Parallel Programming Concepts

Introduction

Peter Troger

Course Design

 Lectures covering theoretical and practical
aspects of concurrency and parallelism

* 30 minutes oral exam

* Lectures partially given by domain experts
from OSM group

3 big assignments
- 2/3 must be solved correctly

« Implementation of parallel algorithms with
different programming models

- Literature list on course home page

« Good book for starters ...

ParProg | Introduction 2

* The Art of Cpncurrency

q)"\.‘.

The Art of Concurrency:

A Thread Monkey's Guide to
Writing Parallel Applications
Clay Breshears

O'Reilly Media, Inc., 2009

PT 2012

Computer Markets

« Embedded Computing
+ Real-time systems, nearly everywhere
« Power consumption and price as major issue
« Desktop Computing
« Home computers
- Best-possible performance / price ratio as major issue
- Servers
« Performance and availability of provided business service as major issue

« Web servers, banking back-end, order processing, ...

ParProg | Introduction 3 PT 2012

Machine Model

- First computers had fixed programs (electronic calculator)
e von Neumann architecture (1945, for EDVAC project)
* Instruction set used for assembling programs stored in memory

* Program is treated as data, which allows program exchange under program
control and self-modification

* von Neumann bottleneck

(Memory)H ((Control Unit j

Central Unit 1

Y,
Bus
{

(Arithmetic Logic Unit)
1\ J

ParProg | Introduction 4 PT 2012

Machine Model

problem
Control Arithmetic l
S LJgic instructions
nit
tN p- Q y
i —I *

ParProg | Introduction 5 PT 2012

Three ways of doing anything faster (Pfister)

 Work harder
 Work smarter

- Get help

ParProg | Introduction 6 PT 2012

Work Harder

ethe number of transistors that can be inexpensively placed on an integrated
circuit is increasing exponentially, doubling approximately every two
years. ..." (Moore's Law)

« Rule of exponential growth is applied to many IT hardware developments
 Density rule is sometimes applied on system performance
e ,Andy giveth, and Bill taketh away. "
- Traditional ways for making processors faster:
 Clock speed - More cycles per time unit
- Execution optimization - More work per cycle

« Caching - Tackle the memory hierarchy

ParProg | Introduction 7 PT 2012

Power per Core [Frank & Tyberg]

- Clock speed increase is
no longer an option

* More transistors at the
same speed

« For some time, bigger
caches was the answer

Power Density Extrapolation

Constant performance
improvement of 20% per
generation
11nm (750W/cm2)
10.00
B 15 nm (260W/cm2) B 200W/cnt
= 8.00 O 71oo0wrent
E B 22nm (110W/cm2) B sowen?
>
o
§ B 32 nm (65W/cm2) B 25Wrent
.?; 6.00
E H 45 nm (65W/cm2)
g B 65nm (s0wich) W 32 = 22,
¥} nm C nm m
g 400 m a — __ Constant power
Tt T o nm .
- m gonm O W 11nm density 25 W/cm?
2.00
0.00 T T T T T T T T
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
e — -

ParProg | Introduction 8

Memory Hierarchy

(C) Chevance, approx. values in 2005

Technology Access Time Human Scale Capacity Price
Processor 100 ps 0.1s 64x64 Bits part of CPU
Register
RAM ~150 ns ~ 25 min >=1 GB ~0.1 $/MB
Disk ~B6 ms ~700 days > 70 GB /disk | ~0.005 $/MB
Tape Robot ~10's ~3200 years | ~100 GB/tape | <0.001 $/MB

ParProg | Introduction

PT 2012

The Free Lunch |s Over

» Clock speed curve 10,000,000
flattened in 2003

- Heat o

- Power consumption o

- Leakage 10,000

+ 2 GHz since 2001 (!) 1,000

- Work Harder* w00

no longer works

10

« We stumbled into the
Many-Core Era

0

Dual-Core Itanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

7

/.

8 Transkstors 00)

© Olock Speed (MME)

oo APower (W)
® Pert fOlock (AP}
1970 1975 1980 1985 1990 1995 2000 2005 2010
I VY w— T

ParProg | Introduction

P1 2012

(C) Herb Sutter, 2009

Conventional Wisdoms Replaced

Old Wisdom

New Wisdom

Power is free, transistors are expensive

,Power wall*

Only dynamic power counts

Static leakage makes 40% of power

Multiply is slow, load-and-store is fast

,Memory wall

Instruction-level parallelism gets constantly
better via compilers and architectures

,ILP wall®

Parallelization is not worth the effort,
wait for the faster uniprocessor

Performance doubling might now take 5 years

due to physical limits

Processor performance improvement
by increased clock frequency

Processor performance improvement
by increased parallelism

ParProg | Introduction

11

(C) Asanovic et al., Berkeley Technical Report EECS-2006-183

PT 2012

Three ways of doing anything faster (Pfister)

« Work harder

 Work smarter

- Get help

ParProg | Introduction 12 PT 2012

Getting Help

* A parallel computer is a set of processors that are able to work cooperatively
to solve a computational problem.* (Foster 1995)

« Typical solution not only in computer science
 Building construction, car manufacturing, every larger company

« Some problems always benefit from faster pro
processing

instructions

blem
“~ o 2 "

— T

- Simulation and modeling (climate,
earthquakes, airplane design, ...), Data
mining, transaction processing

- Sequential code is history

- Easy to understand, huge variety of programming languages - and now ?

ParProg | Introduction 13 PT 2012

Parallel Hardware

\
-\
=\
=\

Process j

l

Processor

¢ Pipelining
e Super-scalar
o \VLIW

e Branch prediction
. [N]

ParProg | Introduction

=\

Process j

/

Processor

Processor

N\

=\

=\

N\

Process]

Processor

|

|

~

Memory

14

PT 2012

Network

Parallel Hardware

- \N - Where ?
== retarom o] E| * Inside the
In;i:z;i:’}on Computational E % = Processor
ngiae i w2 (instruction-level
£33 parallelism,
Task_ Simultaneous é i § mU|tiC0re)
Parallelism : Multi-Threading -E S| 5| .
sMDj =l e 2] 2 - Through multiple
e g g processors in one
, IR 5| = machine
Processor Chip / (m ultiprocessi ng)
Processor Chip - Through multiple
Computer mac h | nes
(multicomputer)
Data
Parallelism Computer /

ParProg | Introduction 15 PT 2012

Parallel Hardware

— oe| o | * Intel Knights Corner / Xeon Phi

Client 4 L2 I L2 l L2

- » Tag Directory (TD) per L2 cache
'GDDR M| md Lo - el Lol GODR MC|
[GOORMG] -¢ iGN G - - A e GODR MC| .

4 groups of 16 cores,
4 threads per core

512-bit SIMD vector unit per core

Multiple rings (data, addresses,
coherence information)

L .

. e Gatter / scatter address
Intel* Xeon “ \
Processor M o maChlnery

16 PT 2012

Parallel Systems

« Always there, but widely ignored by the ,average‘ developer
- Now mainstream - multi-core, hyper-threading, gaming consoles, GPU's
- High-End Systems
 Toy Story (1995) - 100 dual-processor machines as render farm
« Toy Story 2 (1999) - 1400 processor cluster
« Monsters Inc. (2001) - 250 servers with 14 processors each = 3500 CPU‘s
« HPI Future SOC Lab (2010) - 204 cores in 11 machines; 2.3 TB RAM
+ DL980 - 64 cores (8 x Xeon X7560), 2 TB RAM

* Clusters and custom-made MPP rules the HPC world

ParProg | Introduction 17 PT 2012

Reason for choosing a parallel architecture

« Performance - do it faster

* Throughput - do more of it in the same time

* Price / performance - do it as fast as possible for the given money
 Scalability - be prepared to do it faster with more resources

« Scavenging - do it with what | already have

(cPU1 Node1) (cPU4. N h
A g : oe1j L U4, odeZJ
o[(cPu2 Node1) ((CPUS, Node2 |
2 L . Node)L 5, ode2)
Sl (cPu3z Node1) ((CPUG Node?2
N L , NOQ€e) L , NOQe)

Scaling Out
ParProg | Introduction 18 PT 2012

Which One Is Faster 7

« Usage scenario
 Transporting a fridge

« Usage environment

* Driving through forrest

» Perception of performance
« Maximum speed
 Average speed

* Acceleration

ParProg | Introduction 19 PT 2012

Getting Faster 7

Sequential processing

Parallel processing through pipeline

* First results from previous step are already presented to next step

Parallel processing of one task by splitting it up

- Parallel sorting algorithms (e.g. Quicksort)

Example: Processing of a SQL request (join of two tables)

« Search -> Join -> Sort -> Write

Interesting problems
« What means ,faster” ?

* Does ,,adding more processors® automatically means ,more performance® ?

ParProg | Introduction 20 PT 2012

TOP 500

* |t took 11 years to get from Aechitecture Share Over Time
1 TeraFLOP to 1 PetaFLOP T iseaz010

« Performance doubled
approximately every year

MPP

Cluster
B sMmp
W Constellations
B Single Processor
M Others

« Assuming the trend continues,
ExaFLOP by 2020

Systems

« TOP500 Nr.1 (2012) -
IBM Sequoia:
16,3 Petaflops,
1.6 PB memory,
98304 compute nodes,
1.6 Million cores,
7890 KW power TOP500 Releases
T — ———

ParProg | Introduction 21 PT 2012

The Ideal Parallel System

* Linear speedup

 n times more resources lead to n times less time for solving the same task
* Linear scaleup

* n times more resources solve an n times larger problem in the same time
« Aimed goal depends on the application

 Transaction processing usually heads for throughput (scalability)

* Decision support system usually heads for better response time (speed)

ParProg | Introduction 22 PT 2012

Example: Server-Side Application Parallelism

ParProg | Introduction

Scaleup |Speedup
SMP (Inter) Intra
Cluster Inter (Intra)
s N\
s N\
(f \\
(|| Client
\
\\ J

/
S

Server
Application

Middleware

Virtual
Runtime

Operating
System

JEEE

Server Application

Middleware

Virtual Runtime

Operating System

Intra-request
parallelism for
response time

Inter-request
parallelism for
throughput and
fault tolerance

PT 2012

Problems with Speedup by Parallelization

« Well-researched problem in parallel databases (D. DeWitt, J. Gray)

- Start-Up: Initialization of parallel activity, synchronization of results

* Interference: Conflicts through access to shared data
 Dispersion: Overall execution time depends on the slowest process
« All problems increase with the number of processors

« Amdahil‘s Law (1967)

P is the portion of the program that benefits from parallelization

« Maximum speedup by N processors: S — (1_P)‘|‘P
| (1-P)++%
« Maximum speedup tends to 1/ (1-P)

+ Parallelism only reasonable with small N or small (7-P)
ParProg | Introduction 24 PT 2012

Amdahls Law

20

o K P=95%
o
v
(]
o
(Ve
15 /
P=90%
10
5 /
P=75%
P=50%
P=25%
P=10%
1 10 100 1000 1104

Number of processors

ParProg | Introduction 25 PT 2012

Implications

- Maximum theoretical speedup is N (linear speedup)
- BUT: Amdahl assumed fixed problem size, and looked on execution time
- Problem size could scale with the number of processors (,,do more*)
- Time spend in the sequential part usually depends on problem size
- Run-time is typically an expected constant value (,paper deadline®)
« Gustafson‘s Law
 Let p be a measure of problem size, S(p) the time for the sequential part
- Maximum speedup by N processors: S(p) + N * (1 — S(p))
« When serial function part shrinks with increasing p, speedup grows as N

e Lveryone knows Amdahl’s law, but quickly forgets it. [Thomas Puzak, IBM]

ParProg | Introduction 26 PT 2012

Terminology

- Concurrency

« Supported to have two or more actions in progress at the same time

- Classical operating system responsibility
(resource sharing for better utilization of CPU, memory, network, ...)

« Demands scheduling and synchronization
- Parallelism
« Supported to have two or more actions executing simultaneously
- Demands parallel hardware, concurrency support, (and communication)
« Programming model relates to chosen hardware / communication approach

- Examples: Windows 3.1, threads, signal handlers, shared memory

ParProg | Introduction 27 PT 2012

Terminology

- Concurrency vs. parallelism vs. distribution
 Two threads started by the application
 Are given as concurrent activities by the program code
- Might (!) be executed in parallel
« Concurrent code be distributed on different machines
- Windows 3.1 had concurrency, but no parallelism
- Parallelism demands parallel hardware (see last lecture)
- Concurrency demands some scheduler
« Concurrent programming: Signal handling, thread library

- Parallel programming: Synchronization and communication

ParProg | Introduction 28 PT 2012

Support for Concurrent Applications

« By operating system

- SMP-aware schedulers
By virtual runtime

- Java / .NET threading support
« By middleware

- J2EE / CORBA thread pooling

« By application itself

ParProg | Introduction

Server
Application
Server | viddieware
Application
Sgwer Virtual Runtime
Application

Operating System

29

PT 2012

Concurrent Programming

+ Independent computations the machine can execute in any order
» Iterations of (some) loops
 Independent function calls
- Concurrency overhead: Create, manage, and synchronize concurrent tasks
« Threading methodology [Intel]
 Analyze - Identify independent computations, find hotspots by profiling
* Design and implement
- Test for correctness - no altering of serial logic, data races, deadlocks

 Tune for performance

ParProg | Introduction 30 PT 2012

Parallel Application Characteristics (Pfister)

HSLD

(

-

\

LSLD:
Embarrassingly

Aﬁ Parallel
SMP/

Synchronization Traffic
(inter-node latency)

J

J

Cluster C

4 SMP
HSHD:
Typical Thread
Applications
\ y,
- N
LSHD:
Map / Redu?
\§ Cluster

/

Bulk Data Traffic (inter-node bandwith)

ParProg | Introduction 31

PT 2012

Terminology [Mattson et al.]

- Task - Parallel program breaks a problem into tasks

Execution unit - Representation of a concurrently running task (e.g. thread)

« Tasks are mapped to execution units during development time

Processing element - Hardware element running one task
* Depends on scenario - logical processor vs. core vs. machine

- Execution units are mapped to processing elements by scheduling

Synchronization - Mechanism to order activities of parallel tasks

Race condition - Program result depends on scheduling of execution units

ParProg | Introduction 32 PT 2012

Programming Models

Almasi and Gottlieb: ,set of rules for a game*

« Programs and algorithms as game strategies

High-level view of the application on it‘s run time environment
- Hardware might imply a programming model, but does not enforce it

 Reflects on the design of the application

For uni-processor, no question due to ,,von Neumann®

For parallel architectures, shared-memory, message passing or data
parallelism approaches

Models in use depend on size of parallel system (Small N vs. Large N)

Delivering performance while raising the level of abstraction

ParProg | Introduction 33 PT 2012

((Process j

Processor
_ J

((Process 5

Processor

- J

T
(

Shared Data

X
)

ParProg | Introduction

34

((Process j

N

Processor

Message _

Message

Shared Memory vs. Message Passing

Message

((Process 5

Processor

- J

Message

U

PT 2012

Examples

* Fibonacci function Fkio=Fk+Fk41

- Cannot be parallelized, since each computed value depends on earlier one

- Parallel search
 Looking in a search tree for a ,solution’
* New tasks for sub-trees, with channel to parent
+ Pl approximation by master-worker scheme (monte carlo simulation)

- Area of the square As=(2r)>=4r?, area of the circle Ac=pi*r?, so pi=4*Ac / As

r\
J PT 2012

inside the square / circle

- Randomly generate points in the square
- Compute As and Ac by counting the points /

ParProg | Introduction 35

, 1he vast majority of programmers today
don’t grok concurrency,
just as the vast majority of programmers 15 years ago
didn’t yet grok objects*

(Herb Sutter, 2005)

ParProg | Introduction 36 PT 2012

