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Course Design

 Lectures covering theoretical and practical
aspects of concurrency and parallelism

* 30 minutes oral exam

* Lectures partially given by domain experts
from OSM group

3 big assignments
- 2/3 must be solved correctly

« Implementation of parallel algorithms with
different programming models

- Literature list on course home page

« Good book for starters ...
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* The Art of Cpncurrency
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The Art of Concurrency:

A Thread Monkey's Guide to
Writing Parallel Applications
Clay Breshears

O'Reilly Media, Inc., 2009
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Computer Markets

« Embedded Computing
+ Real-time systems, nearly everywhere
« Power consumption and price as major issue
« Desktop Computing
« Home computers
- Best-possible performance / price ratio as major issue
- Servers
« Performance and availability of provided business service as major issue

« Web servers, banking back-end, order processing, ...
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Machine Model

- First computers had fixed programs (electronic calculator)
e von Neumann architecture (1945, for EDVAC project)
* Instruction set used for assembling programs stored in memory

* Program is treated as data, which allows program exchange under program
control and self-modification

* von Neumann bottleneck
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Three ways of doing anything faster (Pfister)

 Work harder
 Work smarter

- Get help
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Work Harder

e ....the number of transistors that can be inexpensively placed on an integrated
circuit is increasing exponentially, doubling approximately every two
years. ..." (Moore's Law)

« Rule of exponential growth is applied to many IT hardware developments
 Density rule is sometimes applied on system performance
e ,Andy giveth, and Bill taketh away. "
- Traditional ways for making processors faster:
 Clock speed - More cycles per time unit
- Execution optimization - More work per cycle

« Caching - Tackle the memory hierarchy
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Power per Core [Frank & Tyberg]

- Clock speed increase is
no longer an option

* More transistors at the
same speed

« For some time, bigger
caches was the answer
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Memory Hierarchy

(C) Chevance, approx. values in 2005

Technology Access Time Human Scale Capacity Price
Processor 100 ps 0.1s 64x64 Bits part of CPU
Register
RAM ~150 ns ~ 25 min >=1 GB ~0.1 $/MB
Disk ~B6 ms ~700 days > 70 GB /disk | ~0.005 $/MB
Tape Robot ~10's ~3200 years | ~100 GB/tape | <0.001 $/MB
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The Free Lunch |s Over

» Clock speed curve 10,000,000
flattened in 2003

- Heat o

- Power consumption o

- Leakage 10,000

+ 2 GHz since 2001 (!) 1,000

- Work Harder* w00

no longer works

10

« We stumbled into the
Many-Core Era

0

Dual-Core Itanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)
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Conventional Wisdoms Replaced

Old Wisdom

New Wisdom

Power is free, transistors are expensive

,Power wall*

Only dynamic power counts

Static leakage makes 40% of power

Multiply is slow, load-and-store is fast

,Memory wall

Instruction-level parallelism gets constantly
better via compilers and architectures

,ILP wall®

Parallelization is not worth the effort,
wait for the faster uniprocessor

Performance doubling might now take 5 years

due to physical limits

Processor performance improvement
by increased clock frequency

Processor performance improvement
by increased parallelism
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Three ways of doing anything faster (Pfister)

« Work harder

 Work smarter

- Get help
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Getting Help

* A parallel computer is a set of processors that are able to work cooperatively
to solve a computational problem.*  (Foster 1995)

« Typical solution not only in computer science
 Building construction, car manufacturing, every larger company

« Some problems always benefit from faster pro
processing

instructions

blem
“~ o 2 "

— T

- Simulation and modeling (climate,
earthquakes, airplane design, ...), Data
mining, transaction processing

- Sequential code is history

- Easy to understand, huge variety of programming languages - and now ?
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Parallel Hardware
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Parallel Hardware
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Parallel Hardware
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Parallel Systems

« Always there, but widely ignored by the ,average‘ developer
- Now mainstream - multi-core, hyper-threading, gaming consoles, GPU's
- High-End Systems
 Toy Story (1995) - 100 dual-processor machines as render farm
« Toy Story 2 (1999) - 1400 processor cluster
« Monsters Inc. (2001) - 250 servers with 14 processors each = 3500 CPU‘s
« HPI Future SOC Lab (2010) - 204 cores in 11 machines; 2.3 TB RAM
+ DL980 - 64 cores (8 x Xeon X7560), 2 TB RAM

* Clusters and custom-made MPP rules the HPC world
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Reason for choosing a parallel architecture

« Performance - do it faster

* Throughput - do more of it in the same time

* Price / performance - do it as fast as possible for the given money
 Scalability - be prepared to do it faster with more resources

« Scavenging - do it with what | already have

( cPU1 Node1 ) ( cPU4. N h
A g : oe1j L U4, odeZJ
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2 L . Node )L 5, ode2)
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Scaling Out
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Which One Is Faster 7

« Usage scenario
 Transporting a fridge

« Usage environment

* Driving through forrest

» Perception of performance
« Maximum speed
 Average speed

* Acceleration
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Getting Faster 7

Sequential processing

Parallel processing through pipeline

* First results from previous step are already presented to next step

Parallel processing of one task by splitting it up

- Parallel sorting algorithms (e.g. Quicksort)

Example: Processing of a SQL request (join of two tables)

« Search -> Join -> Sort -> Write

Interesting problems
« What means ,faster” ?

* Does ,,adding more processors® automatically means ,more performance® ?
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TOP 500

* |t took 11 years to get from Aechitecture Share Over Time
1 TeraFLOP to 1 PetaFLOP T iseaz010

« Performance doubled
approximately every year

MPP

Cluster
B sMmp
W Constellations
B Single Processor
M Others

« Assuming the trend continues,
ExaFLOP by 2020

Systems

« TOP500 Nr.1 (2012) -
IBM Sequoia:
16,3 Petaflops,
1.6 PB memory,
98304 compute nodes,
1.6 Million cores,
7890 KW power TOP500 Releases
T — ———
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The Ideal Parallel System

* Linear speedup

 n times more resources lead to n times less time for solving the same task
* Linear scaleup

* n times more resources solve an n times larger problem in the same time
« Aimed goal depends on the application

 Transaction processing usually heads for throughput (scalability)

* Decision support system usually heads for better response time (speed)
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Example: Server-Side Application Parallelism
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Problems with Speedup by Parallelization

« Well-researched problem in parallel databases (D. DeWitt, J. Gray)

- Start-Up: Initialization of parallel activity, synchronization of results

* Interference: Conflicts through access to shared data
 Dispersion: Overall execution time depends on the slowest process
« All problems increase with the number of processors

« Amdahil‘s Law (1967)

P is the portion of the program that benefits from parallelization

« Maximum speedup by N processors: S — (1_P)‘|‘P
| (1-P)++%
« Maximum speedup tends to 1/ (1-P)

+ Parallelism only reasonable with small N or small (7-P)
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Amdahls Law
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Implications

- Maximum theoretical speedup is N (linear speedup)
- BUT: Amdahl assumed fixed problem size, and looked on execution time
- Problem size could scale with the number of processors (,,do more*)
- Time spend in the sequential part usually depends on problem size
- Run-time is typically an expected constant value (,paper deadline®)
« Gustafson‘s Law
 Let p be a measure of problem size, S(p) the time for the sequential part
- Maximum speedup by N processors:  S(p) + N * (1 — S(p))
« When serial function part shrinks with increasing p, speedup grows as N

e Lveryone knows Amdahl’s law, but quickly forgets it.  [Thomas Puzak, IBM]

ParProg | Introduction 26 PT 2012



Terminology

- Concurrency

« Supported to have two or more actions in progress at the same time

- Classical operating system responsibility
(resource sharing for better utilization of CPU, memory, network, ...)

« Demands scheduling and synchronization
- Parallelism
« Supported to have two or more actions executing simultaneously
- Demands parallel hardware, concurrency support, (and communication)
« Programming model relates to chosen hardware / communication approach

- Examples: Windows 3.1, threads, signal handlers, shared memory
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Terminology

- Concurrency vs. parallelism vs. distribution
 Two threads started by the application
 Are given as concurrent activities by the program code
- Might (!) be executed in parallel
« Concurrent code be distributed on different machines
- Windows 3.1 had concurrency, but no parallelism
- Parallelism demands parallel hardware (see last lecture)
- Concurrency demands some scheduler
« Concurrent programming: Signal handling, thread library

- Parallel programming: Synchronization and communication
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Support for Concurrent Applications

« By operating system

- SMP-aware schedulers
By virtual runtime

- Java / .NET threading support
« By middleware

- J2EE / CORBA thread pooling

« By application itself
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Concurrent Programming

+ Independent computations the machine can execute in any order
» Iterations of (some) loops
 Independent function calls
- Concurrency overhead: Create, manage, and synchronize concurrent tasks
« Threading methodology [Intel]
 Analyze - Identify independent computations, find hotspots by profiling
* Design and implement
- Test for correctness - no altering of serial logic, data races, deadlocks

 Tune for performance
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Parallel Application Characteristics (Pfister)
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Terminology [Mattson et al.]

- Task - Parallel program breaks a problem into tasks

Execution unit - Representation of a concurrently running task (e.g. thread)

« Tasks are mapped to execution units during development time

Processing element - Hardware element running one task
* Depends on scenario - logical processor vs. core vs. machine

- Execution units are mapped to processing elements by scheduling

Synchronization - Mechanism to order activities of parallel tasks

Race condition - Program result depends on scheduling of execution units
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Programming Models

Almasi and Gottlieb: ,set of rules for a game*

« Programs and algorithms as game strategies

High-level view of the application on it‘s run time environment
- Hardware might imply a programming model, but does not enforce it

 Reflects on the design of the application

For uni-processor, no question due to ,,von Neumann®

For parallel architectures, shared-memory, message passing or data
parallelism approaches

Models in use depend on size of parallel system (Small N vs. Large N)

Delivering performance while raising the level of abstraction
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Examples

* Fibonacci function Fkio=Fk+Fk41

- Cannot be parallelized, since each computed value depends on earlier one

- Parallel search
 Looking in a search tree for a ,solution’
* New tasks for sub-trees, with channel to parent
+ Pl approximation by master-worker scheme (monte carlo simulation)

- Area of the square As=(2r)>=4r?, area of the circle Ac=pi*r?, so pi=4*Ac / As

r\
J PT 2012

inside the square / circle

- Randomly generate points in the square
- Compute As and Ac by counting the points /
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, 1he vast majority of programmers today
don’t grok concurrency,
just as the vast majority of programmers 15 years ago
didn’t yet grok objects*

(Herb Sutter, 2005)
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