
Parallel Programming Concepts

Theory of Concurrency - Shared Memory

Peter Tröger

Sources:
Clay Breshears: The Art of Concurrency, Chapter 3
Dijkstra, Edsger W.: Cooperating sequential processes. / Hierarchical ordering of
sequential processes
C.A.R. Hoare: Monitors - An Operating System Structuring Concept

„An ounce of prevention equals a pound of cure.“

ParProg | Theory PT 2012

Von Neumann Model

2

• Processor executes a sequence of instructions, which specify

• Arithmetic operation

• Memory to be read / written

• Address of next instruction

• Software layering tackles complexity of instruction stream

• Parallelism adds coordination problem between multiple instruction streams
being executed

Central Unit

Memory Control Unit

Arithmetic Logic UnitInput

Output B
us

ParProg | Theory PT 2012

Terminology

• Concurrency

• Supported to have two or more actions in progress at the same time

• Classical operating system responsibility
(resource sharing for better utilization of CPU, memory, network, ...)

• Demands scheduling and synchronization - interference control

• Parallelism

• Supported to have two or more actions executing simultaneously

• Demands parallel hardware, concurrency support, (and communication)

• Programming model relates to chosen hardware / communication approach

• Examples: Windows 3.1, threads, signal handlers, shared memory

3

ParProg | Theory PT 2012

History

• 1961, Atlas Computer, Kilburn & Howarth

• Based on Germanium transistors, assembler only

• First use of interrupts to simulate concurrent
execution of multiple programs - multiprogramming

• 60‘s and 70‘s: Foundations for concurrent
software developed (operating system reliability)

• 1965, Cooperating Sequential Processes, E.W.Dijkstra

• First abstract principles of concurrent programming

• Basic concepts: Critical section, mutual exclusion,
fairness, speed independence

4

ParProg | Theory PT 2012

History

• 1971, Towards a Theory of Parallel Programming, C. A. R. Hoare

• First notable attempt to extend programming languages
with a first-class concept of parallelism

• Design principles for parallel programming languages

• Time-related interference control at compile time

• Disjoint processes without common variables

• Explicit declaration of shared resources and critical regions

• Conditional critical regions
(„with resource when expression do critical region“)

• Novel approach at a time were everything was related to variable checking

• Mostly known for CSP / Occam work (next lecture)
5

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• 1965, Cooperating Sequential Processes, E.W.Dijkstra

• Paper starts with comparison of sequential and non-sequential machine

• Example: Electromagnetic solution to find a largest value in an array

• Current lead though magnet coil

• Switch to magnet with larger current

6

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• Progress of time is relevant for this machine

• After applying the currents in a step,
machine needs some time to show the result

• Interpretation of first approach

• Same line differs only in left operand

• Concept of a parameter that comes from history
-> variable

• Different setup for same behavior - six simultaneous
comparators (last slide) vs. three comparisons
evaluated in sequence

• Rules of behavior form a program

7

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• Idea: Multiple ways of expressing the program intent

• Example: Consider repetitive nature of the problem

• Invest in a variable j -> generalize the solution for any number of items

8

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• Assume we have multiple of these sequential programs / processes

• How about the cooperation between loosely coupled sequential processes ?

• Beside rare communication moments, processes run autonomously

• Disallow any assumption about the relative speed

• Aligns to understanding of sequential process,
which is not affected in its correctness by execution time

• If not fulfilled, might bring „analogue interferences“ on verification attempt

• Interleaved instructions result in a different result then the single versions

• Note: Dijkstra already identified the concept of a „race condition“ here

9

ParProg | Theory PT 2012

Race Condition

• Executed by two threads on uniprocessor

• Executed by two threads on multiprocessor

• What happens ?

10

void echo() {
 char_in = getchar();
 char_out = char_in;
 putchar(char_out);
}

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• Idea of a critical section

• Two cyclic sequential
processes

• At any moment, at most
one process is engaged
in its critical section

• Use common variables
with atomic
read / write behavior

• First approach

• Too restrictive solution

• Note: Atomicity concept on the scope of source code lines

11

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• Second approach

• Separate indicators for
entering / leaving the
critical section

• More fine-grained
waiting approach

• Too optimistic solution,
might violate critical
section property

12

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• Third approach

• First ,raise the flag‘,
the check for the other flag

• Mutual exclusion
guaranteed

• If c1=0, then c2=1,
and vice versa

• Variables only change
outside of the critical
section

• Danger of mutual blocking
(,deadlock‘)

13

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• Fourth approach

• Reset locking of critical
section if the other one
is already in

• Problem due to assumption
of relative speed

• Maybe no parallel
hardware - only concurrent
execution

• Can lead for one process
to ,wait forever‘ without
any progress

14

ParProg | Theory PT 2012

Cooperating Sequential Processes [Dijkstra]

• Solution: Dekker‘s algorithm referenced by Dijkstra

• Combination of fourth approach and turn ,variable‘,
which realizes mutual blocking avoidance through prioritization

• Idea: Spin for section entry only if it is your turn, otherwise wait for your turn

15

ParProg | Theory PT 2012

Mutual Exclusion Today

• Dekker provided first correct solution only based on shared memory

• Guarantees three major properties

• Mutual exclusion

• Freedom from deadlock

• Freedom from starvation

• Generalization for n processes by Lamport with the Bakery algorithm

• Relies only on memory access atomicity

16

ParProg | Theory PT 2012

Bakery Algorithm [Lamport]

do {
 choosing[i] = 1;
 number[i] = max(number[0],number[1] ...,number[n-1]) + 1;
 choosing[i] = 0;
 for (j = 0; j < n; j++) {
 while (choosing[j] == 1) ;
 while ((number[j] != 0) &&
 ((number[j],j) ‘’<‘’ (number[i],i)));
 }
 critical section
 number[i] = 0;
 remainder section
} while (1);

17

ParProg | Theory PT 2012

Critical Section

• n threads all competing to use a shared resource (i.e.; shared data, spaghetti forks)

• Each thread has some code - critical section - in which the shared data is accessed

• Mutual Exclusion demand

• Only one thread at a time is allowed into its critical section, among all threads that
have critical sections for the same resource.

• Progress demand

• If no other thread is in the critical section, the decision for entering should not be
postponed indefinitely. Only threads that wait for entering the critical section are
allowed to participate in decisions.

• Bounded Waiting demand

• It must not be possible for a thread requiring access to a critical section to be
delayed indefinitely by other threads entering the section (starvation problem)

18

ParProg | Theory PT 2012

Test-and-Set

• Reality today is much worse:
Out-of-order execution, re-ordered memory access, compiler optimizations

• Test-and-set processor hardware feature, wrapped by the operating system

• Write to a memory location and return its old value as atomic operation

• Idea: Spin in writing 1 to a memory cell until the old value was 0

• Between writing and test, no other operation can modify the value

• Can be implemented with atomic
swap (or any other read-modify-write)
hardware operation

• Typical example for a spin-lock approach

• Busy waiting for acquiring a lock

• Efficient for short periods, since no
overhead of context switching

19

function Lock(boolean *lock) {
 while (test_and_set (lock))
 ;
}

#define LOCKED 1
 int TestAndSet(int* lockPtr) {
 int oldValue;
 oldValue = SwapAtomic(lockPtr, LOCKED);
 return oldValue == LOCKED;
 }

ParProg | Theory PT 2012

Abstraction of Concurrency [Breshears]

• Programs are the execution of atomic statements

• „Atomic“ can be defined on different granularity levels, e.g. source code line

-> Concurrency should be treated as abstract concept

• Concurrent execution is the interleaving of atomic statements from multiple
sequential processes

• Scheduling is (typically) non-deterministic

• Unpredictable execution sequence of atomic instructions

• Concurrent algorithm should maintain properties for all possible inter-leavings

• Example: All atomic statements are eventually included (fairness)

20

21

ParProg | Theory PT 2012

Binary and General Semaphores [Dijkstra]

• Find a solution to allow waiting sequential processes to ,sleep‘

• Special purpose integer called „semaphore“

• P-operation: Decrease value of its argument semaphore by 1 as atomic step

• Blocks if the semaphore is already zero - „wait“ operation

• V-operation: Increase value of its argument semaphore by 1 as atomic step

• „signal“ operation

• Solution for critical section shared between N processes

• Original proposal by Dijkstra did not mandate any wakeup order, only progress

• Later debated from operating system implementation point of view

• „Bottom layer should not bother with macroscopic considerations“

22

ParProg | Theory PT 201223

Example: Binary Semaphore

ParProg | Theory PT 2012

Example: General Semaphore

24

ParProg | Theory PT 2012

Deadlock ?
• 1970. E.G. Coffman and A. Shoshani.

Sequencing tasks in multiprocess systems to avoid deadlocks.

• Mutual exclusion condition - Individual resources are available or held by no
more than one thread at a time

• Hold and wait condition - Threads
already holding resources may
attempt to hold new resources

• No preemption condition - Once
a thread holds a resource, it must
voluntarily release it on its own

• Circular wait condition - Possible
for a thread to wait for a resource
held by the next thread in the chain

• All conditions must be fulfilled to allow
a deadlock to happen

25

ParProg | Theory PT 201226

Dining Philosophers (E.W.Dijkstra)

• Five philosophers work in a college, each philosopher has a room for thinking

• Common dining room, furnished with a circular table,
surrounded by five labeled chairs

• In the center stood a large bowl of spaghetti, which was constantly replenished

• When a philosopher gets hungry:

• Sits on his chair

• Picks up his own fork on the left and plunges
it in the spaghetti, then picks up the right fork

• When finished he put down both forks
and gets up

• May wait for the availability of the second fork

ParProg | Theory PT 2012

Dining Philosophers (E.W.Dijkstra)

• Idea: Shared memory synchronization has different standard issues

• Explanation of the deadly embrace (deadlock) and the starvation problem

• Forks taken one after the other, released together

• No two neighbors may eat at the same time

• Philosophers as tasks, forks as shared resource

• How can a deadlock happen ?

• All pick the left fork first and wait for the right

• How can a live-lock (starvation) happen ?

• Two fast eaters, sitting in front of each other

• One possibility: Waiter solution (central arbitration)

27

(C
) W

ik
ip

ed
ia

ParProg | Theory PT 2012

One Solution: Lefty-Righty-Approach

• PHILn is a righty (is the only one starting with the right fork)

• Case 1: Has right fork, but left fork is held by left neighbor

• Left neighbor will put down both forks when finished, so there is a chance

• PHILn might always be interrupted before eating (starvation), but no
deadlock of all participants occurs

• Case 2: Has no fork

• Right fork is captured by right neighbor

• In worst case, lock spreads to all but one righty

• ...

• Proof by Dijkstra shows deadlock freedom, but still starvation problem

28

ParProg | Theory PT 2012

Monitors

• 1974, Monitors: An Operating System Structuring Concept, C.A.R. Hoare

• First formal description of monitor concept, originally invented by
Brinch Hansen in 1972 as part of an operating system project

• Operating system has to schedule requests for various resources

• Separate schedulers per resource necessary

• Each contains local administrative data, and functions used by requestors

• Collection of associated data and procedures: monitor

• Note: The paper mentions the class concept from Simula 67 (1972)

• Procedures are common between all instances, but calls should be mutually
exclusive (local state + resource state) - occupation of the monitor

29

ParProg | Theory PT 2012

Monitors and Condition Variables

• Simple implementation of method protection by semaphores

• Method implementation itself might need to wait at some point

• Monitor wait operation: Issued inside the monitor, causes the caller to wait
and temporarily release the monitor while waiting for some assertion

• Monitor signal operation: Resumes one of the waiting callers

• Might be more than one reason for waiting inside the monitor

• Variable of type condition in the monitor, one for each wait reason

• Delay operations relate to condition variable: condvar.wait, condvar.signal

• Programs expect to be signaled for the condition they are waiting for

• Hidden implementation as queue of waiting processes

30

ParProg | Theory PT 2012

Single Resource Monitor

31

ParProg | Theory PT 2012

Implementing a Semaphore with a Monitor

32

ParProg | Theory PT 2012

Monitors - Example

• Java programming language

• Each class might act as monitor, mutual exclusion of method calls by
synchronized keyword

• One single wait queue per object, no need for extra condition variables

• Each Java object can act as condition variable -
Object.wait() and Object.notify()

• Threads give up monitor ownership and blocks by calling wait()

• Threads also give up ownership by leaving the synchronized method

• Threads calling notify() are still continued,
so data still might change until they ultimately give up the ownership
-> signaling acts only as ,hint‘ to the waiting thread

• Coordination functions in Object only callable from synchronized methods
33

ParProg | Theory PT 2012

Monitors - Java

• Since the operating system gives boost for threads being waked up,
the signaled thread is likely to be scheduled as next

• Also adopted in other languages

34

ParProg | Theory PT 2012

Java Example

35

class Queue {
 int n;
 boolean valueSet = false;
 synchronized int get() {
 while(!valueSet)
 try { this.wait(); }
 catch(InterruptedException e) { ... }
 valueSet = false;
 this.notify();
 return n;
 }
 synchronized void put(int n) {
 while(valueSet)
 try { this.wait(); }
 catch(InterruptedException e) { ... }
 this.n = n;
 valueSet = true;
 this.notify();
 }
}

class Producer implements Runnable {
 Queue q;
 Producer(Queue q) {
 this.q = q;
 new Thread(this, "Producer").start(); }
 public void run() {
 int i = 0;
 while(true) { q.put(i++); }
}}

class Consumer implements Runnable { ... }

class App {
 public static void main(String args[]) {
 Queue q = new Q();
 new Producer(q);
 new Consumer(q);
 }
}

ParProg | Theory PT 2012

Notify Semantics

36

ParProg | Theory PT 2012

Reader / Writer Locks

• Today: Multitude of high-level synchronization primitives,
based on initial mutual exclusion and critical section concepts

• Example: 1971, Concurrent Control with „Readers“ and „Writers“. Courtois et al.

• Special case of mutual exclusion through semaphores

• Multiple „reader“ processes can enter the critical section at the same time

• „writer“ process should gain exclusive access

• Different optimizations: minimum reader delay, minimum writer delay

• Problem 1: No reader should wait for a writer that waits for a reader

• Problem 2: Fast write when ready

37

ParProg | Theory PT 2012

Example: Modern Operating Systems

• Mutual exclusion of access necessary whenever the resource ...

• ... does not support shared access by itself

• ... sharing could lead to unpredictable outcome

• Examples: Memory locations, stateful devices

• Code sections accessing the non-sharable resource form a critical section

• Traditional OS architecture approaches

• Disable all interrupts before entering a critical section

• Mask interrupts that have handlers accessing the same resource
(e.g. Windows dispatcher database)

• Both do not work for true SMP systems

38

ParProg | Theory PT 2012

Modern Operating Systems

• User-mode software has the same problem

• Also needs reliable multi-processor synchronization

• Spin locks not appropriate - kernel needs to provide synchronization
primitives that put the waiting thread to sleep

• Windows NT kernel:

• Spin-locks protecting global data structures in the kernel (e.g. DPC queue)

• User-mode synchronization primitives mapped to kernel-level
Dispatcher Object

• Can be in signaled or non-signaled state

• WaitForSingleObject(), WaitForMultipleObjects()

39

ParProg | Theory PT 2012

Windows Synchronization Objects [Stallings]

40

ParProg | Theory PT 2012

Windows Synchronization Functions

• Condition variables and reader/writer lock function

• AcquireSRWLockExclusive, AcquireSRWLockShared, InitializeConditionVariable,
InitializeSRWLock, ReleaseSRWLockExclusive, ReleaseSRWLockShared,
SleepConditionVariableCS, SleepConditionVariableSRW,
TryAcquireSRWLockExclusive, TryAcquireSRWLockShared,
WakeAllConditionVariable, WakeConditionVariable

• Critical section functions

• DeleteCriticalSection, EnterCriticalSection, InitializeCriticalSection,
InitializeCriticalSectionAndSpinCount, InitializeCriticalSectionEx,
LeaveCriticalSection, SetCriticalSectionSpinCount, TryEnterCriticalSection

• Event functions

CreateEvent, CreateEventEx, OpenEvent, PulseEvent, ResetEvent, SetEvent

• One-time initialization functions

InitOnceBeginInitialize, InitOnceComplete, InitOnceExecuteOnce,
InitOnceInitialize

41

http://msdn.microsoft.com/en-us/library/ms681930(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms681930(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms681934(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms681934(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683469(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683469(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683483(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683483(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms685076(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms685076(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms685080(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms685080(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686301(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686301(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686304(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686304(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd405523(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd405523(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd405524(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd405524(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687076(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687076(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687080(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687080(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682552(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682552(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682608(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682608(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683472(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683472(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683476(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683476(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683477(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683477(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684169(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684169(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686197(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686197(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686857(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686857(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682396(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682396(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682400(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682400(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684305(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684305(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684914(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684914(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms685081(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms685081(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686211(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686211(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683487(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683487(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683491(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683491(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683493(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683493(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683495(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683495(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683495(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683495(v=VS.85).aspx

ParProg | Theory PT 2012

Windows Synchronization Functions

• Interlocked functions

• Mutex functions

• Semaphore functions

• Linked list, timer queue, waitable timers ...

• Wait functions

MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx,
RegisterWaitForSingleObject, SignalObjectAndWait, UnregisterWait,
UnregisterWaitEx, WaitForMultipleObjects, WaitForMultipleObjectsEx,
WaitForSingleObject, WaitForSingleObjectEx, WaitOrTimerCallback

42

http://msdn.microsoft.com/en-us/library/ms684242(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684242(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684245(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684245(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms685061(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms685061(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686293(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686293(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686870(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686870(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686876(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms686876(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687025(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687025(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687028(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687028(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687032(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687032(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687036(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687036(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687066(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms687066(v=VS.85).aspx

ParProg | Theory PT 2012

Modern Operating Systems

• Linux:

• Kernel disables interrupts for synchronizing access to global data on
uniprocessor systems

• Uses spin-locks for multiprocessor synchronization

• Uses semaphores and readers-writers locks when longer sections of code
need access to data

• Implements POSIX synchronization primitives to support multitasking,
multithreading (including real-time threads), and multiprocessing.

43

ParProg | Theory PT 2012

8 Simple Rules For Concurrency [Breshears]

• „Concurrency is still more art than science“

• Identify truly independent computations

• Implement concurrency at the highest level possible

• Plan early for scalability

• Code re-use through libraries

• Use the right threading model

• Never assume a particular order of execution

• Use thread-local storage if possible, apply locks to specific data

• Don‘t change the algorithm for better concurrency

44

