Work Groups per SM

Even if 7 Work Groups are waiting for memory, 1 can be executed.

- attner
Warp Execution Example Institut

42

Each of the Work Groups contains 100 Work Items; the Warp Size (native
execution size of a SM) is 32

— Number of Threads Executed in parallel: 32 Threads
— Number of ,Rounds" to execute a Work Group: 100/32 =4
— Threads running in the first 3 rounds: 32 Threads
— Threads running in the last round: 100-32*4=4 Threads

If one of the threads accesses memory: whole warp stalls

If one of the threads follows a differing execution path: it is executed in an
additional seperate round

Hasso
.p- - Plattner
Compute Capability by version E Institut

double precision floating

point operations e [E=
caches No Yes
max # concurrent kernels 1 8
max # threads per block 512 1024
max # Warps per MP 24 32 48
max # Threads per MP /768 1024 1536
register count (32 bit) 8192 16384 32768
max shared mem per MP 16KB 48KB
shared memory banks 16 32

Plus: varying amounts of cores, global memory sizes, bandwidth,
clock speeds (core, memory), bus width, memory access penalties ...

44

The Power of GPU Computing

1400

=
N
o
o

1000

800

600

400

Execution Time in Milliseconds

Hasso
Plattner
Institut

big performance gains for small problem sizes

200 -

0 |

—a
——— T
0 10000 20000 30000 40000 50000

Problem Size (Number of Sudoku Places)

ParProg | GPU Computing | FF2013

——Intel
E8500
CPU

AMD
R800
GPU

=—NVIDIA
GT200
GPU

* less is better

45

The Power of GPU Computing

Hasso
Plattner
Institut

small/moderate performance gains for large problem sizes

— further optimizations needed

20000
18000

16000 yat
14000 l//»//,_—
12000

10000 ,/’///"

8000

6000
4000
2000 -

0 200000 400000 600000
Problem Size (Number of Sudoku Places)

Execution Time in Milliseconds

ParProg | GPU Computing | FF2013

——Intel
ES8500
CPU

AMD
R800
GPU

-+—NVIDIA
GT200
GPU

* less is better

46

Plattner

Hasso
Best Practices for Performance Tuning ﬂ Institut

e Asynchronous, Recompute, Simple

Algorithm Design

VE I AICISE® © Chaining, Overlap Transfer & Compute

Control Flow e Divergent Branching, Predication
M [STag[e)aVAAY/oISISH » Local Memory as Cache, rare resource
\VElaale]a"H Yoo <S5M » Coalescing, Bank Conflicts
Sizing e Execution Size, Evaluation
Instructions e Shifting, Fused Multiply, Vector Types

Precision e Native Math Functions, Build Options

ParProg | GPU Computing | FF2013

Hasso
Plattner
Institut

Divergent Branching and Predication

47
Divergent Branching
m Flow control instruction (if, switch, do, for, while) can result in

different execution paths
» Data parallel execution — varying execution paths will be serialized

» Threads converge back to same execution path after completion

Branch Predication
m Instructions are associated with a per-thread condition code (predicate)

o All instructions are scheduled for execution

o Predicate true: executed normally
o Predicate false: do not write results, do not evaluate addresses, do
not read operands
m Compiler may use branch predication for if or switch statements

m Unroll loops yourself (or use #pragma unroll for NVIDIA)

48

Coalesced Memory Accesses

Simple Access Pattern

m Can be fetched in a single 64-byte
transaction (red rectangle)

m Could also be permuted *

Sequential but Misaligned Access

m Fall into single 128-byte segment:
single 128-byte transaction,
else: 64-byte transaction + 32-
byte transaction *

Strided Accesses

m Depending on stride from 1 (here)
up to 16 transactions *

* 16 transactions with compute capability 1.1

ParProg | GPU Computing | FF2013

Hasso
Plattner
Institut

'iivvv R gF N

[7RIS

[6]

Hasso
Plattner
Institut

Use Caching: Local, Texture, Constant

49
Local Memory
m Memory latency roughly 100x lower than global memory latency

m Small, no coalescing problems, prone to memory bank conflicts

Texture Memory
m 2-dimensionally cached, read-only

m Can be used to avoid uncoalesced loads
form global memory

m Used with the image data type 192 | 193 | 194 | 195

67

128 | 129 | 130 | 131

Constant Memory
m Lineary cached, read-only, 64 KB
m as fast as reading from a register for the same address

m Can be used for big lists of input arguments

Memory Bank Conflicts

50

m Access to (Shared) Memory is implemented
via hardware memory banks

m If a thread accesses a memory address this
is handled by the responsible memory
bank

m Simple Access Patterns like this one are
fetched in a single transaction

[8]

Thread 0

Address 128

Thread 1

Address 132

Thread 2

Address 136

Thread 3

Address 140

Thread 4

Address 144

Thread 5

Address 148

Thread &

Address 152

Thread 7

Address 156

Thread 8

Address 160

Thread 9

Address 164

Thread 10

Address 168

Thread 11

Address 172

Thread 12

Address 176

Thread 13

Address 180

Thread 14

Address 184

Thread 15

Address 188

Memory Bank Conflicts

51
Permuted Memory Access (left)

m Still one transaction on
cards with compute
capability >=1.2;
otherwise 16 transactions
are required

Strided Memory Access (right)

m Still one transaction on
cards with compute
capability >=1.2;
otherwise 16 transactions
are required

[8]

Thread 0

Thread 1

Thread 2

Thiread 3

Thread 4

Bank O

Bank 1

Bank 2

Bank 3

Thread 5

Thread 6

Bank 4

Bank 5

Bank &6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Thread 12

Thread 13

Thread 14

Thread 15

_ Bank 12
| Bank 13

. Bank 14

_ Bank 15

S S N

Thread 0

Theead 1

Address 128

Address 140

Thread 2

Address 152

Thread 3

Address 164

Thread 4

Address 176

Thread 5

Address 188

Memory Bank Conflicts

52
Bank conflicts

m Left figure: 2 bank
conflicts — resulting
bandwidth is 2 of the
original bandwidth

m Right figure: 8 bank
conflicts — resulting
bandwidth is 1/8 of the
original bandwidth

[8]

Thread 0

e

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

|
Bank 0 | Thread 0
|
Bank 1 I Thread 1
|
ral
" Bank 2 I Thread 2
|
Bank 3 I Thread 3
|
|
" Bank 4 I Thread 4
|
Bank 5 | Thread 5
|
" Bank 6 | Thread &
-
|
Bank 7 | Thread 7
|
“ Bank B | | Threads F
L]
|
Bank 9 I | Threado
|
“ Bank 10 I | thread 10 |
B |
Bank 11 | Thread 11
|
Bank 12 I Thread 12
|
|
Bank 13 I Thread 13
|
Bank 14 I Thread 14
|
Bank 15 [Thread 15 ’
1

Bank 11

Bank 12

Bank 13

Bank 14

Bank 15

53

Sizing:

What is the right execution layout?

Hasso
Plattner
Institut

m Local work item count should be a multiple of native execution

size (NVIDIA 32, AMD 64), but not to big

m Number of work groups should be multiple of the number of

multiprocessors (hundreds or thousands of work groups)

m Can be configured in 1-, 2- or 3-dimensional layout: consider

access patterns and caching

m Balance between latency hiding
and resource utilization

m Experimenting is

req u I red | NDRange size G,

[
I

.|
1

NDRange size Gy

ParProg | GPU Computing | FF2013

work-group size Sx

work-group (W, wy)

work-item

Wy Sx-s‘. wy sva,,' s

(s) =10 0
‘Sx,by o, o)

work-item
Gia g

Wy Sy#Sy . Wy, S#8)

Sy sy, = 'bx-', o)

Sy, 'y

work-item
Wy Sy*5, wy Syosy

s)={08.,1)
s,)=(0 y

work-item

w, S5, w, Sy’s‘/

s)=(5-18-1)

(55 5,0 =(5,¢1. S

w

ork-group size Sy

[4]

54

Plattner

Hasso
Instructions and Precision ﬂ Institut

m Single precision floats provide best performance

m Use shift operations to avoid expensive division and modulo calculations
m Special compiler flags

m AMD has native vector type implementation; NVIDIA is scalar

m Use the native math library whenever speed trumps precision

Functions | Throughput

single-precision floating-point add, 8 operations per clock cycle
multiply, and multiply-add

single-precision reciprocal, 2 operations per clock cycle
reciprocal square root, and
native_logf(x)

native_sin, native_cos, native_exp 1 operation per clock cycle

55

P
Further Readings institut

http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/

m [1] Kirk, D. B. & Hwu, W. W., 2010. Programming Massively Parallel
Processors: A Hands-on Approach. 1 ed. Morgan Kaufmann.

m [2] Herlihy, M. & Shavit, N., 2008. The Art of Multiprocessor Programming.

m [3] Sanders, J. & Kandrot, E., 2010. CUDA by Example: An Introduction to
General-Purpose GPU Programming . 1 ed. Addison-Wesley Professional.

m [4] Munshi, A. (ed.), 2010. The OpenCL Specification - vl.1. The Khronos Group Inc.

m [5] Mattson, T., 2010. The Future of Many Core Computing: Software for
many core processors.

m [6] NVIDIA, 2009. NVIDIA OpenCL Best Practices Guide - Version 2.3.
m [7] Rob Farber, 2008. CUDA, Supercomputing for the Masses. Dr. Dobb’s
m [8] NVIDIA, 2010. OpenCL Programming for the CUDA Architecture - Version 3.1

m [9] Ryan Smith, NVIDIA’s GeForce GTX 480 and GTX 470: 6 Months Late, Was It
Worth the Wait?

http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/
http://www.dcl.hpi.uni-potsdam.de/research/gpureadings/

