
Parallel Programming Concepts

Message Passing

Peter Tröger

Sources:

Clay Breshears: The Art of Concurrency
Blaise Barney: Introduction to Parallel Computing
OpenMP 3.0 Specification
MPI2 Specification
Blaise Barney: OpenMP Tutorial, https://computing.llnl.gov/tutorials/openMP/

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

ParProg | Languages PT 2011

Parallel Programming

2

Multi-
Tasking

Message
Passing

Implicit
Parallelism

Mixed
Approaches

PThreads, OpenMP, OpenCL,
Linda, Cilk, ...

MPI, PVM, CSP Channels,
Actors, ...

Map/Reduce, PLINQ, HPF,
Lisp, Fortress, ...

Ada, Scala, Clojure, Erlang,
X10, ...

Execution
Environment

Parallel
Application

Data Parallel /
SIMD

Task Parallel /
MIMD

Shared
Memory

(SM)

Shared
Nothing /

Distributed
Memory

(DM)

GPU, Cell, SSE,
Vector

processor
...

ManyCore/
SMP system

...

processor-array
systems

systolic arrays
Hadoop

...

cluster systems
MPP systems

...

ParProg | Languages PT 2011

Message Passing

3

Multi-
Tasking

Message
Passing

Implicit
Parallelism

Mixed
Approaches

PThreads, OpenMP, OpenCL,
Linda, Cilk, ...

MPI, PVM, CSP Channels,
Actors, ...

Map/Reduce, PLINQ, HPF,
Lisp, Fortress, ...

Ada, Scala, Clojure, Erlang,
X10, ...

ParProg | Languages PT 20114

The Parallel Virtual Machine (PVM)

• Intended for heterogeneous environments, integrated set of software tools and
libraries

• User-configured host pool

• Translucent access to hardware, collection of virtual processing elements

• Unit of parallelism in PVM is a task, no process-to-processor mapping is
implied

• Support for heterogeneous environments

• Explicit message-passing mode, multiprocessor support

• C, C++ and Fortran language

ParProg | Languages PT 20115

PVM (contd.)

• PVM tasks are identified by an integer task identifier (TID)

• User named groups

• Programming paradigm

• User writes one or more sequential programs

• Contains embedded calls to the PVM library

• User typically starts one copy of one task by hand

• Process subsequently starts other PVM tasks

• Tasks interact through explicit message passing

ParProg | Languages PT 20116

PVM Example

main() {
 int cc, tid, msgtag;
 char buf[100];
 printf("i'm t%x\n", pvm_mytid()); //print id
 cc = pvm_spawn("hello_other",
 (char**)0, 0, "", 1, &tid);
 if (cc == 1) {
 msgtag = 1;
 pvm_recv(tid, msgtag); // blocking
 pvm_upkstr(buf); // read msg content
 printf("from t%x: %s\n", tid, buf);
 } else
 printf("can't start it\n");
 pvm_exit();
}

ParProg | Languages PT 20117

PVM Example (contd.)

main() {

 int ptid, msgtag;

 char buf[100];

 ptid = pvm_parent(); // get master id

 strcpy(buf, "hello from ");
 gethostname(buf+strlen(buf), 64); msgtag = 1;

 // initialize send buffer

 pvm_initsend(PvmDataDefault);

 // place a string

 pvm_pkstr(buf);

 // send with msgtag to ptid

 pvm_send(ptid, msgtag); pvm_exit();

}

ParProg | Languages PT 20118

Message Passing Interface (MPI)

• Communication library for sequential programs

• Definition of syntax and semantics for source code portability

• Maintain implementation freedom on high-performance messaging
hardware - shared memory, IP, Myrinet, propietary ...

• MPI 1.0 (1994) and 2.0 (1997) standard, developed by MPI Forum

• Fixed number of processes, determined on startup

• Point-to-point communication

• Collective communication, for example group broadcast

• Focus on efficiency of communication and memory usage, not interoperability

• Fortran / C - Binding

9

ParProg | Languages PT 201110

Basic MPI

• Communicators (process group handle)

• MPI_COMM_SIZE (IN comm, OUT size),
MPI_COMM_RANK (IN comm, OUT pid)

• Sequential process ID‘s, starting with zero

• MPI_SEND (IN buf, IN count, IN datatype, IN destPid, IN
msgTag, IN comm)
MPI_RECV (IN buf, IN count, IN datatype, IN srcPid, IN
msgTag, IN comm, OUT status)

• Source / destination identified by 3-tupel tag, source and comm

• MPI_RECV can block, waiting for specific source

• Constants: MPI_COMM_WORLD, MPI_ANY_SOURCE, MPI_ANY_DEST

• Data types: MPI_CHAR, MPI_INT, ..., MPI_BYTE, MPI_PACKED

ParProg | Languages PT 201111

MPI Data Conversion

• „MPI does not require support for inter-language communication.“

• „The type matching rules imply that MPI communication never entails type
conversion.“

• „On the other hand, MPI requires that a representation conversion is performed
when a typed value is transferred across environments that use different
representations for the datatype of this value.“

• Type matching through name similarity (without MPI_BYTE and MPI_PACKED)

ParProg | Languages PT 201112

Communication Modes

• Blocking communication

• Do not return until the message data and envelope have been stored away

• Standard: MPI decides whether outgoing messages are buffered

• Buffered: MPI_BSEND returns always immediately

• Might be a problem when the internal send buffer is already filled

• Synchronous: MPI_SSEND completes if the receiver started to receive

• Ready: MPI_RSEND should be started only if the matching MPI_RECV is
already available

• Can omit a handshake-operation on some systems

• Blocking communication ensures that the data buffer can be re-used

ParProg | Languages PT 201113

Non-Overtaking Message Order

• „If a sender sends two messages in succession to the same destination, and
both match the same receive, then this operation cannot receive the second
message if the first one is still pending.“

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
 CALL MPI_BSEND (buf1, count, MPI_REAL, 1,
 tag, comm, ierr)
 CALL MPI_BSEND (buf2, count, MPI_REAL, 1,
 tag, comm, ierr)
ELSE ! rank.EQ.1
 CALL MPI_RECV (buf1, count, MPI_REAL, 0,
 MPI_ANY_TAG, comm, status, ierr)
 CALL MPI_RECV (buf2, count, MPI_REAL, 0,
 tag, comm, status, ierr)
END IF

ParProg | Languages PT 201114

Non-Blocking Communication

• Send/receive start and send/receive completion call, with request handle

• Communication mode influences the behavior of the completion call

• Buffered non-blocking send operation leads to an immediate return of the
completion call

• ‚Immediate send‘ calls

• MPI_ISEND, MPI_IBSEND, MPI_ISSEND, MPI_IRSEND

• Completion calls

• MPI_WAIT, MPI_TEST, MPI_WAITANY, MPI_TESTANY,
MPI_WAITSOME, ...

• sending side: MPI_REQUEST_FREE

ParProg | Languages PT 201115

Collective Communication

• Global operations for a distributed application, could also be implemented
manually

• MPI_BARRIER (IN comm)

• returns only if the call is entered by all group members

• MPI_BCAST (INOUT buffer, IN count, IN datatype, IN
rootPid, IN comm)

• root process broadcasts to all group members, itself included

• all group members use the same comm & root parameter

• on return, all group processes have a copy of root‘s send buffer

ParProg | Languages PT 201116

Collective Move Functions

ParProg | Languages PT 201117

Gather

• MPI_GATHER (IN sendbuf, IN sendcount, IN sendtype, OUT
recvbuf, IN recvcount, IN recvtype, IN root, IN comm)

• Each process sends its buffer to the root process
(including the root process itself)

• Incoming messages are stored in rank order

• Receive buffer is ignored for all non-root processes

• MPI_GATHERV allows varying count of data to be received from each
process

• No promise for synchronous behavior

ParProg | Languages PT 201118

MPI Gather Example

MPI_Comm comm;

int gsize,sendarray[100];

int root, myrank, *rbuf;

... [compute sendarray]

MPI_Comm_rank(comm, myrank);

if (myrank == root) {

 MPI_Comm_size(comm, &gsize);

 rbuf = (int *)malloc(gsize*100*sizeof(int));

}

MPI_Gather (sendarray, 100, MPI_INT, rbuf, 100,

 MPI_INT, root, comm);

ParProg | Languages PT 201119

Scatter

• MPI_SCATTER (IN sendbuf, IN sendcount, IN sendtype, OUT
recvbuf, IN recvcount, IN recvtype, IN root, IN comm)

• Sliced buffer of root process is send to all other processes (including the
root process itself)

• Send buffer is ignored for all non-root processes

• MPI_SCATTERV allows varying count of data to be send to each process

20

ParProg | Languages PT 201121

What Else

• MPI_SENDRCV (useful for RPC semantic)

• Global reduction operators

• Complex data types

• Packing / Unpacking (sprintf / sscanf)

• Group / Communicator Management

• Virtual Topology Description

• Error Handling

• Profiling Interface

ParProg | Languages PT 201122

MPICH library

• Development of the MPICH group at Argonne National Laboratory (Globus)

• Portable, free reference implementation

• Drivers for shared memory systems (ch_shmem), Workstation networks
(ch_p4) , NT networks (ch_nt) and Globus 2 (ch_globus2)

• Driver implements MPIRUN (fork, SSH, MPD, GRAM)

• Supports multiprotocol communication
(with vendor MPI and TCP) for intra-/intermachine messaging

• MPICH2 (MPI 2.0) is available,
GT4-enabled version in development

• MPICH-G2 is based on Globus NEXUS / XIO library

• Debugging and tracing support

ParProg | Languages PT 2011

Actor Model

• Carl Hewitt, Peter Bishop and Richard Steiger. A Universal Modular Actor
Formalism for Artificial Intelligence IJCAI 1973.

• Mathematical model for concurrent computation, inspired by lambda
calculus, Simula, Smalltalk

• No global system state concept (relationship to physics)

• Actor as computation primitive, which can make local decisions,
concurrently creates more actors, or concurrently sends / receives messages

• Asynchronous one-way messaging with changing topology,
no order guarantees

• Comparison: CSP relies on hierarchy of combined parallel processes,
while actors rely only on message passing paradigm only

• Recipient is identified by mailing address, can be part of a message

23

ParProg | Languages PT 2011

Actor Model

• Principle of interaction: asynchronous, unordered, fully distributed messaging

• Fundamental aspects of the model

• Emphasis on local state, time and name space - no central entity

• Computation: Not global state sequence, but partially ordered set of events

• Event: Receipt of a message by a target actor

• Each event is a transition from one local state to another

• Events may happen in parallel

• Strict locality: Actor A gets to know actor B only by direct creation, or by
name transmission from another actor C

• Actors system are constructed inductively by adding events

• Messaging reliability declared as orthogonal aspect
24

