
Parallel Programming Concepts

From Threads to Tasks

Peter Tröger

Sources:

Clay Breshears: The Art of Concurrency
Blaise Barney: Introduction to Parallel Computing
OpenMP 3.0 Specification
MPI2 Specification
Anthony Williams: C++11 Concurrency Tutorial
Blaise Barney: OpenMP Tutorial, https://computing.llnl.gov/tutorials/openMP/
http://preshing.com/20120612/an-introduction-to-lock-free-programming

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/
http://preshing.com/20120612/an-introduction-to-lock-free-programming
http://preshing.com/20120612/an-introduction-to-lock-free-programming

ParProg | Tasks and Threads PT 2012

Parallel Programming

2

Multi-
Tasking

Message
Passing

Implicit
Parallelism

Mixed
Approaches

PThreads, OpenMP, OpenCL,
Linda, Cilk, ...

MPI, PVM, CSP Channels,
Actors, ...

Map/Reduce, PLINQ, HPF,
Lisp, Fortress, ...

Ada, Scala, Clojure, Erlang,
X10, ...

Execution
Environment

Parallel
Application

Data Parallel /
SIMD

Task Parallel /
MIMD

Shared
Memory

(SM)

Shared
Nothing /

Distributed
Memory

(DM)

GPU, Cell, SSE,
Vector

processor
...

ManyCore/
SMP system

...

processor-array
systems

systolic arrays
Hadoop

...

cluster systems
MPP systems

...

ParProg | Tasks and Threads PT 2012

Multi-Tasking

3

Multi-
Tasking

Message
Passing

Implicit
Parallelism

Mixed
Approaches

PThreads, OpenMP, OpenCL,
Linda, Cilk, ...

MPI, PVM, CSP Channels,
Actors, ...

Map/Reduce, PLINQ, HPF,
Lisp, Fortress, ...

Ada, Scala, Clojure, Erlang,
X10, ...

ParProg | Tasks and Threads PT 2012

POSIX Pthreads

• Part of the POSIX specification collection, defining an API for thread creation
and management (pthread.h)

• Implemented by all (!) Unix-alike operating systems available

• Utilization of kernel- or user-mode threads depends on implementation

• Groups of functionality (pthread_ function prefix)

• Thread management - Start, wait for termination, ...

• Mutex-based synchronization

• Synchronization based on condition variables

• Synchronization based on read/write locks and barriers

• Semaphore API is a separate POSIX specification (sem_ prefix)

4

ParProg | Tasks and Threads PT 2012

POSIX Pthreads

5

ParProg | Tasks and Threads PT 2012

POSIX Pthreads

6

• pthread_create()

• Create new thread in the process, with given routine and argument

• pthread_exit(), pthread_cancel()

• Terminate thread from inside our outside of the thread

• pthread_attr_init() , pthread_attr_destroy()

• Abstract functions to deal with implementation-specific attributes
(f.e. stack size limit)

• See discussion in man page about how this improves portability
int pthread_create(pthread_t *restrict thread,
 const pthread_attr_t *restrict attr,
 void *(*start_routine)(void *),
 void *restrict arg);

7

/**
* FILE: hello.c
* DESCRIPTION:
* A "hello world" Pthreads program. Demonstrates thread creation and
* termination.
* AUTHOR: Blaise Barney
* LAST REVISED: 08/09/11
**/
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS!5

void *PrintHello(void *threadid)
{
 long tid;
 tid = (long)threadid;
 printf("Hello World! It's me, thread #%ld!\n", tid);
 pthread_exit(NULL);
}

int main(int argc, char *argv[])
{
 pthread_t threads[NUM_THREADS];
 int rc;
 long t;
 for(t=0;t<NUM_THREADS;t++){
 printf("In main: creating thread %ld\n", t);
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
 if (rc){
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }

 /* Last thing that main() should do */
 pthread_exit(NULL);
}

ParProg | Tasks and Threads PT 2012

POSIX Pthreads

8

• pthread_join()

• Blocks the caller until the specific thread terminates

• If thread gave exit code to pthread_exit(), it can be determined here

• Only one joining thread per target is thread is allowed

• pthread_detach()

• Mark thread as not-joinable (detached) - may free some system resources

• pthread_attr_setdetachstate()

• Prepare attr block so that a thread can be created in some detach state

 int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

ParProg | Tasks and Threads PT 2012

POSIX Pthreads

9

10

/***
* FILE: join.c
* AUTHOR: 8/98 Blaise Barney
* LAST REVISED: 01/30/09
**/
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS! 4

void *BusyWork(void *t) {
 int i;
 long tid;
 double result=0.0;
 tid = (long)t;
 printf("Thread %ld starting...\n",tid);
 for (i=0; i<1000000; i++) {
 result = result + sin(i) * tan(i); }
 printf("Thread %ld done. Result = %e\n",tid, result);
 pthread_exit((void*) t); }

int main (int argc, char *argv[]) {
 pthread_t thread[NUM_THREADS];
 pthread_attr_t attr;
 int rc; long t; void *status;

 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 for(t=0; t<NUM_THREADS; t++) {
 printf("Main: creating thread %ld\n", t);
 rc = pthread_create(&thread[t], &attr, BusyWork, (void *)t);
 if (rc) {
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);}}

 pthread_attr_destroy(&attr);
 for(t=0; t<NUM_THREADS; t++) {
 rc = pthread_join(thread[t], &status);
 if (rc) {
 printf("ERROR; return code from pthread_join() is %d\n", rc);
 exit(-1); }
 printf("Main: completed join with thread %ld having a status of %ld\n",t,(long)status);}

printf("Main: program completed. Exiting.\n");
pthread_exit(NULL); }

ParProg | Tasks and Threads PT 2012

POSIX Pthreads

11

• pthread_mutex_init()

• Initialize new mutex, which is unlocked by default

• pthread_mutex_lock(), pthread_mutex_trylock()

• Blocking / non-blocking wait for a mutex lock

• pthread_mutex_unlock()

• Operating system scheduling decides about wake-up preference

• Focus on speed of operation, no deadlock or starvation protection mechanism

 int pthread_mutex_lock(pthread_mutex_t *mutex);
 int pthread_mutex_trylock(pthread_mutex_t *mutex);
 int pthread_mutex_unlock(pthread_mutex_t *mutex);

ParProg | Tasks and Threads PT 2012

POSIX Pthreads

12

• Condition variables are always used in conjunction with a mutex

• Allow to wait on a variable change without polling it in a critical section

• pthread_cond_init()

• Initializes a condition variable

• pthread_cond_wait()

• Called with a locked mutex

• Releases the mutex and blocks on the condition in one atomic step

• One return, the mutex is again locked and owned by the caller

• pthread_cond_signal(), pthread_cond_broadcast()

• Unblock thread waiting on the given condition variable

13

/* FILE: condvar.c
 * LAST REVISED: 10/14/10 Blaise Barney
 */

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 3
#define TCOUNT 10
#define COUNT_LIMIT 12

int count = 0;
pthread_mutex_t count_mutex;
pthread_cond_t count_threshold_cv;

void *inc_count(void *t) {
 int i;
 long my_id = (long)t;

 for (i=0; i < TCOUNT; i++) {
 pthread_mutex_lock(&count_mutex);
 count++;

 if (count == COUNT_LIMIT) {
 printf("Thread %ld, count = %d Threshold reached. ",
 my_id, count);
 pthread_cond_signal(&count_threshold_cv);
 printf("Just sent signal.\n");
 }
 printf("Thread %ld, count = %d, unlocking mutex\n",
! my_id, count);
 pthread_mutex_unlock(&count_mutex);
 /* Do some work so threads can alternate on mutex lock */
 sleep(1); }
 pthread_exit(NULL);
}

void *watch_count(void *t)
{
 long my_id = (long)t;
 printf("Starting watch_count(): thread %ld\n", my_id);
 pthread_mutex_lock(&count_mutex);
 while (count < COUNT_LIMIT) {
 printf("Thread %ld Count= %d. Going into wait...\n",
 my_id,count);
 pthread_cond_wait(&count_threshold_cv, &count_mutex);
 printf("Thread %ld Signal received. Count= %d\n",
 my_id,count);
 printf("Thread %ld Updating count...\n", my_id,count);
 count += 125;
 printf("Thread %ld count = %d.\n", my_id, count);
 }
 printf("watch_count(): thread %ld Unlocking mutex.\n", my_id);
 pthread_mutex_unlock(&count_mutex);
 pthread_exit(NULL);
}

int main(int argc, char *argv[])
{
 int i, rc;
 long t1=1, t2=2, t3=3;
 pthread_t threads[3];
 pthread_attr_t attr;

 pthread_mutex_init(&count_mutex, NULL);
 pthread_cond_init (&count_threshold_cv, NULL);

 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 pthread_create(&threads[0], &attr, watch_count, (void *)t1);
 pthread_create(&threads[1], &attr, inc_count, (void *)t2);
 pthread_create(&threads[2], &attr, inc_count, (void *)t3);

 /* Wait for all threads to complete */
 for (i = 0; i < NUM_THREADS; i++) {
 pthread_join(threads[i], NULL);
 }
 printf ("Main(): Count = %d. Done.\n", NUM_THREADS, count);

 pthread_attr_destroy(&attr);
 pthread_mutex_destroy(&count_mutex);
 pthread_cond_destroy(&count_threshold_cv);
 pthread_exit (NULL);

}

ParProg | Tasks and Threads PT 2012

Windows vs. POSIX Synchronization

14

Windows POSIX

WaitForSingleObject pthread_mutex_lock()

WaitForSingleObject(timeout==0) pthread_mutex_trylock()

Auto-reset events Condition variables

ParProg | Tasks and Threads PT 2012

Java

• Java supports concurrency with Java / operating system threads

• Functions bundled in java.util.concurrent

• Classical concurrency support

• synchronized methods: Allow only one thread in an objects‘
synchronized methods, based on intrinsic object lock

• For static methods, locking based on class object

• synchronized statements: Synchronize execution by intrinsic lock of the
given object

• volatile keyword: Indicate shared nature of variable -
ensures atomic synchronized access, no thread-local caching

• wait / notify semantics in Object
15

ParProg | Tasks and Threads PT 2012

Java Examples

16

ParProg | Tasks and Threads PT 2012

Java wait / notify

17

• Each object can act as guard with wait() / notify() functions

• Guard waiting must always be surrounded by explicit condition check

ParProg | Tasks and Threads PT 2012

Java High-Level Concurrency

• Introduced with Java 5

• java.util.concurrent.locks

• Separation of thread management and parallel activities - Executors

• java.util.concurrent.Executor

• Implementing object provides execute() method, is able to execute
submitted Runnable tasks

• No assumption on where the task runs, might be even in the callers
context, but typically in managed thread pool

• ThreadPoolExecutor implementation provided by class library

18

ParProg | Tasks and Threads PT 2012

Java High-Level Concurrency

• java.util.concurrent.ExecutorService

• Supports also Callable objects as input, which can return a value

• Additional submit() function, which returns a Future object on the result

• Future object allows to wait on the result, or cancel execution

• Methods for submitting large collections of Callable‘s

• Methods for managing executor shutdown

• java.util.concurrent.ScheduledExecutorService

• Additional methods to schedule tasks repeatedly

• Available thread pools from executor implementations:
Single background thread, fixed size, unbound with automated reclamation

19

ParProg | Tasks and Threads PT 2012

Java High-Level Concurrency

20

ParProg | Tasks and Threads PT 2012

Java High-Level Concurrency

21

ParProg | Tasks and Threads PT 2012

.NET

• As Java, .NET CLR relies on native thread model

• Synchronization and scheduling mapped to operating system concepts

• .NET 4 has variety of support libraries

• Task Parallel Library (TPL) - Loop parallelization, task concept

• Task factories, task schedulers

• Parallel LINQ (PLINQ) - Implicit data parallelism through query language

• Collection classes, synchronization support

• Debugging and visualization support

22

ParProg | Tasks and Threads PT 2012

C++

• C++11 specification added support for threads and mutexes

• Spanning asynchronous tasks with std::async or std::thread

• Works with Callable instance (functions, member functions, ...)

23

#include <iostream>

void write_message(std::string const& message) {
 std::cout<<message;
}

int main() {
 auto f=std::async(write_message,"hello world from std::async\n");
 write_message("hello world from main\n");
 f.wait();
}

ParProg | Tasks and Threads PT 2012

Concurrent Programming in C++

24

#include <thread>
#include <iostream>

void write_message(std::string const& message) {
 std::cout<<message;
}

int main() {
 std::thread t(write_message, "hello world from std::thread\n");
 write_message("hello world from main\n");
 t.join();
}

• Launch policy can be specified

• get() method can be used to get the async function call result („future“)

ParProg | Tasks and Threads PT 2012

Concurrent Programming in C++

25

• 4 mutex classes, basic operations in the Lockable concept:
m.lock(), m.try_lock(), m.unlock()

• Locking is tricky with exceptions, so C++ offers some high-level templates

std::mutex m;

void f(){
 std::lock_guard<std::mutex> guard(m);
 std::cout<<"In f()"<<std::endl;
}

int main(){
 m.lock();
 std::thread t(f);
 for(unsigned i=0;i<5;++i){
 std::cout<<"In main()"<<std::endl;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 m.unlock();
 t.join();
}

ParProg | Tasks and Threads PT 2012

Concurrent Programming in C++

26

• Waiting for events with condition variables avoids polling

std::condition_variable the_cv;
void wait_and_pop(my_class& data) {
 std::unique_lock<std::mutex> lk(the_mutex);
 the_cv.wait(lk,[]() {return !the_queue.empty();});
 data=the_queue.front();
 the_queue.pop();
}

void push(Data const& data)
{
 {
 std::lock_guard<std::mutex> lk(the_mutex);
 the_queue.push(data);
 }
 the_cv.notify_one();
}

ParProg | Tasks and Threads PT 2012

Concurrent Programming in C++

27

• Lock-free atomic types that are three from data races

• char, schar, uchar, short, ushort, int, uint, long, ulong, char16_t, wchar_t,
intptr_t, size_t, ...

• Common member functions

• is_lock_free()

• store(), load()

• exchange()

• Specialized member functions

• fetch_add(), fetch_sub(), fetch_and(), fetch_or(), operator++, operator+=, ...

ParProg | Tasks and Threads PT 2012

Concurrent Programming in C++

28

ParProg | Tasks and Threads PT 2012

Threads vs. Tasks

• Process: Address space, handles, code, set of threads

• Thread: control flow

• Preemptive scheduling by the operating system

• Can migrate between cores

• Task: control flow

• Typically modeled as object (TBB, Java) or statement / lambda expression /
anonymous function (OpenMP, MS TPL)

• Cooperative scheduling by a user-mode library, mapping to thread pool

• Task model replaces context switch with yielding approach

• Typical scheduling policy for tasks is central queue or work stealing

29

ParProg | Tasks and Threads PT 2012

Multi-Tasking

• Relevant issues: Task generation, execution synchronization, data access

• Manual coordination in a sequential language
(operating system threads, Java / .NET threads, ...)
-> „explicit“ threading

• Using a framework for parallel tasks
(OpenMP, OpenCL, Intel TBB, MS TPL, ...)
-> „implicit“ threading

• Concurrency problems remain

• Critical section problem with shared variables in different tasks

• Low-level synchronization primitives wrapped by „concurrent data structures“
in task framework

• Already covered: OpenCL

30

ParProg | Tasks and Threads PT 2012

OpenMP

• Specification for C/C++ and Fortran language extension (currently v3.1)

• Portable shared memory thread programming

• High-level abstraction of task- and loop parallelism

• Derived from compiler-directed parallelization of serial language code (HPF),
with support for incremental change of source code

• Programming model: Fork-Join-Parallelism

• Master thread spawns group of threads for limited code region

• PARALLEL directive

• Barrier concept

31

Parallel Regions

Master
Thread

ParProg | Tasks and Threads PT 2012

OpenMP

32

(from Wikipedia)

ParProg | Tasks and Threads PT 2012

OpenMP Pragmas
• #pragma omp construct ... (include omp.h)

• OpenMP runtime library: query functions, runtime functions, lock functions

• Parallel region

• OpenMP constructs are applied to dedicated code blocks,
marked by #pragma omp parallel

• Parallel region should have only one entry and one exit point

• Implicit barrier at beginning and end of the block

• Thread pool for execution of parallel activities

• Idle worker threads may sleep or spin, depending on library configuration
(performance issue in serial parts)

33

Parallel Regions

Master
Thread

ParProg | Tasks and Threads PT 2012

OpenMP Parallel Construct

34

• Encountering thread for the parallel region generates a set of implicit tasks

• Each resulting implicit task is assigned to a different thread

• Implementation may suspend task execution at a scheduling point

ParProg | Tasks and Threads PT 2012

OpenMP Configuration / Query Functions

• Environment variables

• OMP_NUM_THREADS: number of threads during execution, upper limit for
dynamic adjustment of threads

• OMP_SCHEDULE: set schedule type and chunk size for parallelized loops of
scheduling type runtime

• Query functions

• omp_get_num_threads: Number of threads in the current parallel region

• omp_get_thread_num: Current thread number in the team, master=0

• omp_get_num_procs: Available number of processors

• ...

35

ParProg | Tasks and Threads PT 2012

OpenMP Work Sharing

• Possibilities for distribution of tasks across threads (,work sharing‘)

• omp sections - Define code blocks usable as tasks

• omp for - Automatically divide a loop‘s iterations into tasks

• Implicit barrier at the end

• omp task - Explicitly define a task

• omp single / master - Denotes a task to be executed only by first
arriving thread resp. the master thread

• Implicit barrier at the end, intended for non-thread-safe activities (I/O)

• Scheduling of tasks defined is handled by the OpenMP implementation

• Clause combinations possible: #pragma omp parallel for

36

ParProg | Tasks and Threads PT 2012

OpenMP Work Sharing with Sections

• Explicit definition of code blocks as parallel tasks with section directive
(function partitioning)

• Executed in the context of the implicit task

• One task may execute more than one section - runtime decision

#pragma omp parallel
{
 #pragma omp sections [clause [clause] ...]
 {
 [#pragma omp section]

 structured-block1

 [#pragma omp section]

 structured-block2
 }}

37

ParProg | Tasks and Threads PT 2012

OpenMP Data Scoping

• Shared memory programming model - communication through variables

• Shared variable: Name provides access to same memory in all tasks

• Shared by default: global variables, static variables,
variables with namespace scope, variables with file scope

• shared clause can be added to any omp construct, defines a list of
additionally shared variables

• Provides no automatic protection, just marking of variables for handling by
runtime environment

• Private variable: Clone variable in each task, by default no initialization

• Private by default: Local variables in functions called from parallel regions,
loop iteration variables, automatic variables

• Initialization with last value before region (firstprivate) possible
38

ParProg | Tasks and Threads PT 2012

OpenMP Work Sharing with Loop Parallelization

• Loop construct: Parallel
execution of iterations

• Iteration variable must
be integer

• Mapping of threads to
iterations is controlled
by schedule clause

• Implications on
exception handling,
break-out calls and
continue primitive

39

#pragma omp parallel for
for(ii = 0; ii < n; ii++){
 value = some_complex_long_fuction(a[ii]);
 #pragma omp critical
 sum = sum + value;
}

ParProg | Tasks and Threads PT 2012

OpenMP Consistency Model

• Thread’s temporary view of memory is not required to be consistent with
memory at all times (weak-ordering consistency)

• Example: Keeping loop variable in a register for efficiency reasons

• Compiler needs to be informed when consistent view is demanded

• Implicit flush on different occasions, such as barrier region

• In all other cases, shared variables must be flushed before reading

• Directive:
#pragma omp flush

40

ParProg | Tasks and Threads PT 2012

OpenMP Loop Parallelization Scheduling
• schedule (static, [chunk]) - Contiguous ranges of iterations (chunks)

are assigned to the threads

• Low overhead, round robin assignment to free threads

• Static scheduling for predictable and similar work per iteration

• Increasing chunk size reduces overhead, improves cache hit rate

• Decreasing chunk size allows finer balancing of work load

• schedule (dynamic, [chunk]) - Threads grab iteration resp. chunk

• Higher overhead, but good for unbalanced iteration work load

• schedule (guided, [chunk]) - Dynamic schedule, shrinking ranges per
step, starting with large block, until minimum chunk size is reached

• Computations with increasing iteration length (e.g. prime sieve test)

41

ParProg | Tasks and Threads PT 2012

OpenMP Synchronization
• Synchronizing with task completion

• Implicit barrier at the end of single block, removable by nowait clause

• #pragma omp barrier (wait for all other threads in the team)

• #pragma omp taskwait (wait for completion of created child tasks)

42

#include <omp.h>
#include <stdio.h>
int main() {
 #pragma omp parallel
 {
 printf("Start: %d\n", omp_get_thread_num());
 #pragma omp single //nowait
 printf("Got it: %d\n", omp_get_thread_num());
 printf("Done: %d\n", omp_get_thread_num());
 }
 return 0;
}

ParProg | Tasks and Threads PT 2012

OpenMP Synchronization
• Synchronizing variable access

• #pragma omp critical [name]

• Enclosed block executed by all threads, but restricted to one at a time

• All unnamed directives map to the same unspecified name

43

float dot_prod(float* a, float* b, int N)
{
 float sum = 0.0;
 #pragma omp parallel for
 for(int i = 0; i < N; i++) {
 #pragma omp critical
 sum += a[i] * b[i];
 }
 return sum;
}

ParProg | Tasks and Threads PT 2012

OpenMP Synchronization
• Alternative: #pragma omp reduction (op: list)

• Execute parallel tasks based on private copies of list, perform reduction
on results with op afterwards, without race conditions

• Supported associative operands:
+, *, -, ^, bitwise AND, bitwise OR, logical AND, logical OR

44

#pragma omp parallel for reduction(+:sum)
 for(i = 0; i < N; i++) {
 sum += a[i] * b[i];
 }

ParProg | Tasks and Threads PT 2012

OpenMP Best Practices [Süß & Leopold]

• Typical correctness mistakes

• Access to shared variables not protected

• Use of locks / shared variables without flush

• Declaring parallel loop variable as shared

• Typical performance mistakes

• Use of critical when atomic would be sufficient

• Too much work inside a critical section

• Unnecessary flush / critical

45

ParProg | Tasks and Threads PT 2012

OpenMP Tasks

• Main change with OpenMP v3,
allows description of non-data
driven parallelization strategy

• Farmer / worker algorithms

• Recursive algorithms

• Unbounded loops
(e.g. while loops)

• Definition of tasks as composition of code to execute, data environment, and
control variables

• Implicit task generation with parallel and for constructs

• Explicit task generation with sections and task constructs

46

ParProg | Tasks and Threads PT 2012

OpenMP Tasks

• Certain construct act as task scheduling point

• When thread encounters this construct, it can switch to another task

• Example: Generating task will suspend on exit barrier

• Executing thread can help processing the task pool, or run the spawned
task directly (cache-friendly)

47

ParProg | Tasks and Threads PT 2012

OpenMP 4

• SIMD extensions

• Allows to tell the compiler that it should vectorize a loop

• Targeting extensions

• Thread with the OpenMP program executes on the host device,
an implementation may support other target devices

• Control off-loading of loops and code regions on such devices

• New API for using a device data environment

• OpenMP - managed data items can be moved to the device

• Threads cannot migrate between devices

48

ParProg | Tasks and Threads PT 2012

Intel TBB

• Task concept - define what to run in parallel, instead of managing threads

• Portable C++ library, toolkits for different operating systems

• Complements basic OpenMP features

• Loop parallelization, parallel reduction, synchronization, explicit tasks

• High-level concurrent containers (hash map, queue, vector)

• High-level parallel operations (prefix scan, sorting, data-flow pipelining)

• Unfair scheduling approach, to favor threads having data in cache

• Supported for cache-aware memory allocation

• Comparable: Microsoft C++ Concurrency Runtime

49

ParProg | Tasks and Threads PT 2012

Easy Mappings [Dig]

50

Java TBB TPL

Parallel For

Concurrent Collections

Atomic Classes

ForkJoin Task
Parallelism

ParallelArray parallel_for Parallel.For

ConcurrentHashMap,
...

concurrent_hash_map,
...

AtomicInteger, ... atomic<T> Interlocked

ForkJoinTask
framework task Task, ReplicableTask

ParProg | Tasks and Threads PT 2012

Lock-Free Programming

• Lock-free programming as a way of sharing data without maintaining locks

• Prevents deadlock and live-lock conditions

• Goal:
Suspension of one thread never prevents another thread from making
progress (e.g. synchronized shared queue)

• Blocking by design does not disqualify the lock-free realization

• Algorithms rely on well-known hardware support for atomic operations

• Read-Modify-Write (RMW) operations

• Compare-And-Swap (CAS) operations

• These operations are typically mapped in operating system API

51

ParProg | Tasks and Threads PT 2012

Lock-Free Programming

52

void LockFreeQueue::push(Node* newHead)
{
 for (;;)
 {
 // Copy a shared variable (m_Head) to a local.
 Node* oldHead = m_Head;
 // Do some speculative work, not yet visible to other threads.
 newHead->next = oldHead;
 // Next, attempt to publish our changes to the shared variable.
 // If the shared variable hasn't changed, the CAS succeeds and we return.
 // Otherwise, repeat.
 if (_InterlockedCompareExchange(&m_Head, newHead, oldHead) == oldHead)
 return;
 }
}

ParProg | Tasks and Threads PT 2012

Sequential Consistency

• Consistency model where the order of
memory operations is consistent with
the source code

• Important for lock-free algorithm semantic

• Not guaranteed by some processor
architectures (e.g. PowerPC)

• Java and C++ support the enforcement of
sequential consistency

• Compiler generates additional memory fences and RMW operations

• Still does not prevent from memory re-ordering due to instruction re-
ordering by the compiler itself

53

std::atomic<int> X(0), Y(0);
int r1, r2;

void thread1()
{
 X.store(1);
 r1 = Y.load();
}

void thread2()
{
 Y.store(1);
 r2 = X.load();
}

ParProg | Tasks and Threads PT 2012

Work Stealing

• Blumofe, Robert D.; Leiserson, Charles E.: Scheduling Multithreaded
Computations by Work Stealing. In: In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (FOCS. 1994), S. 356-368

• Problem of scheduling scalable multithreading problems on processors

• Work sharing: When processors create new work, the scheduler migrates
threads for balanced utilization

• Work stealing: Underutilized processor takes work from other processor

• Intuitively, less thread migrations

• Goes back to work stealing research in Multilisp (1984)

• Communication reaches lower bound for parallel divide-and-conquer

• Approach by Blumofe et al. relies on „fully strict multithreaded computation“

54

ParProg | Tasks and Threads PT 2012

Randomized Work Stealing
• Lock-free ready dequeue per processor

• Task are inserted on the bottom, and can be taken from both sides

• Processor obtains local work by taking one task from the bottom

• Migrated tasks are taken from the top

• If no ready task is available on task stall / dead, the processor steals the
top-most one from a randomly chosen processor

• If no victim is available, processor continues to randomly search for one

• Stalled tasks which are enabled again by other tasks are placed on the
bottom of the ready dequeue of their enabling processor

• Algorithm maintains the busy-leaves property - ready tasks are either executed
or wait for a processor becoming free

• Supported in Microsoft TPL, Intel TBB, Java, Cilk, ...
55

ParProg | Tasks and Threads PT 2012

Apple Grand Central Dispatch

• Part of MacOS X operating system since 10.6

• Task parallelism concept for developer, execution in thread pools

• Tasks can be functions or blocks (C / C++ / ObjectiveC extension)

• Submitted to dispatch queues, executed in thread pool under control of the
Mac OS X operating system

• Main queue: Tasks execute serially on application‘s main thread

• Concurrent queue: Tasks start executing in FIFO order,
but might run concurrently

• Serial queue: Tasks execute serially in FIFO order

• Dispatch groups for aggregate synchronization

• On events, dispatch sources can submit tasks to dispatch queues automatically
56

ParProg | Tasks and Threads PT 201257

Linda Model

• Concurrent programming model, developed in Yale University research project

• Tuple-space concept

• Abstraction of distributed shared memory

• Set of programming language extensions for facilitating parallel programming

• Tuple: Fixed fixed-length list containing elements of different type

• Associative memory - tuples are accessed not by their address but rather by
their content and type

• Destructive (in) and nondestructive (rd) reads

• Sequential programs embed insert/retrieve tuple operations

• Multiple implementations (LindaSpaces, GigaSpaces, IBM TSpaces, …)

ParProg | Tasks and Threads PT 2012

Tuple Spaces

58

out(„peter“, 88, 1.5) in(„mary“, u, v)

rd(„peter“, x, y)

(„mary“, 43, 2.0)

(„fred“, 56, 2.8)

59

(C
) h

ttp
://

w
w

w.
m

cs
.a

nl.
go

v/

http://www.mcs.anl.gov
http://www.mcs.anl.gov

