
Parallel Programming Concepts

Introduction

Peter Tröger

ParProg | Introduction PT 2012

Course Design

• Lectures covering theoretical and practical
aspects of concurrency and parallelism

• 30 minutes oral exam

• Lectures partially given by domain experts
from OSM group

• 3 big assignments

• 2/3 must be solved correctly

• Implementation of parallel algorithms with
different programming models

• Literature list on course home page

• Good book for starters ...

2

The Art of Concurrency:
A Thread Monkey's Guide to
Writing Parallel Applications
Clay Breshears
O'Reilly Media, Inc., 2009

ParProg | Introduction PT 2012

Computer Markets

• Embedded Computing

• Real-time systems, nearly everywhere

• Power consumption and price as major issue

• Desktop Computing

• Home computers

• Best-possible performance / price ratio as major issue

• Servers

• Performance and availability of provided business service as major issue

• Web servers, banking back-end, order processing, ...

3

Central Unit

ParProg | Introduction PT 2012

Machine Model
• First computers had fixed programs (electronic calculator)

• von Neumann architecture (1945, for EDVAC project)

• Instruction set used for assembling programs stored in memory

• Program is treated as data, which allows program exchange under program
control and self-modification

• von Neumann bottleneck

4

Memory Control Unit

Arithmetic Logic UnitInput

Output Bu
s

ParProg | Introduction PT 2012

Machine Model

5

ParProg | Introduction PT 2012

Three ways of doing anything faster (Pfister)

• Work harder
• Work smarter
• Get help

6

ParProg | Introduction PT 2012

Work Harder

• „...the number of transistors that can be inexpensively placed on an integrated
circuit is increasing exponentially, doubling approximately every two
years. ...“ (Moore's Law)

• Rule of exponential growth is applied to many IT hardware developments

• Density rule is sometimes applied on system performance

• „Andy giveth, and Bill taketh away.“

• Traditional ways for making processors faster:

• Clock speed - More cycles per time unit

• Execution optimization - More work per cycle

• Caching - Tackle the memory hierarchy

7

ParProg | Introduction PT 2012

Power per Core [Frank & Tyberg]

8

Constraint: Power per Core
IBM Research PDSOI optimization results indicate lower power

approaches provide better power efficiency

Optimizing process technology knobs for maximum performance for each core
Constant performance

improvement of 20% per

generation

!"#$%#&'()*+,%'-

!!$%#&.")*+,%'-
!)/))

200W/cm2

generation

0'#$%#&("*+,%'-

''$%#&!!)*+,%'-

(/))

1/))

2
3
4
2
$
,
5
#&
6
7
8
- 100W/cm2

50W/cm2

25W/cm2

9)$%
("#$% :"$%

0'$% ''$%

!"$%
!!$%

:"#$%#&("*+,%'-

;(#<7#=>?2@A,BBC2D

("$%#&")*+,%
'
-

;(#<7#EF@#GBBC2D
:/))

H
I
?/
#G
CB
,
J
#K
@2

Constant power

density 25 W/cm2

)))

'/))

D. Frank, C. Tyberg

)/))

'))' ')): '))('))1 ')!) ')!' ')!: ')!(')!1 ')')

L'#M>?2

30 April 2009
7

Sequoia Sets New Standard - Salishan 2009
Source: IBM Research

Source: D. Frank, C. Tyberg, IBM Research

• Clock speed increase is
no longer an option

• More transistors at the
same speed

• For some time, bigger
caches was the answer

ParProg | Introduction PT 2012

Memory Hierarchy

9

Technology Access Time Human Scale Capacity Price

Processor
Register 100 ps 0.1 s 64x64 Bits part of CPU

Processor
Cache

L1: ~1 ns
L2-L3: 4-16 ms 16 s kB - MB part of CPU

RAM ~150 ns ~ 25 min >= 1 GB ~0.1 $/MB

Disk ~6 ms ~700 days > 70 GB /disk ~0.005 $/MB

Tape Robot ~10 s ~3200 years ~100 GB / tape <0.001 $/MB

(C) Chevance, approx. values in 2005

ParProg | Introduction PT 2012

The Free Lunch Is Over

10

(C
) H

er
b

Su
tte

r,
20

09

• Clock speed curve
flattened in 2003

• Heat

• Power consumption

• Leakage

• 2 GHz since 2001 (!)

• ,Work Harder‘
no longer works

• We stumbled into the
Many-Core Era

ParProg | Introduction PT 2012

Conventional Wisdoms Replaced

11

Old Wisdom New Wisdom

Power is free, transistors are expensive „Power wall“

Only dynamic power counts Static leakage makes 40% of power

Multiply is slow, load-and-store is fast „Memory wall“

Instruction-level parallelism gets constantly
better via compilers and architectures „ILP wall“

Parallelization is not worth the effort,
wait for the faster uniprocessor

Performance doubling might now take 5 years
due to physical limits

Processor performance improvement
by increased clock frequency

Processor performance improvement
by increased parallelism

(C) Asanovic et al., Berkeley Technical Report EECS-2006-183

ParProg | Introduction PT 2012

Three ways of doing anything faster (Pfister)

• Work harder
• Work smarter

• Get help

12

ParProg | Introduction PT 2012

Getting Help

• „A parallel computer is a set of processors that are able to work cooperatively
to solve a computational problem.“ (Foster 1995)

• Typical solution not only in computer science

• Building construction, car manufacturing, every larger company

• Some problems always benefit from faster
processing

• Simulation and modeling (climate,
earthquakes, airplane design, ...), Data
mining, transaction processing

• Sequential code is history

• Easy to understand, huge variety of programming languages - and now ?

13

ParProg | Introduction PT 2012

Parallel Hardware

14

ProcessProcessProcessProcessProcess

Processor

ProcessProcessProcessProcessProcess
ProcessProcessProcessProcessProcess

Processor
Processor

Processor

Memory

Node

Ne
tw

or
k

• Pipelining
• Super-scalar
• VLIW
• Branch prediction
• ...

ParProg | Introduction PT 2012

Parallel Hardware

• Where ?

• Inside the
processor
(instruction-level
parallelism,
multicore)

• Through multiple
processors in one
machine
(multiprocessing)

• Through multiple
machines
(multicomputer)

15

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

"#$%&'()!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

*)#+(,,#)!"-.%!

!

!

!

!

!

"#$%&'/'.#0/1!

203.0(!

4/,5!

4/,5!

4/,5!

4/,5!

!"#$%

&"'"(()(*#+%

,-#.'/0.*1-%

2.')"+%

6#3.+/1!!

*)#+(,,#)!

6#3.+/1!

*)#+(,,#)!

"
-
.%
!7
&
1'
.8
4
-
)(
/
9
.0
3
!:
"
7
4
;!

<
=
$
$
(
')
.+
!7
&
1'
.8
*
)#
+(
,,
.0
3
!:
<
7
*
;!

7
&
1'
.+
#
$
%
&
'(
)!

!

!

!

!

!

"#$%&'/'.#0/1!

203.0(!

6#3.+/1!

*)#+(,,#)!

6#3.+/1!

*)#+(,,#)!

*)#+(,,#)!"-.%!

>>>!

>>>!

"#$%&'()!

"
-
.%
!7
&
1'
.8
*
)#
+(
,,
.0
3
!:
"
7
*
;!

>>>!

<.$&1'/0(#&,!

7&1'.84-)(/9.03!

:<74;!

?0,')&+'.#086(@(1!

%/)/11(1.,$!:?6*;!

A/'/!

A/'/!

A/'/!

A/'/!

3"."%

&"'"(()(*#+%

%

%

Figure 1: Hardware parallelism hierarchy

3

ParProg | Introduction PT 2012

Parallel Hardware

16

(George Chrysos, Intel)

• Intel Knights Corner / Xeon Phi

• Tag Directory (TD) per L2 cache

• 4 groups of 16 cores,
4 threads per core

• 512-bit SIMD vector unit per core

• Multiple rings (data, addresses,
coherence information)

• Gatter / scatter address
machinery

ParProg | Introduction PT 2012

Parallel Systems

• Always there, but widely ignored by the ,average‘ developer

• Now mainstream - multi-core, hyper-threading, gaming consoles, GPU‘s

• High-End Systems

• Toy Story (1995) - 100 dual-processor machines as render farm

• Toy Story 2 (1999) - 1400 processor cluster

• Monsters Inc. (2001) - 250 servers with 14 processors each = 3500 CPU‘s

• HPI Future SOC Lab (2010) - 204 cores in 11 machines; 2.3 TB RAM

• DL980 - 64 cores (8 x Xeon X7560), 2 TB RAM

• Clusters and custom-made MPP rules the HPC world

17

ParProg | Introduction PT 201218

Reason for choosing a parallel architecture
• Performance - do it faster

• Throughput - do more of it in the same time

• Price / performance - do it as fast as possible for the given money

• Scalability - be prepared to do it faster with more resources

• Scavenging - do it with what I already have

CPU 1, Node 1

CPU 2, Node 1

CPU 3, Node 1

CPU 4, Node 2

CPU 5, Node 2

CPU 6, Node 2Sc
ali

ng
 U

p

Scaling Out

ParProg | Introduction PT 201219

Which One Is Faster ?

• Usage scenario

• Transporting a fridge

• Usage environment

• Driving through forrest

• Perception of performance

• Maximum speed

• Average speed

• Acceleration

ParProg | Introduction PT 2012

Getting Faster ?

• Sequential processing

• Parallel processing through pipeline

• First results from previous step are already presented to next step

• Parallel processing of one task by splitting it up

• Parallel sorting algorithms (e.g. Quicksort)

• Example: Processing of a SQL request (join of two tables)

• Search -> Join -> Sort -> Write

• Interesting problems

• What means „faster“ ?

• Does „adding more processors“ automatically means „more performance“ ?
20

ParProg | Introduction PT 2012

TOP 500

• It took 11 years to get from
1 TeraFLOP to 1 PetaFLOP

• Performance doubled
approximately every year

• Assuming the trend continues,
ExaFLOP by 2020

• TOP500 Nr.1 (2012) -
IBM Sequoia:
16,3 Petaflops,
1.6 PB memory,
98304 compute nodes,
1.6 Million cores,
7890 kW power

21

ParProg | Introduction PT 2012

The Ideal Parallel System
• Linear speedup

• n times more resources lead to n times less time for solving the same task

• Linear scaleup

• n times more resources solve an n times larger problem in the same time

• Aimed goal depends on the application

• Transaction processing usually heads for throughput (scalability)

• Decision support system usually heads for better response time (speed)

22

ParProg | Introduction PT 2012

Example: Server-Side Application Parallelism

23

ClientClientClientClient

Operating
System

Virtual
Runtime

Middleware

Server
Application

Intra-request
parallelism for
response time

Inter-request
parallelism for

throughput and
fault tolerance

Scaleup Speedup

SMP (Inter) Intra

Cluster Inter (Intra)

Operating System

Virtual Runtime

Middleware

Server Application

Operating System

Virtual Runtime

Middleware

Server Application

Operating System

Virtual Runtime

Middleware

Server Application

Operating System

Virtual Runtime

Middleware

Server Application

Operating System

Virtual Runtime

Middleware

Server Application

Operating System

Virtual Runtime

Middleware

Server Application

P P P P

ParProg | Introduction PT 2012

Problems with Speedup by Parallelization

• Well-researched problem in parallel databases (D. DeWitt, J. Gray)

• Start-Up: Initialization of parallel activity, synchronization of results

• Interference: Conflicts through access to shared data

• Dispersion: Overall execution time depends on the slowest process

• All problems increase with the number of processors

• Amdahl‘s Law (1967)

• P is the portion of the program that benefits from parallelization

• Maximum speedup by N processors:

• Maximum speedup tends to 1 / (1-P)

• Parallelism only reasonable with small N or small (1-P)
24

s = (1�P)+P
(1�P)+ P

N

1 10 100 1000 1⋅10
4

5

10

15

20

P=90%

P=75%

P=50%

P=25%

P=10%

Number of processors

S
p
e
e
d
u
p P=95%

ParProg | Introduction PT 2012

Amdahls Law

25

S(p) + N ⇥ (1� S(p))

ParProg | Introduction PT 2012

Implications

• Maximum theoretical speedup is N (linear speedup)

• BUT: Amdahl assumed fixed problem size, and looked on execution time

• Problem size could scale with the number of processors („do more“)

• Time spend in the sequential part usually depends on problem size

• Run-time is typically an expected constant value („paper deadline“)

• Gustafson‘s Law

• Let p be a measure of problem size, S(p) the time for the sequential part

• Maximum speedup by N processors:

• When serial function part shrinks with increasing p, speedup grows as N

• Everyone knows Amdahl’s law, but quickly forgets it.
 [Thomas Puzak, IBM]

26

ParProg | Introduction PT 2012

Terminology

• Concurrency

• Supported to have two or more actions in progress at the same time

• Classical operating system responsibility
(resource sharing for better utilization of CPU, memory, network, ...)

• Demands scheduling and synchronization

• Parallelism

• Supported to have two or more actions executing simultaneously

• Demands parallel hardware, concurrency support, (and communication)

• Programming model relates to chosen hardware / communication approach

• Examples: Windows 3.1, threads, signal handlers, shared memory

27

ParProg | Introduction PT 2012

Terminology
• Concurrency vs. parallelism vs. distribution

• Two threads started by the application

• Are given as concurrent activities by the program code

• Might (!) be executed in parallel

• Concurrent code be distributed on different machines

• Windows 3.1 had concurrency, but no parallelism

• Parallelism demands parallel hardware (see last lecture)

• Concurrency demands some scheduler

• Concurrent programming: Signal handling, thread library

• Parallel programming: Synchronization and communication

28

ParProg | Introduction PT 2012

Support for Concurrent Applications
• By operating system

• SMP-aware schedulers

• By virtual runtime

• Java / .NET threading support

• By middleware

• J2EE / CORBA thread pooling

• By application itself

29

Operating System

Virtual Runtime

Middleware

Server
Application

Server
Application

Server
Application

ParProg | Introduction PT 2012

Concurrent Programming

• Independent computations the machine can execute in any order

• Iterations of (some) loops

• Independent function calls

• Concurrency overhead: Create, manage, and synchronize concurrent tasks

• Threading methodology [Intel]

• Analyze - Identify independent computations, find hotspots by profiling

• Design and implement

• Test for correctness - no altering of serial logic, data races, deadlocks

• Tune for performance

30

ParProg | Introduction PT 2012

Parallel Application Characteristics (Pfister)

31

Bulk Data Traffic (inter-node bandwith)

Sy
nc

hr
on

iza
tio

n
Tr

af
fic

(in
te

r-n
od

e
lat

en
cy

)

LSLD:
Embarrassingly

Parallel

LSHD:
Map / Reduce

HSHD:
Typical Thread
Applications

HSLD

SMP

ClusterSMP/
Cluster

ParProg | Introduction PT 2012

Terminology [Mattson et al.]

• Task - Parallel program breaks a problem into tasks

• Execution unit - Representation of a concurrently running task (e.g. thread)

• Tasks are mapped to execution units during development time

• Processing element - Hardware element running one task

• Depends on scenario - logical processor vs. core vs. machine

• Execution units are mapped to processing elements by scheduling

• Synchronization - Mechanism to order activities of parallel tasks

• Race condition - Program result depends on scheduling of execution units

32

ParProg | Introduction PT 2012

Programming Models

• Almasi and Gottlieb: „set of rules for a game“

• Programs and algorithms as game strategies

• High-level view of the application on it‘s run time environment

• Hardware might imply a programming model, but does not enforce it

• Reflects on the design of the application

• For uni-processor, no question due to „von Neumann“

• For parallel architectures, shared-memory, message passing or data
parallelism approaches

• Models in use depend on size of parallel system (Small N vs. Large N)

• Delivering performance while raising the level of abstraction

33

ParProg | Introduction PT 2012

Shared Memory vs. Message Passing

34

Processor

Process

Shared Data

Processor

Process

Processor

Process

Processor

Process

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

Data DataData Data

ParProg | Introduction PT 2012

Examples

• Fibonacci function FK+2=FK+FK+1

• Cannot be parallelized, since each computed value depends on earlier one

• Parallel search

• Looking in a search tree for a ‚solution‘

• New tasks for sub-trees, with channel to parent

• PI approximation by master-worker scheme (monte carlo simulation)

• Area of the square AS=(2r)2=4r2, area of the circle AC=pi*r2, so pi=4*AC / AS

• Randomly generate points in the square

• Compute AS and AC by counting the points
inside the square / circle

35

r

ParProg | Introduction PT 2012

„The vast majority of programmers today
don’t grok concurrency,

just as the vast majority of programmers 15 years ago
didn’t yet grok objects“

(Herb Sutter, 2005)

36

