
Parallel Programming Concepts

Parallel Algorithms

Peter Tröger

Sources:

• Ian Foster. Designing and Building Parallel Programs. Addison-Wesley. 1995.
• Mattson, Timothy G.; S, Beverly A.; ers,; Massingill, Berna L.: Patterns for Parallel
Programming (Software Patterns Series). 1st. Addison-Wesley Professional, 2004.
• Breshears, Clay: The Art of Concurrency: A Thread Monkey's Guide to Writing
Parallel Applications. O'Reilly Media, Inc., 2009.

• P is the portion of the program that benefits from parallelization

• Amdahl‘s Law (1967)

• Maximum speedup sAmdahl by N processors

• Largest impact of parallelization with small N and / or small (1-P)

• Speedup by increasing N is limited

• Gustafson‘s Law (1988)

• Maximum speedup sGustafson by N processors

• Assumption: Problem size grows with N, so the
inheritly serial portion becomes smaller as
proportion to the overall problem

• With neglection of the parallelization overhead, speedup can grow as N

ParProg | Algorithms PT 2012

Why Parallel ?

2

s
Gustafson

= (1�P)N+N⇤PN

(1�P)N+PN

sAmdahl =
(1�P)+P
(1�P)+ P

N

= (1� P)N +N ⇤ PN

1 10 100 1000 1⋅10
4

5

10

15

20

P=90%

P=75%

P=50%

P=25%

P=10%

Number of processors

S
p
e
e
d
u
p P=95%

ParProg | Algorithms PT 2012

Amdahl's Law

3

ParProg | Algorithms PT 2012

Parallel Algorithms and Design Patterns

• Vast body of knowledge in books and scientific publications

• Typically discussion based on abstract machine model (e.g. PRAM),
to allow theoretical complexity analysis

• Rule of thumb: Somebody else is smarter than you - reuse !!

• Jaja, Joseph: An introduction to parallel algorithms. Redwood City, CA,
USA : Addison Wesley Longman Publishing Co., Inc., 1992. , 0-201-54856-9

• Herlihy, Maurice; Shavit, Nir: The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008. , 978-0123705914

• ParaPLoP - Workshop on Parallel Programming Patterns

• ,Our Pattern Language‘ (http://parlab.eecs.berkeley.edu/wiki/patterns/)

• Programming language support libraries

4

http://parlab.eecs.berkeley.edu/wiki/patterns/
http://parlab.eecs.berkeley.edu/wiki/patterns/

ParProg | Algorithms PT 2012

Distributed Algorithms [Lynch]

• Originally only for concurrent algorithms across geographically
distributed processors

• Attributes

• IPC method (shared memory, point-to-point, broadcast, RPC)

• Timing model (synchronous, partially synchronous, asynchronous)

• Fault model

• Problem domain

• Have to deal with uncertainties

• Unknown number of processors, unknown network topology, inputs at
different locations, non-synchronized code execution, processor
nondeterminism, uncertain message delivery times, unknown message
ordering, processor and communication failures, ...

5

ParProg | Algorithms PT 2012

Designing Parallel Algorithms [Breshears]

• Parallel solution must keep sequential consistency property

• „Mentally simulate“ the execution of parallel streams on suspected parts of the
sequential application

• Amount of computation per parallel task must offset the overhead that is always
introduced by moving from serial to parallel code

• Granularity: Amount of computation done before synchronization is needed

• Fine-grained granularity overhead vs.
coarse-grained granularity concurrency

• Iterative approach of finding the right granularity

• Decision might be only correct only for the execution host under test

• Execution order dependency vs. data dependency

6

ParProg | Algorithms PT 2012

Designing Parallel Algorithms [Foster]
• Translate problem specification into an algorithm achieving concurrency,

scalability, and locality

• Best parallel solution typically differs massively from the sequential version

• Four distinct stages of a methodological approach

• Search for concurrency and scalability:

• 1) Partitioning - decompose computation and data into small tasks

• 2) Communication - define necessary coordination of task execution

• Search for locality and other performance-related issues:

• 3) Agglomeration - consider performance and implementation costs

• 4) Mapping - maximize processor utilization, minimize communication

• Might require backtracking or parallel investigation of steps
7

ParProg | Algorithms PT 2012

Partitioning Step

• Expose opportunities for parallel execution - fine-grained decomposition

• Good partition keeps computation and data together

• First deal with data partitioning - domain / data decomposition

• First deal with computation partitioning - functional / task decomposition

• Complementary approaches, can lead to different algorithm versions

• Reveal hidden structures of the algorithm that have potential through
complementary views on the problem

• Avoid replication of either computation or data, can be revised later to reduce
communication overhead

• Step results in multiple candidate solutions

8

ParProg | Algorithms PT 2012

Partitioning - Decomposition Types
• Domain Decomposition

• Define small data fragments, then specify
computation for them

• Different phases of computation on the
same data are handled separately

• Rule of thumb: First focus on large or
frequently used data structures

• Functional Decomposition

• Split up computation into disjoint tasks,
ignore the data accessed for the moment

• Example: Producer / consumer

• With significant data overlap, domain
decomposition is more appropriate

9

ParProg | Algorithms PT 2012

Partitioning Strategies [Breshears]

• Loop parallelization

• Reason about code behavior when loop would be executed backwards -
strong indicator for independent iterations

• Produce at least as many tasks as there will be threads / cores

• But: Might be more effective to use only fraction of the cores (granularity)

• Computation part must pay-off with respect to parallelization overhead

• Avoid synchronization, since it adds up as overhead to serial execution time

• Patterns for data decomposition: by element, by row, by column group,
by block

• Influenced by surface-to-volume ratio

10

ParProg | Algorithms PT 2012

Partitioning - Checklist

• Checklist for resulting partitioning scheme

• Order of magnitude more tasks than processors ?
-> Keeps flexibility for next steps

• Avoidance of redundant computation and storage requirements ?
-> Scalability for large problem sizes

• Tasks of comparable size ?
-> Goal to allocate equal work to processors

• Does number of tasks scale with the problem size ?
-> Algorithm should be able to solve larger tasks with more processors

• Resolve bad partitioning by estimating performance behavior,
and eventually reformulating the problem

11

ParProg | Algorithms PT 2012

Communication Step

• Specify links between data consumers and data producers

• Specify kind and number of messages on these links

• Domain decomposition problems might have tricky communication
infrastructures, due to data dependencies

• Communication in functional decomposition problems can easily be modeled
from the data flow between the tasks

• Categorization of communication patterns

• Local communication (few neighbors) vs. global communication

• Structured communication (e.g. tree) vs. unstructured communication

• Static vs. dynamic communication structure

• Synchronous vs. asynchronous communication
12

ParProg | Algorithms PT 2012

Communication - Hints

• Distribute computation and communication, don‘t centralize algorithm

• Bad example: Central manager for parallel reduction

• Divide-and-conquer helps as mental model to identify concurrency

• Unstructured communication is hard to agglomerate, better avoid it

• Checklist for communication design

• Do all tasks perform the same amount of communication ?
-> Distribute or replicate communication hot spots

• Does each task performs only local communication ?

• Can communication happen concurrently ?

• Can computation happen concurrently ?

13

ParProg | Algorithms PT 2012

Ghost Cells

• Domain decomposition might lead to chunks that demand data
from each other for their computation

• Solution 1: Copy necessary portion of data (,ghost cells‘)

• Feasible if no synchronization is needed after update

• Data amount and frequency of update influences
resulting overhead and efficiency

• Additional memory consumption

• Solution 2: Access relevant data ,remotely‘ as needed

• Delays thread coordination until the data is really needed

• Correctness („old“ data vs. „new“ data) must be
considered on parallel progress

14

ParProg | Algorithms PT 2012

Agglomeration Step

• Algorithm so far is correct, but not specialized for some execution environment

• Check again partitioning and communication decisions

• Agglomerate tasks for more efficient execution on some machine

• Replicate data and / or computation for efficiency reasons

• Resulting number of tasks can still be greater than the number of processors

• Three conflicting guiding decisions

• Reduce communication costs by coarser granularity of computation
and communication

• Preserve flexibility with respect to later mapping decisions

• Reduce software engineering costs (serial -> parallel version)

15

ParProg | Algorithms PT 2012

Agglomeration [Foster]

16

ParProg | Algorithms PT 2012

Agglomeration - Granularity vs. Flexibility

• Reduce communication costs by coarser granularity

• Sending less data

• Sending fewer messages (per-message initialization costs)

• Agglomerate tasks, especially if they cannot run concurrently anyway

• Reduces also task creation costs

• Replicate computation to avoid communication (helps also with reliability)

• Preserve flexibility

• Flexible large number of tasks still prerequisite for scalability

• Define granularity as compile-time or run-time parameter

17

ParProg | Algorithms PT 2012

Agglomeration - Checklist

• Communication costs reduced by increasing locality ?

• Does replicated computation outweighs its costs in all cases ?

• Does data replication restrict the range of problem sizes / processor counts ?

• Does the larger tasks still have similar computation / communication costs ?

• Does the larger tasks still act with sufficient concurrency ?

• Does the number of tasks still scale with the problem size ?

• How much can the task count decrease, without disturbing load balancing,
scalability, or engineering costs ?

• Is the transition to parallel code worth the engineering costs ?

18

ParProg | Algorithms PT 2012

Mapping Step

• Only relevant for distributed systems, since shared memory systems typically
perform automatic task scheduling

• Minimize execution time by

• Place concurrent tasks on different nodes

• Place tasks with heavy communication on the same node

• Conflicting strategies, additionally restricted by resource limits

• In general, NP-complete bin packing problem

• Set of sophisticated (dynamic) heuristics for load balancing

• Preference for local algorithms that do not need global scheduling state

19

ParProg | Algorithms PT 2012

Surface-To-Volume Effect [Foster, Breshears]

• Communication requirements of a task are proportional to the surface of the
data part it operates upon - amount of ,borders‘ on the data

• Computational requirements of a task are proportional to the volume of the
data part it operates upon - granularity of decomposition

• Communication / computation ratio
decreases for increasing data size
per task

• Better to have coarse granularity
by agglomerating tasks in all dimensions

• For given volume (computation),
the surface area (communication)
then goes down -> good

20

(C) nicerweb.com

ParProg | Algorithms PT 2012

Surface-to-Volume Effect [Foster]

21

• Computation on 8x8 grid

• (a): 64 tasks, one point each

• 64x4=256 communications

• 256 data values are
transferred

• (b): 4 tasks, 16 points each

• 4x4=16 communications

• 16x4=64 data values are
transferred

