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Course Design

• Lectures covering theoretical and practical 
aspects of concurrency and parallelism

• 30 minutes oral exam 

• Lectures partially given by domain experts 
from OSM group

• 3 big assignments

•  2/3 must be solved correctly

• Implementation of parallel algorithms with 
different programming models

• Literature list on course home page

• Good book for starters ...
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The Art of Concurrency: 
A Thread Monkey's Guide to 
Writing Parallel Applications
Clay Breshears
O'Reilly Media, Inc., 2009
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Computer Markets

• Embedded Computing

• Real-time systems, nearly everywhere

• Power consumption and price as major issue

• Desktop Computing

• Home computers

• Best-possible performance / price ratio as major issue

• Servers

• Performance and availability of provided business service as major issue

• Web servers, banking back-end, order processing, ...
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Machine Model
• First computers had fixed programs (electronic calculator)

• von Neumann architecture (1945, for EDVAC project)

• Instruction set used for assembling programs stored in memory

• Program is treated as data, which allows program exchange under program 
control and self-modification

• von Neumann bottleneck
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Machine Model
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Three ways of doing anything faster (Pfister)

•  Work harder
•  Work smarter 
•  Get help
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Work Harder

• „...the number of transistors that can be inexpensively placed on an integrated 
circuit is increasing exponentially, doubling approximately every two 
years. ...“ (Moore's Law)

• Rule of exponential growth is applied to many IT hardware developments

• Density rule is sometimes applied on system performance

• „Andy giveth, and Bill taketh away.“

• Traditional ways for making processors faster:

• Clock speed - More cycles per time unit

• Execution optimization - More work per cycle

• Caching - Tackle the memory hierarchy
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Power per Core [Frank & Tyberg]
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Constraint: Power per Core
IBM Research PDSOI optimization results indicate lower power 

approaches provide better power efficiency

Optimizing process technology knobs for maximum performance for each core
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Sequoia Sets New Standard - Salishan 2009
Source: IBM Research

Source: D. Frank, C. Tyberg, IBM Research

• Clock speed increase is 
no longer an option

• More transistors at the 
same speed

• For some time, bigger 
caches was the answer
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Memory Hierarchy

9

Technology Access Time Human Scale Capacity Price

Processor 
Register 100 ps 0.1 s 64x64 Bits part of CPU

Processor 
Cache

L1: ~1 ns
L2-L3: 4-16 ms 16 s kB - MB part of CPU

RAM ~150 ns ~ 25 min >= 1 GB ~0.1 $/MB

Disk ~6 ms ~700 days > 70 GB /disk ~0.005 $/MB

Tape Robot ~10 s ~3200 years ~100 GB / tape <0.001 $/MB

(C) Chevance, approx. values in 2005
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The Free Lunch Is Over
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• Clock speed curve 
flattened in 2003

• Heat

• Power consumption

• Leakage

• 2 GHz since 2001 (!)

• ,Work Harder‘ 
no longer works

• We stumbled into the 
Many-Core Era  
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Conventional Wisdoms Replaced
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Old Wisdom New Wisdom

Power is free, transistors are expensive „Power wall“

Only dynamic power counts Static leakage makes 40% of power

Multiply is slow, load-and-store is fast „Memory wall“

Instruction-level parallelism gets constantly 
better via compilers and architectures „ILP wall“

Parallelization is not worth the effort, 
wait for the faster uniprocessor

Performance doubling might now take 5 years 
due to physical limits

Processor performance improvement
by increased clock frequency

Processor performance improvement
by increased parallelism

(C) Asanovic et al., Berkeley Technical Report EECS-2006-183
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Three ways of doing anything faster (Pfister)

•  Work harder
•  Work smarter 

•  Get help
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Getting Help

• „A parallel computer is a set of processors that are able to work cooperatively 
to solve a computational problem.“     (Foster 1995)

• Typical solution not only in computer science

• Building construction, car manufacturing, every larger company

• Some problems always benefit from faster 
processing

• Simulation and modeling (climate, 
earthquakes, airplane design, ...), Data 
mining, transaction processing

• Sequential code is history

• Easy to understand, huge variety of programming languages  - and now ?
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Parallel Hardware
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• Pipelining
• Super-scalar
• VLIW
• Branch prediction
• ...
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Parallel Hardware

• Where ?

• Inside the 
processor 
(instruction-level 
parallelism, 
multicore)

• Through multiple 
processors in one 
machine 
(multiprocessing)

• Through multiple 
machines 
(multicomputer)
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Figure 1: Hardware parallelism hierarchy
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Parallel Hardware
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(George Chrysos, Intel)

• Intel Knights Corner / Xeon Phi

• Tag Directory (TD) per L2 cache

• 4 groups of 16 cores, 
4 threads per core

• 512-bit SIMD vector unit per core

• Multiple rings (data, addresses, 
coherence information)

• Gatter / scatter address 
machinery
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Parallel Systems

• Always there, but widely ignored by the ,average‘ developer

• Now mainstream - multi-core, hyper-threading, gaming consoles, GPU‘s

• High-End Systems

• Toy Story (1995) - 100 dual-processor machines as render farm

• Toy Story 2 (1999) - 1400 processor cluster

• Monsters Inc. (2001) - 250 servers with 14 processors each = 3500 CPU‘s

• HPI Future SOC Lab (2010) - 204 cores in 11 machines; 2.3 TB RAM

• DL980 - 64 cores (8 x Xeon X7560), 2 TB RAM 

• Clusters and custom-made MPP rules the HPC world

17
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Reason for choosing a parallel architecture
• Performance - do it faster

• Throughput - do more of it in the same time

• Price / performance - do it as fast as possible for the given money

• Scalability - be prepared to do it faster with more resources

• Scavenging - do it with what I already have

CPU 1, Node 1

CPU 2, Node 1

CPU 3, Node 1

CPU 4, Node 2

CPU 5, Node 2

CPU 6, Node 2Sc
ali

ng
 U

p

Scaling Out
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Which One Is Faster ?

• Usage scenario

• Transporting a fridge

• Usage environment

• Driving through forrest

• Perception of performance

• Maximum speed

• Average speed

• Acceleration
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Getting Faster ?

• Sequential processing 

• Parallel processing through pipeline

• First results from previous step are already presented to next step

• Parallel processing of one task by splitting it up

• Parallel sorting algorithms (e.g. Quicksort)

• Example: Processing of a SQL request (join of two tables)

• Search -> Join -> Sort -> Write 

• Interesting problems

• What means „faster“ ?

• Does „adding more processors“ automatically means „more performance“ ?
20
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TOP 500

• It took 11 years to get from 
1 TeraFLOP to 1 PetaFLOP

• Performance doubled 
approximately every year 

• Assuming the trend continues, 
ExaFLOP by 2020

• TOP500 Nr.1 (2012) - 
IBM Sequoia:
16,3 Petaflops, 
1.6 PB memory, 
98304 compute nodes, 
1.6 Million cores, 
7890 kW power

21
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The Ideal Parallel System
• Linear speedup

• n times more resources lead to n times less time for solving the same task

• Linear scaleup

• n times more resources solve an n times larger problem in the same time

• Aimed goal depends on the application

• Transaction processing usually heads for throughput (scalability)

• Decision support system usually heads for better response time (speed)

22
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Example: Server-Side Application Parallelism
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Problems with Speedup by Parallelization

• Well-researched problem in parallel databases (D. DeWitt, J. Gray)

• Start-Up: Initialization of parallel activity, synchronization of results

• Interference: Conflicts through access to shared data

• Dispersion: Overall execution time depends on the slowest process

• All problems increase with the number of processors

• Amdahl‘s Law (1967)

• P is the portion of the program that benefits from parallelization

• Maximum speedup by N processors:

• Maximum speedup tends to 1 / (1-P)

• Parallelism only reasonable with small N or small (1-P)
24

s = (1�P )+P
(1�P )+ P

N
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Amdahls Law

25



S(p) + N ⇥ (1� S(p))
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Implications

• Maximum theoretical speedup is N (linear speedup)

• BUT: Amdahl assumed fixed problem size, and looked on execution time

• Problem size could scale with the number of processors („do more“)

• Time spend in the sequential part usually depends on problem size

• Run-time is typically an expected constant value („paper deadline“)

• Gustafson‘s Law

• Let p be a measure of problem size, S(p) the time for the sequential part

• Maximum speedup by N processors:

• When serial function part shrinks with increasing p, speedup grows as N

• Everyone knows Amdahl’s law, but quickly forgets it.
 [Thomas Puzak, IBM]
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Terminology

• Concurrency

• Supported to have two or more actions in progress at the same time

• Classical operating system responsibility 
(resource sharing for better utilization of CPU, memory, network, ...)

• Demands scheduling and synchronization

• Parallelism

• Supported to have two or more actions executing simultaneously 

• Demands parallel hardware, concurrency support, (and communication)

• Programming model relates to chosen hardware / communication approach

• Examples: Windows 3.1, threads, signal handlers, shared memory

27
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Terminology
• Concurrency vs. parallelism vs. distribution

• Two threads started by the application

• Are given as concurrent activities by the program code

• Might (!) be executed in parallel

• Concurrent code be distributed on different machines

• Windows 3.1 had concurrency, but no parallelism

• Parallelism demands parallel hardware (see last lecture)

• Concurrency demands some scheduler

• Concurrent programming: Signal handling, thread library

• Parallel programming: Synchronization and communication

28
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Support for Concurrent Applications
• By operating system

• SMP-aware schedulers

• By virtual runtime

• Java / .NET threading support

• By middleware

• J2EE / CORBA thread pooling

• By application itself

29
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Concurrent Programming

• Independent computations the machine can execute in any order

• Iterations of (some) loops

• Independent function calls

• Concurrency overhead: Create, manage, and synchronize concurrent tasks

• Threading methodology [Intel]

• Analyze - Identify independent computations, find hotspots by profiling

• Design and implement

• Test for correctness - no altering of serial logic, data races, deadlocks

• Tune for performance

30
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Parallel Application Characteristics (Pfister)
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Terminology [Mattson et al.]

• Task - Parallel program breaks a problem into tasks

• Execution unit - Representation of a concurrently running task (e.g. thread)

• Tasks are mapped to execution units during development time

• Processing element - Hardware element running one task

• Depends on scenario - logical processor vs. core vs. machine

• Execution units are mapped to processing elements by scheduling

• Synchronization - Mechanism to order activities of parallel tasks

• Race condition - Program result depends on scheduling of execution units

32
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Programming Models

• Almasi and Gottlieb: „set of rules for a game“

• Programs and algorithms as game strategies

• High-level view of the application on it‘s run time environment

• Hardware might imply a programming model, but does not enforce it

• Reflects on the design of the application

• For uni-processor, no question due to „von Neumann“

• For parallel architectures, shared-memory, message passing or data 
parallelism approaches

• Models in use depend on size of parallel system (Small N vs. Large N)

• Delivering performance while raising the level of abstraction

33
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Shared Memory vs. Message Passing
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Examples

• Fibonacci function FK+2=FK+FK+1

• Cannot be parallelized, since each computed value depends on earlier one

• Parallel search

• Looking in a search tree for a ‚solution‘

• New tasks for sub-trees, with channel to parent

• PI approximation by master-worker scheme (monte carlo simulation)

• Area of the square AS=(2r)2=4r2, area of the circle AC=pi*r2, so pi=4*AC / AS

• Randomly generate points in the square

• Compute AS and AC by counting the points
inside the square / circle

35
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„The vast majority of programmers today 
don’t grok concurrency, 

just as the vast majority of programmers 15 years ago 
didn’t yet grok objects“

(Herb Sutter, 2005)
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