Parallel Programming Concepts

From Threads to Tasks

Peter Troger
Sources:

Clay Breshears: The Art of Concurrency

Blaise Barney: Introduction to Parallel Computing

OpenMP 3.0 Specification

MPI2 Specification

Anthony Williams: C++11 Concurrency Tutorial

Blaise Barney: OpenMP Tutorial, https://computing.linl.gov/tutorials/openMP/
http://preshing.com/20120612/an-introduction-to-lock-free-programming

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/
http://preshing.com/20120612/an-introduction-to-lock-free-programming
http://preshing.com/20120612/an-introduction-to-lock-free-programming

Parallel Programming

_ Data Parallel / Task Parallel /
TMUk|T[I- PThreadE,., gpeg!\lﬂkp, OpenCL, SIMD MIMD
asxing nad, LA, ... GPU, Cell, SSE, ManyCore/
Shared Vector SMP system
Message MPI, PVM, CSP Channels, Memory processor
Passing Actors, ... (SM)
Implicit Map/Reduce, PLINQ, HPF, Shared
Parallelism Lisp, Fortress, ... : processor-array | cluster systems
Nothing / systems MPP systems
Distributed | gy stolic arrays
Mixed Ada, Scala, Clojure, Erlang, Memory Hadoop
Approaches X10, ... (DM)
Parallel Execution
Application Environment

ParProg | Tasks and Threads 2 PT 2012

Multi-Tasking

ParProg | Tasks and Threads

Multi- PThreads, OpenMP, OpenCL,
Tasking Linda, Cilk, ...
Message MPI, PVM, CSP Channels,
Passing Actors, ...

Implicit Map/Reduce, PLINQ, HPF,

Parallelism Lisp, Fortress, ...

Mixed Ada, Scala, Clojure, Erlang,

Approaches X10, ...

PT 2012

POSIX Pthreads

« Part of the POSIX specification collection, defining an API for thread creation
and management (pthread.h)

- Implemented by all (I) Unix-alike operating systems available

« Utilization of kernel- or user-mode threads depends on implementation
« Groups of functionality (pthread_ function prefix)

- Thread management - Start, wait for termination, ...

* Mutex-based synchronization

« Synchronization based on condition variables

* Synchronization based on read/write locks and barriers
- Semaphore APl is a separate POSIX specification (sem_ prefix)

ParProg | Tasks and Threads 4 PT 2012

POSIX Pthreads

pthread_ Threads themselves and miscellancous subroutines
pthread_attr_ Thread attributes objects

pthread_mutex_ Mutexes

pthread_mutexattr_ Mutex attributes objects.

pthread_cond _ Condition variables

pthread_condattr_ Condition attributes objects

pthread_Key_ Thread-specific data keys

pthread rwlock Read/write locks

pthread_barrier_ Synchronization barriers

ParProg | Tasks and Threads 5 PT 2012

POSIX Pthreads

e pthread_create()

- Create new thread in the process, with given routine and argument
e pthread_exit(), pthread_cancel()

- Terminate thread from inside our outside of the thread
e pthread_attr_init() , pthread_attr_destroy()

 Abstract functions to deal with implementation-specific attributes
(f.e. stack size limit)

- See discussion in man page about how this improves portability

int pthread create(pthread t *restrict thread,
const pthread attr t *restrict attr,
void * (*start routine) (void *),
void *restrict arqg);

ParProg | Tasks and Threads 6 PT 2012

/**

FILE: hello.c
DESCRIPTION:
A "hello world" Pthreads program. Demonstrates thread creation and
termination.
AUTHOR: Blaise Barney
* LAST REVISED: 08/09/11
**/
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM THREADS 5

L I

void *PrintHello(void *threadid)
{
long tid;
tid = (long)threadid;
printf("Hello World! It's me, thread #%1d!\n", tid);
pthread exit (NULL);

}

int main(int argc, char *argv[])
{
pthread t threads[NUM THREADS];
int rc;
long t;
for (t=0;t<NUM_THREADS;t++) {
printf("In main: creating thread %1d\n", t);
rc = pthread create(&threads[t], NULL, PrintHello, (void *)t);
if (rc){
printf ("ERROR; return code from pthread create() is %d\n", rc);
exit(-1);
}
}

/* Last thing that main() should do */
pthread exit (NULL);

POSIX Pthreads

e pthread_join()

 Blocks the caller until the specific thread terminates

- If thread gave exit code to pthread exit(), it can be determined here

« Only one joining thread per target is thread is allowed
e pthread_detach()

- Mark thread as not-joinable (detached) - may free some system resources
e pthread_attr_setdetachstate()

* Prepare attr block so that a thread can be created in some detach state

int pthread attr setdetachstate(pthread attr t *attr, int detachstate);

ParProg | Tasks and Threads 8 PT 2012

POSIX Pthreads

1'\'”:;?:; pthread create() » pthread j oin()l I

Worker
Thread

Worker
Thread
DOWORK —» pthread_exit()'

ParProg | Tasks and Threads 9 PT 2012

/***
* FILE: join.c

* AUTHOR: 8/98 Blaise Barney

* LAST REVISED: 01/30/09
**/
#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define NUM_THREADS 4

void *BusyWork(void *t) {
int i;
long tid;
double result=0.0;
tid = (long)t;
printf("Thread %1d starting...\n",tid);
for (i=0; i<1000000; i++) {
result = result + sin(i) * tan(i); }
printf("Thread %1d done. Result = %e\n",tid, result);
pthread_exit((void*) t); }

int main (int argc, char *argv[]) {
pthread_t thread[NUM THREADS];
pthread_attr_t attr;
int rc; long t; void *status;

pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD CREATE JOINABLE);

for(t=0; t<NUM_THREADS; t++) {
printf("Main: creating thread %1d\n", t);
rc = pthread_create(&thread[t], &attr, BusyWork, (void *)t);
if (rc) {
printf ("ERROR; return code from pthread create() is %d\n", rc);
exit(-1);}}

pthread_attr_destroy(&attr);
for(t=0; t<NUM_THREADS; t++) {
rc = pthread_join(thread[t], &status);
if (rc) {
printf ("ERROR; return code from pthread join() is %d\n", rc);
exit(-1); }
printf("Main: completed join with thread %1d having a status of %1d\n",t, (long)status);}

printf("Main: program completed. Exiting.\n");
pthread_exit (NULL); } 10

POSIX Pthreads

e pthread_mutex_init()
- Initialize new mutex, which is unlocked by default
e pthread_mutex_lock(), pthread_mutex_trylock()
 Blocking / non-blocking wait for a mutex lock
e pthread_mutex_unlock()
e Operating system scheduling decides about wake-up preference

¢ Focus on speed of operation, no deadlock or starvation protection mechanism

int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex trylock(pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);

ParProg | Tasks and Threads 11 PT 2012

POSIX Pthreads

- Condition variables are always used in conjunction with a mutex
+ Allow to wait on a variable change without polling it in a critical section
e pthread_cond_init()
- Initializes a condition variable
e pthread_cond_wait()
- Called with a locked mutex
* Releases the mutex and blocks on the condition in one atomic step
« One return, the mutex is again locked and owned by the caller
e pthread_cond_signal(), pthread_cond_broadcast()

« Unblock thread waiting on the given condition variable

ParProg | Tasks and Threads 12 PT 2012

/* FILE: condvar.c
* LAST REVISED: 10/14/10 Blaise Barney
*/

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 3
#define TCOUNT 10
#define COUNT LIMIT 12

int count = 0;
pthread mutex t count_mutex;
pthread cond t count threshold cv;

void *inc_count(void *t) {
int 1i;
long my_id = (long)t;

for (i=0; i < TCOUNT; i++) {
pthread_mutex_lock(&count mutex);
count++;

if (count == COUNT LIMIT) {
printf("Thread %1d, count = %d Threshold reached. ",
my_ id, count);
pthread_cond_signal (&count_threshold _cv);
printf("Just sent signal.\n");
}
printf("Thread %1d, count = %d, unlocking mutex\n",
my_id, count);
pthread_mutex_unlock(&count mutex);
/* Do some work so threads can alternate on mutex lock */
sleep(1l); }
pthread exit(NULL);

13

void *watch_count(void *t)

{

long my id = (long)t;
printf("Starting watch count(): thread %1d\n", my id);
pthread_mutex_lock(&count_mutex);
while (count < COUNT LIMIT) {
printf("Thread %1d Count= %d. Going into wait...\n",
my_id,count);
pthread_cond_wait (&count threshold cv, &count mutex);
printf("Thread %$1d Signal received. Count= %d\n",
my_id,count);
printf("Thread %1d Updating count...\n", my_id,count);
count += 125;
printf("Thread %1d count = %d.\n", my id, count);
}
printf("watch count(): thread %1d Unlocking mutex.\n", my id);
pthread_mutex unlock(&count_mutex);
pthread_exit(NULL);

int main(int argc, char *argv[])

{

int i, rc;

long tl=1, t2=2, t3=3;
pthread t threads[3];
pthread attr t attr;

pthread_mutex_init(&count_mutex, NULL);
pthread_cond_init (&count_threshold cv, NULL);

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD CREATE JOINABLE);
pthread_create(&threads[0], &attr, watch count, (void *)tl);
pthread_create(&threads[1], &attr, inc_count, (void *)t2);
pthread_create(&threads[2], &attr, inc_count, (void *)t3);

/* Wait for all threads to complete */
for (i = 0; i < NUM THREADS; i++) {
pthread_join(threads[i], NULL);

}
printf ("Main(): Count = %d. Done.\n", NUM THREADS, count);

pthread_attr_destroy(&attr);
pthread_mutex_destroy(&count mutex);
pthread_cond_destroy(&count threshold cv);
pthread_exit (NULL);

Windows vs. POSIX Synchronization

Windows

POSIX

WaitForSingleObject

pthread_mutex_lock()

WaitForSingleObject(timeout==0)

pthread_mutex_trylock()

Auto-reset events

Condition variables

ParProg | Tasks and Threads

14

PT 2012

Java

 Java supports concurrency with Java / operating system threads
« Functions bundled in java.util.concurrent
» Classical concurrency support

« synchronized methods: Allow only one thread in an objects’
synchronized methods, based on intrinsic object lock

 For static methods, locking based on class object

- synchronized statements: Synchronize execution by intrinsic lock of the
given object

« volatile keyword: Indicate shared nature of variable -
ensures atomic synchronized access, no thread-local caching

« wait /notify semantics in Object

ParProg | Tasks and Threads 15 PT 2012

Java Examples

public class HelloRunnable implements Runnable {

public void run() {
System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}
}
T — —
public class HelloThread extends Thread {
public void run() {
System.out.println("Hello from a thread!”);
}
public static void main(String args[]) {
(new HelloThread()).start();
public void addName(String name) ({ }
synchronized(this) {
lastName = name; }
nameCount++;
nameList.add(name);
}
r *

ParProg | Tasks and Threads 16 PT 2012

Java wait / notify

- Each object can act as guard with wait () /notify () functions

- Guard waiting must always be surrounded by explicit condition check

public synchronized guardedJoy() {

//This guard only loops once for each special event, which may not
//be the event we're waiting for.
while(!joy) {

try {

wait();

} catch (InterruptedException e) {}

}

System.out.println("Joy and efficiency have been achieved!");

ParProg | Tasks and Threads 17 PT 2012

Java High-Level Concurrency

* Introduced with Java 5

e Java.util.concurrent.locks

« Separation of thread management and parallel activities - Executors
e Java.util.concurrent.Executor

- Implementing object provides execute () method, is able to execute
submitted Runnable tasks

* No assumption on where the task runs, might be even in the callers
context, but typically in managed thread pool

« ThreadPoolExecutor implementation provided by class library

ParProg | Tasks and Threads 18 PT 2012

Java High-Level Concurrency

e jJava.util.concurrent.ExecutorService
« Supports also Callable objects as input, which can return a value
« Additional submit () function, which returns a Future object on the result
« Future object allows to wait on the result, or cancel execution
- Methods for submitting large collections of Callable’s

« Methods for managing executor shutdown
« Java.util.concurrent.ScheduledExecutorService
- Additional methods to schedule tasks repeatedly

 Available thread pools from executor implementations:
Single background thread, fixed size, unbound with automated reclamation

ParProg | Tasks and Threads 19 PT 2012

Java High-Level Concurrency

interface ArchiveSearcher { String search(String target); }
class App {
ExecutorService executor = ...
ArchiveSearcher searcher = ...
void showSearch(final String target)
throws InterruptedException {
Future<String> future
= executor.submit(new Callable<String>() {
public String call() {
return searcher.search(target);

}});
displayOtherThings(); // do other things while searching

try {
displayText(future.get()); // use future
} catch (ExecutionException ex) { cleanup(); return; }

}
}

ParProg | Tasks and Threads 20

PT 2012

Java High-Level Concurrency

class NetworkService implements Runnable {
private final ServerSocket serverSocket;
private final ExecutorService pool;

public NetworkService(int port, int poolSize)
throws IOException {
serverSocket = new ServerSocket(port);
pool = Executors.newFixedThreadPool (poolSize);

}

public void run() { // run the service
try {
for (:;) {
pool.execute(new Handler(serverSocket.accept())):
}
} catch (IOException ex) {
pool.shutdown();

}
}
}

class Handler implements Runnable {
private final Socket socket;
Handler(Socket socket) { this.socket = socket; }
public void run() {
// read and service request on socket

}
}

I — ——————
ParProg | Tasks and Threads 21 PT 2012

NET

« As Java, .NET CLR relies on native thread model
« Synchronization and scheduling mapped to operating system concepts
* .NET 4 has variety of support libraries
- Task Parallel Library (TPL) - Loop parallelization, task concept
« Task factories, task schedulers
 Parallel LINQ (PLINQ) - Implicit data parallelism through query language
 Collection classes, synchronization support

« Debugging and visualization support

ParProg | Tasks and Threads 22 PT 2012

C++

* C++11 specification added support for threads and mutexes
« Spanning asynchronous tasks with std::async or std::thread

- Works with Callable instance (functions, member functions, ...)

#include <iostream>

void write message(std::string const& message) {
std: :cout<<message;

}

int main() {
auto f=std::async(write message,"hello world from std::async\n");
write message("hello world from main\n");
f.wait();

}

ParProg | Tasks and Threads 23 PT 2012

Concurrent Programming in C++

#include <thread>
#include <iostream>

void write message(std::string const& message) {
std: :cout<<message;

}

int main() {

std::thread t(write message, "hello world from std::thread\n");
write message("hello world from main\n");
t.join();

 Launch policy can be specified

¢ get() method can be used to get the async function call result (,,future®)

ParProg | Tasks and Threads 24 PT 2012

Concurrent Programming in C++

std: :mutex m;

void f(){
std: :lock_guard<std::mutex> guard(m);
std::cout<<"In f()"<<std::endl;

}

int main(){
m.lock();
std::thread t(f);
for(unsigned i=0;i<5;++1i){
std::cout<<"In main()"<<std::endl;
std::this thread::sleep for(std::chrono::seconds(1l));

}

m.unlock();
t.join();

* 4 mutex classes, basic operations in the Lockable concept:
m.lock(), m.try_lock(), m.unlock()

 Locking is tricky with exceptions, so C++ offers some high-level templates

ParProg | Tasks and Threads 25 PT 2012

Concurrent Programming in C++

- Waiting for events with condition variables avoids polling

std::condition_variable the_cv;
void wait and pop(my class& data) {
std::unique lock<std::mutex> lk(the mutex);
the _cv.wait(lk,[]() {return !the queue.empty();}):;
data=the queue.front();
the queue.pop();

void push(Data const& data)

{
{
std::lock guard<std::mutex> lk(the mutex);
the queue.push(data);
}
the cv.notify one();
}

ParProg | Tasks and Threads 26 PT 2012

Concurrent Programming in C++

« Lock-free atomic types that are three from data races

e char, schar, uchar, short, ushort, int, uint, long, ulong, char16_t, wchar_t,
intptr_t, size_t, ...

« Common member functions
¢ js_lock_free()
e store(), load()
e exchange()
« Specialized member functions

e fetch_add(), fetch_sub(), fetch_and(), fetch_or(), operator++, operator+=, ...

ParProg | Tasks and Threads 27 PT 2012

Concurrent Programming in C++

=

ParProg | Tasks and Threads

Mathematizing C++ Concurrency

Mark Batty Scott Owens

Susmit Sarkar Peter Sewell

Tjark Weber

University of Cambridge

Abstract

Shared-memory concurrency in C and C++ is pervasive in systems
programming, but has long been poorly defined. This motivated
an ongoing shared effort by the standards committees to specify
concurrent behaviour in the next versions of both languages. They
aim to provide strong guarantees for race-free programs, together
with new (but subtle) relaxed-memory atomic primitives for high-
performance concurrent code. However, the current draft standards,
while the result of careful deliberation, are not yet clear and rigor-
ous definitions, and harbour substantial problems in their details.

In this paper we establish a mathematical (yet readable) seman-
tics for C++ concurrency. We aim to capture the intent of the cur-
rent (‘Final Committee’) Draft as closely as possible, but discuss
changes that fix many of its problems. We prove that a proposed
x86 implementation of the concurrency primitives is correct with
respect to the x86-TSO model, and describe our CPPMEM tool for
exploring the semantics of examples, using code generated from
our Isabelle/HOL definitions.

Having already motivated changes to the draft standard, this

work will aid dicenscion of anv further chanoes nmwvide a cor-

quential consistency (SC) [Lam79], simplifies reasoning about pro-
grams but at the cost of invalidating many compiler optimisa-
tions, and of requiring expensive hardware synchronisation instruc-
tions (e.g. fences), The C++0x design resolves this by providing
a relatively strong guarantee for typical application code together
with various atomic primitives, with weaker semantics, for high-
performance concurrent algorithms. Application code that does not
use atomics and which is race-free (with shared state properly pro-
tected by locks) can rely on sequentially consistent behaviour; in
an intermediate regime where one needs concurrent accesses but
performance is not critical one can use SC atomics; and where
performance is critical there are low-level atomics. It is expected
that only a small fraction of code (and of programmers) will use
the latter, but that code —concurrent data structures, OS kernel
code, language runtimes, GC algorithms, etc.— may have a large
effect on system performance. Low-level atomics provide a com-
mon abstraction above widely varying underlying hardware: x86
and Sparc provide relatively strong TSO memory [SSO™ 10, Spa);
Power and ARM provide a weak model with cumulative barri-
ers [Pow09, ARMOS, AMSSI10]; and Itanium provides a weak

28

——————————

PT 2012

Threads vs. Tasks

* Process: Address space, handles, code, set of threads
* Thread: control flow

* Preemptive scheduling by the operating system

- Can migrate between cores
- Task: control flow

- Typically modeled as object (TBB, Java) or statement / lambda expression /
anonymous function (OpenMP, MS TPL)

- Cooperative scheduling by a user-mode library, mapping to thread pool
« Task model replaces context switch with yielding approach

* Typical scheduling policy for tasks is central queue or work stealing

ParProg | Tasks and Threads 29 PT 2012

Multi-Tasking

« Relevant issues: Task generation, execution synchronization, data access

- Manual coordination in a sequential language
(operating system threads, Java / .NET threads, ...)
-> ,explicit” threading

- Using a framework for parallel tasks
(OpenMP, OpenCL, Intel TBB, MS TPL, ...)
-> . implicit® threading

« Concurrency problems remain
« Critical section problem with shared variables in different tasks

« Low-level synchronization primitives wrapped by ,,concurrent data structures*
in task framework

 Already covered: OpenCL

ParProg | Tasks and Threads 30 PT 2012

OpenMP

« Specification for C/C++ and Fortran language extension (currently v3.1)
« Portable shared memory thread programming
« High-level abstraction of task- and loop parallelism

- Derived from compiler-directed parallelization of serial language code (HPF),
with support for incremental change of source code

* Programming model: Fork-Join-Parallelism
« Master thread spawns group of threads for limited code region
- PARALLEL directive

- Barrier concept /

Master
Thread

Parallel Regions

ParProg | Tasks and Threads 31 PT 2012

OpenMP

OpenMP language
extensions

I

synchronization functions, env.

runtime

parallel control data

work sharing

structures environment .
variables

governs flow of distributes work scopes coordinates thread runtime environment

control in the among threads variables execution

program

omp_set_num_threads()
do/parallel do shared and critical and omp_get_thread_num()

parallel directive and private atomic directives OMP_NUM_THREADS

section directives

clauses barrier directive OMP_SCHEDULE

(from Wikipedia)

ParProg | Tasks and Threads 32 PT 2012

OpenMP Pragmas

* #fpragma omp construct ... (include omp.h)

« OpenMP runtime library: query functions, runtime functions, lock functions

- Parallel region

- OpenMP constructs are applied to dedicated code blocks,
marked by #pragma omp parallel

- Parallel region should have only one entry and one exit point

* Implicit barrier at beginning and end of the block

o a
Q
::.‘-'&\

« Thread pool for execution of parallel activities ™

=2

™~ 1

Parallel Regions

- Idle worker threads may sleep or spin, depending on library configuration
(performance issue in serial parts)

ParProg | Tasks and Threads 33 PT 2012

OpenMP Parallel Construct

- Encountering thread for the parallel region generates a set of implicit tasks
- Each resulting implicit task is assigned to a different thread

- Implementation may suspend task execution at a scheduling point

A set of implicit tasks, equal in number to the number of threads in the team, is
generated by the encountering thread. The structured block of the parallel construct
determines the code that will be executed in each implicit task. Each task is assigned to
a different thread in the team and becomes tied. The task region of the task being
executed by the encountering thread is suspended and each thread in the team executes
its implicit task. Each thread can execute a path of statements that is different from that
of the other threads.

The implementation may cause any thread to suspend execution of its implicit task at a
task scheduling point, and switch to execute any explicit task generated by any of the
threads in the team, before eventually resuming execution of the implicit task (for more
details see Section 2.7 on page 59).

L — S

ParProg | Tasks and Threads 34 PT 2012

OpenMP Configuration / Query Functions

 Environment variables

- OMP NUM THREADS: number of threads during execution, upper limit for
dynamic adjustment of threads

- OMP_ SCHEDULE: set schedule type and chunk size for parallelized loops of
scheduling type runtime

« Query functions

- omp get num threads: Number of threads in the current parallel region
« omp get thread num: Current thread number in the team, master=0

- omp_get num procs: Available number of processors

ParProg | Tasks and Threads 35 PT 2012

OpenMP Work Sharing

- Possibilities for distribution of tasks across threads (,work sharing’)
-« omp sections - Define code blocks usable as tasks
« omp for - Automatically divide a loop‘s iterations into tasks
- Implicit barrier at the end

- omp task - Explicitly define a task

« omp single / master - Denotes a task to be executed only by first
arriving thread resp. the master thread

- Implicit barrier at the end, intended for non-thread-safe activities (I/O)
- Scheduling of tasks defined is handled by the OpenMP implementation

- Clause combinations possible: #pragma omp parallel for

ParProg | Tasks and Threads 36 PT 2012

OpenMP Work Sharing with Sections

 Explicit definition of code blocks as parallel tasks with section directive
(function partitioning)

« Executed in the context of the implicit task

« One task may execute more than one section - runtime decision

#pragma omp parallel
{
fpragma omp sections [clause [clause] ...]

{

[#pragma omp section]

structured-blockl
[#pragma omp section]

structured-block?
b}

ParProg | Tasks and Threads 37 PT 2012

OpenMP Data Scoping

- Shared memory programming model - communication through variables
- Shared variable: Name provides access to same memory in all tasks

- Shared by default: global variables, static variables,
variables with namespace scope, variables with file scope

- shared clause can be added to any omp construct, defines a list of
additionally shared variables

* Provides no automatic protection, just marking of variables for handling by
runtime environment

* Private variable: Clone variable in each task, by default no initialization

* Private by default: Local variables in functions called from parallel regions,
loop iteration variables, automatic variables

- Initialization with last value before region (firstprivate) possible
ParProg | Tasks and Threads 38 PT 2012

OpenMP Work Sharing with Loop Parallelization

« Loop construct: Parallel #pragma omp parallel for

execution of iterations for(ii = @; ii < n; ii++){
value = some_complex_long_fuction(Ca[ii]);
* lteration variable must #pragma omp critical
be integer sum = sum + value;
ks
« Mapping of threads to F— —
iterations is controlled
#include <math.h>
by Schedule Clause void a92(int n, float *a, flcat *b, float *c, flocat *y, float *z)
{
. . int i;
* |mp|ICat|0nS on #pragma omp parallel
. . {
exceptlon handllng’ #ipragma omp for schedule(static) nowait
break-out calls and for (i=0; i<n; i++)
. ey cli) = (a[i)] + b[i)) / 2.0;
Contlnue p”m't'Ve #pragma omp for schedule(static) nowait

for (i=0; i<n; i++)
z[i] = sgrt(cli]);
#pragma omp for schedule(static) nowait
for (iwl; i<wn; i++)
ylil = z[i-1] + alil;
}

}
ParProg | Tasks and Threads

OpenMP Consistency Model

« Thread’s temporary view of memory is not required to be consistent with
memory at all times (weak-ordering consistency)

Example: Keeping loop variable in a register for efficiency reasons

Compiler needs to be informed when consistent view is demanded

Implicit flush on different occasions, such as barrier region

In all other cases, shared variables must be flushed before reading

* Directive:
#fpragma omp flush a=b=0

thread 1 thread 2

b =1 a =1

flush(a,b) flush (a,b)

if (a == 0) then if (b == 0) then
critical section critical section

end if end if

ParProg | Tasks and Threads

OpenMP Loop Parallelization Scheduling

« schedule (static, [chunk]) - Contiguous ranges of iterations (chunks)
are assigned to the threads

- Low overhead, round robin assignment to free threads

- Static scheduling for predictable and similar work per iteration

* Increasing chunk size reduces overhead, improves cache hit rate
 Decreasing chunk size allows finer balancing of work load

« schedule (dynamic, [chunk]) - Threads grab iteration resp. chunk

« Higher overhead, but good for unbalanced iteration work load

« schedule (guided, [chunk]) - Dynamic schedule, shrinking ranges per
step, starting with large block, until minimum chunk size is reached

- Computations with increasing iteration length (e.g. prime sieve test)

ParProg | Tasks and Threads 41 PT 2012

OpenMP Synchronization

« Synchronizing with task completion

« Implicit barrier at the end of single block, removable by nowait clause
- #pragma omp barrier (wait for all other threads in the team)

- #pragma omp taskwait (wait for completion of created child tasks)

#include <omp.h>
#include <stdio.h>
int main() {
#pragma omp parallel
{
printf("Start: %d\n", omp_get_thread_num());
#pragma omp single //nowait
printf("Got 1t: %d\n", omp_get_thread_num());
printf("Done: %d\n", omp_get_thread_num());
by

return 0;

}

ParProg | Tasks and Threads 42 PT 2012

OpenMP Synchronization

* Synchronizing variable access
e fpragma omp critical [name]
- Enclosed block executed by all threads, but restricted to one at a time

 All unnamed directives map to the same unspecified name

float dot prod(float* a, float* b, int N)
{
float sum = 0.0;
#pragma omp parallel for
for(int i = 0; 1 < N; 1i++) {
#pragma omp critical
sum += al[i] * b[i];
}

return sum;

ParProg | Tasks and Threads 43 PT 2012

OpenMP Synchronization

« Alternative: #pragma omp reduction (op: list)

- Execute parallel tasks based on private copies of 11ist, perform reduction
on results with op afterwards, without race conditions

« Supported associative operands:
+, %, -, A, bitwise AND, bitwise OR, logical AND, logical OR

) H)

#pragma omp parallel for reduction (+:sum)
for(i = 0; 1 < N; i++) {
sum += al[i] * b[i];

}

ParProg | Tasks and Threads 44 PT 2012

OpenMP Best Practices [Suf3 & Leopold]

 Typical correctness mistakes
« Access to shared variables not protected
- Use of locks / shared variables without £1ush

« Declaring parallel loop variable as shared

* Typical performance mistakes

« Use of critical when atomic would be sufficient
« Too much work inside a critical section

« Unnecessary flush / critical

ParProg | Tasks and Threads 45 PT 2012

OpenMP Tasks

« Main change with OpenMP v3,
allows description of non-data
driven parallelization strategy

- Farmer / worker algorithms
* Recursive algorithms

« Unbounded loops
(e.g. while loops)

struct node {
struct node *left;
struct node *right;
}:
extern void process(struct node *);
void postorder traverse(struct node *p) {
if (p-»>left)
$#pragma omp task // p is firstprivate by default
postorder traverse(p->left);
if (p->right)
#pragma omp task // p is firstprivate by default
postorder traverse(p->right);
#pragma omp taskwait
process(p);

 Definition of tasks as composition of code to execute, data environment, and

control variables

« Implicit task generation with parallel and for constructs

« Explicit task generation with sections and task constructs

ParProg | Tasks and Threads

46 PT 2012

OpenMP Tasks

 Certain construct act as task scheduling point

 When thread encounters this construct, it can switch to another task

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task

process (item([i]) ;

- Example: Generating task will suspend on exit barrier

« Executing thread can help processing the task pool, or run the spawned
task directly (cache-friendly)

ParProg | Tasks and Threads 47 PT 2012

OpenMP 4

« SIMD extensions

- Allows to tell the compiler that it should vectorize a loop

 Targeting extensions

- Thread with the OpenMP program executes on the host device,
an implementation may support other target devices

+ Control off-loading of loops and code regions on such devices
* New API for using a device data environment
- OpenMP - managed data items can be moved to the device

- Threads cannot migrate between devices

ParProg | Tasks and Threads 48 PT 2012

Intel TBB

Task concept - define what to run in parallel, instead of managing threads

Portable C++ library, toolkits for different operating systems

Complements basic OpenMP features

 Loop parallelization, parallel reduction, synchronization, explicit tasks

High-level concurrent containers (hash map, queue, vector)

High-level parallel operations (prefix scan, sorting, data-flow pipelining)

Unfair scheduling approach, to favor threads having data in cache

Supported for cache-aware memory allocation

Comparable: Microsoft C++ Concurrency Runtime

ParProg | Tasks and Threads 49 PT 2012

Fasy Mappings [Dig]

Java BB TPL
Parallel For ParallelArray parallel_for Parallel.For
Concurrent Collections ConcurrentHashMap, | concurrent_hash_map,
Atomic Classes Atomiclnteger, ... atomic<T> Interlocked
ForkJoianask ForkJoinTask task Task, ReplicableTask
Parallelism framework

ParProg | Tasks and Threads

50

PT 2012

Lock-Free Programming

- Lock-free programming as a way of sharing data without maintaining locks
* Prevents deadlock and live-lock conditions

- Goal:
Suspension of one thread never prevents another thread from making
progress (e.g. synchronized shared queue)

 Blocking by design does not disqualify the lock-free realization

« Algorithms rely on well-known hardware support for atomic operations
e Read-Modify-Write (RMW) operations
e Compare-And-Swap (CAS) operations

¢ These operations are typically mapped in operating system API

ParProg | Tasks and Threads 51 PT 2012

Lock-Free Programming

void LockFreeQueue: :push(Node* newHead)

{
for (;;)
{
// Copy a shared variable (m Head) to a local.
Node* oldHead = m_Head;
// Do some speculative work, not yet visible to other threads.
newHead->next = oldHead;
// Next, attempt to publish our changes to the shared variable.
// If the shared variable hasn't changed, the CAS succeeds and we return.
// Otherwise, repeat.
if (_InterlockedCompareExchange(&m_Head, newHead, oldHead) == oldHead)
return;
}
}

ParProg | Tasks and Threads 52 PT 2012

Sequential Consistency

« Consistency model where the order of std::atomic<int> X(0), Y(0);

int rl, r2;

memory operations is consistent with

the source code void threadl()
{
. . X.store(1l);
- Important for lock-free algorithm semantic rl = Y.load();
}
« Not guaranteed by some processor void thread2()
architectures (e.g. PowerPQ) {

Y.store(1l);

2 = X.load 7
- Java and C++ support the enforcement of } } cadt)

sequential consistency

- Compiler generates additional memory fences and RMW operations

- Still does not prevent from memory re-ordering due to instruction re-
ordering by the compiler itself

ParProg | Tasks and Threads 53

PT 2012

Work Stealing

e Blumofe, Robert D.; Leiserson, Charles E.: Scheduling Multithreaded
Computations by Work Stealing. In: In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (FOCS. 1994), S. 356-368

* Problem of scheduling scalable multithreading problems on processors

« Work sharing: When processors create new work, the scheduler migrates
threads for balanced utilization

« Work stealing: Underutilized processor takes work from other processor
* Intuitively, less thread migrations
- Goes back to work stealing research in Multilisp (1984)
- Communication reaches lower bound for parallel divide-and-conquer

- Approach by Blumofe et al. relies on ,,fully strict multithreaded computation®

ParProg | Tasks and Threads 54 PT 2012

Randomized Work Stealing

« Lock-free ready dequeue per processor

Task are inserted on the bottom, and can be taken from both sides

Processor obtains local work by taking one task from the bottom

Migrated tasks are taken from the top

If no ready task is available on task stall / dead, the processor steals the
top-most one from a randomly chosen processor

- If no victim is available, processor continues to randomly search for one

Stalled tasks which are enabled again by other tasks are placed on the
bottom of the ready dequeue of their enabling processor

 Algorithm maintains the busy-leaves property - ready tasks are either executed
or wait for a processor becoming free

« Supported in Microsoft TPL, Intel TBB, Java, Cilk, ...

ParProg | Tasks and Threads 55 PT 2012

Apple Grand Central Dispatch

» Part of MacOS X operating system since 10.6
 Task parallelism concept for developer, execution in thread pools
 Tasks can be functions or blocks (C / C++ / ObjectiveC extension)

« Submitted to dispatch queues, executed in thread pool under control of the
Mac OS X operating system

« Main queue: Tasks execute serially on application‘s main thread

- Concurrent queue: Tasks start executing in FIFO order,
but might run concurrently

- Serial queue: Tasks execute serially in FIFO order

 Dispatch groups for aggregate synchronization

« On events, dispatch sources can submit tasks to dispatch queues automatically

ParProg | Tasks and Threads 56 PT 2012

Linda Model

- Concurrent programming model, developed in Yale University research project

« Tuple-space concept
 Abstraction of distributed shared memory
« Set of programming language extensions for facilitating parallel programming
 Tuple: Fixed fixed-length list containing elements of different type

+ Associative memory - tuples are accessed not by their address but rather by
their content and type

- Destructive (in) and nondestructive (rd) reads
- Sequential programs embed insert/retrieve tuple operations

« Multiple implementations (LindaSpaces, GigaSpaces, IBM TSpaces, ...)

ParProg | Tasks and Threads 57 PT 2012

Tuple Spaces

out(,peter”, 88, 1.5) in(,mary*, u, v)

(,mary*, 43, 2.0)

(,fred”, 56, 2.8)

rd(,peter, X, y)

ParProg | Tasks and Threads 58 PT 2012

procedures manager
begin
count = 0
until end-of-file do
read datum from file
OUT ("datum",datum)
count = count+l
enddo
best = 0.0
for i = 1 to count
IN("score" ,value)
if value > best then best = value
endfor
for i = 1 to numworkers
OUT("datum","stop")
endfor
end

(C) http://www.mcs.anl.gov/

procedure worker
begin
IN("datum",datum)
until datum = “stop" do
value = compare(datum,target)
OUT("8core",value)
IN("datum" ,datum)
enddo

end

Program 4.2 : Pseudo-code [or master and worker Lasks 1o a tuple-space solution

Lo the database search problewm. 59

http://www.mcs.anl.gov
http://www.mcs.anl.gov

