
Parallel Programming Concepts

Multi-Tasking

Peter Tröger

Sources:

Clay Breshears: The Art of Concurrency
Blaise Barney: Introduction to Parallel Computing
OpenMP 3.0 Specification
MPI2 Specification
Blaise Barney: OpenMP Tutorial, https://computing.llnl.gov/tutorials/openMP/

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

ParProg | Languages PT 2011

Parallel Programming

2

Multi-
Tasking

Message
Passing

Implicit
Parallelism

Mixed
Approaches

PThreads, OpenMP, OpenCL,
Linda, Cilk, ...

MPI, PVM, CSP Channels,
Actors, ...

Map/Reduce, PLINQ, HPF,
Lisp, Fortress, ...

Ada, Scala, Clojure, Erlang,
X10, ...

Execution
Environment

Parallel
Application

Data Parallel /
SIMD

Task Parallel /
MIMD

Shared
Memory

(SM)

Shared
Nothing /

Distributed
Memory

(DM)

GPU, Cell, SSE,
Vector

processor
...

ManyCore/
SMP system

...

processor-array
systems

systolic arrays
Hadoop

...

cluster systems
MPP systems

...

ParProg | Languages PT 2011

Multi-Tasking

3

Multi-
Tasking

Message
Passing

Implicit
Parallelism

Mixed
Approaches

PThreads, OpenMP, OpenCL,
Linda, Cilk, ...

MPI, PVM, CSP Channels,
Actors, ...

Map/Reduce, PLINQ, HPF,
Lisp, Fortress, ...

Ada, Scala, Clojure, Erlang,
X10, ...

ParProg | Languages PT 2011

Classical Add-Ons: Java

• Java supports concurrency on-top-of operating system threads for a while

• Functions bundled in java.util.concurrent

• Classical concurrency support, based on reentract intrinsic object lock

• synchronized methods: Allow only one thread in an objects‘
synchronized methods, based on intrinsic object lock

• For static methods, locking based on class object

• synchronized statements: Synchronize execution by intrinsic lock of the
given object

• volatile keyword: Indicate shared nature of variable - ensure atomic
synchronized access, no thread-local caching

• wait / notify semantics in Object

4

ParProg | Languages PT 2011

Java Examples

5

ParProg | Languages PT 2011

Java wait / notify

6

• Each object can act as guard with wait() / notify() functions

• Guard waiting must always be surrounded by explicit condition check

ParProg | Languages PT 2011

Java High-Level Concurrency

• Introduced with Java 5, summarized in java.util.concurrent

• java.util.concurrent.locks

• Separation of thread management and parallel activities - Executors

• java.util.concurrent.Executor

• Implementing object provides execute() method, is able to execute
submitted Runnable tasks

• No assumption on where the task runs, might be even in the callers
context, but typically in managed thread pool

• ThreadPoolExecutor implementation provided by class library

7

ParProg | Languages PT 2011

Java High-Level Concurrency

• java.util.concurrent.ExecutorService

• Supports also Callable objects as input, which can return a value

• Additional submit() function, which returns a Future object on the result

• Future object allows to wait on the result, or cancel execution

• Methods for submitting large collections of Callable‘s

• Methods for managing executor shutdown

• java.util.concurrent.ScheduledExecutorService

• Additional methods to schedule tasks repeatedly

• Available thread pools from executor implementations:
Single background thread, fixed size, unbound with automated reclamation

8

ParProg | Languages PT 2011

Java High-Level Concurrency

9

ParProg | Languages PT 2011

Java High-Level Concurrency

10

ParProg | Languages PT 2011

Parallel Programming in .NET

• As Java, .NET CLR relies on native thread model

• Synchronization and scheduling mapped to operating system concepts

• .NET 4 has variety of support libraries

• Task Parallel Library (TPL) - Loop parallelization, task concept

• Task factories, task schedulers

• Parallel LINQ (PLINQ) - Implicit data parallelism through query language

• Collection classes, synchronization support

• Debugging and visualization support

11

ParProg | Languages PT 2011

Threads vs. Tasks

• Process: Address space, handles, code, set of threads

• Thread: control flow

• Preemptive scheduling by the operating system

• Can migrate between cores

• Task: control flow

• Typically modeled as object (TBB, Java) or statement / lambda expression /
anonymous function (OpenMP, MS TPL)

• Cooperative scheduling by a user-mode library, mapping to thread pool

• Task model replaces context switch with yielding approach

• Typical scheduling policy for tasks is central queue or work stealing

12

ParProg | Languages PT 2011

Multi-Tasking

• Relevant issues: Task generation, execution synchronization, data access

• Manual coordination in a sequential language
(operating system threads, Java / .NET threads, ...)
-> „explicit“ threading

• Using a framework for parallel tasks
(OpenMP, OpenCL, Intel TBB, MS TPL, ...)
-> „implicit“ threading

• Concurrency problems remain

• Critical section problem with shared variables in different tasks

• Low-level synchronization primitives wrapped by „concurrent data structures“
in task framework

• Already covered: OpenCL

13

ParProg | Languages PT 2011

OpenMP

• Specification for C/C++ and Fortran language extension (currently v3.1)

• Portable shared memory thread programming

• High-level abstraction of task- and loop parallelism

• Derived from compiler-directed parallelization of serial language code (HPF),
with support for incremental change of source code

• Programming model: Fork-Join-Parallelism

• Master thread spawns group of threads for limited code region

• PARALLEL directive

• Barrier concept

14

Parallel Regions

Master
Thread

ParProg | Languages PT 2011

OpenMP Pragmas

• #pragma omp construct ... (include omp.h)

• OpenMP runtime library: query functions, runtime functions, lock functions

• Parallel region

• OpenMP constructs are applied to dedicated code blocks,
marked by #pragma omp parallel

• Parallel region should have only one entry and one exit point

• Implicit barrier at beginning and end of the block

• Thread pool for execution of parallel activities

• Idle worker threads may sleep or spin, depending on library configuration
(performance issue in serial parts)

15

Parallel Regions

Master
Thread

ParProg | Languages PT 2011

OpenMP Parallel Construct

16

• Encountering thread for the parallel region generates a set of implicit tasks

• Each resulting implicit task is assigned to a different thread

• Implementation may suspend task execution at a scheduling point

ParProg | Languages PT 2011

OpenMP Configuration / Query Functions

• Environment variables

• OMP_NUM_THREADS: number of threads during execution, upper limit for
dynamic adjustment of threads

• OMP_SCHEDULE: set schedule type and chunk size for parallelized loops of
scheduling type runtime

• Query functions

• omp_get_num_threads: Number of threads in the current parallel region

• omp_get_thread_num: Current thread number in the team, master=0

• omp_get_num_procs: Available number of processors

• ...

17

ParProg | Languages PT 2011

OpenMP Work Sharing

• Possibilities for distribution of tasks across threads (,work sharing‘)

• omp sections - Define code blocks usable as tasks

• omp for - Automatically divide a loop‘s iterations into tasks

• Implicit barrier at the end

• omp task - Explicitly define a task

• omp single / master - Denotes a task to be executed only by first
arriving thread resp. the master thread

• Implicit barrier at the end, intended for non-thread-safe activities (I/O)

• Scheduling of tasks defined is handled by the OpenMP implementation

• Clause combinations possible: #pragma omp parallel for

18

ParProg | Languages PT 2011

OpenMP Work Sharing with Sections

• Explicit definition of code blocks as parallel tasks with section directive
(function partitioning)

• Executed in the context of the implicit task

• One task may execute more than one section - runtime decision

#pragma omp parallel
{
 #pragma omp sections [clause [clause] ...]
 {
 [#pragma omp section]

 structured-block1

 [#pragma omp section]

 structured-block2
 }}

19

ParProg | Languages PT 2011

OpenMP Data Scoping

• Shared memory programming model - communication through variables

• Shared variable: Name provides access to same memory in all tasks

• Shared by default: global variables, static variables,
variables with namespace scope, variables with file scope

• shared clause can be added to any omp construct, defines a list of
additionally shared variables

• Provides no automatic protection, just marking of variables for handling by
runtime environment

• Private variable: Clone variable in each task, by default no initialization

• Private by default: Local variables in functions called from parallel regions,
loop iteration variables, automatic variables

• Initialization with last value before region (firstprivate) possible
20

ParProg | Languages PT 2011

OpenMP Work Sharing with Loop Parallelization

• Loop construct: Parallel
execution of iterations

• Iteration variable must
be integer

• Mapping of threads to
iterations is controlled
by schedule clause

• Implications on
exception handling,
break-out calls and
continue primitive

21

#pragma omp parallel for
for(ii = 0; ii < n; ii++){
 value = some_complex_long_fuction(a[ii]);
 #pragma omp critical
 sum = sum + value;
}

ParProg | Languages PT 2011

OpenMP Consistency Model

• Thread’s temporary view of memory is not required to be consistent with
memory at all times (weak-ordering consistency)

• Example: Keeping loop variable in a register for efficiency reasons

• Compiler needs to be informed when consistent view is demanded

• Implicit flush on different occasions, such as barrier region

• In all other cases, shared variables must be flushed before reading

• Directive:
#pragma omp flush

22

ParProg | Languages PT 2011

OpenMP Loop Parallelization Scheduling

• schedule (static, [chunk]) - Contiguous ranges of iterations (chunks)
are assigned to the threads

• Low overhead, round robin assignment to free threads

• Static scheduling for predictable and similar work per iteration

• Increasing chunk size reduces overhead, improves cache hit rate

• Decreasing chunk size allows finer balancing of work load

• schedule (dynamic, [chunk]) - Threads grab iteration resp. chunk

• Higher overhead, but good for unbalanced iteration work load

• schedule (guided, [chunk]) - Dynamic schedule, shrinking ranges per
step, starting with large block, until minimum chunk size is reached

• Computations with increasing iteration length (e.g. prime sieve test)

23

ParProg | Languages PT 2011

OpenMP Synchronization

• Synchronizing with task completion

• Implicit barrier at the end of single block, removable by nowait clause

• #pragma omp barrier (wait for all other threads in the team)

• #pragma omp taskwait (wait for completion of created child tasks)

24

#include <omp.h>
#include <stdio.h>
int main() {
 #pragma omp parallel
 {
 printf("Start: %d\n", omp_get_thread_num());
 #pragma omp single //nowait
 printf("Got it: %d\n", omp_get_thread_num());
 printf("Done: %d\n", omp_get_thread_num());
 }
 return 0;
}

ParProg | Languages PT 2011

OpenMP Synchronization

• Synchronizing variable access

• #pragma omp critical [name]

• Enclosed block executed by all threads, but restricted to one at a time

• All unnamed directives map to the same unspecified name

25

float dot_prod(float* a, float* b, int N)
{
 float sum = 0.0;
 #pragma omp parallel for
 for(int i = 0; i < N; i++) {
 #pragma omp critical
 sum += a[i] * b[i];
 }
 return sum;
}

ParProg | Languages PT 2011

OpenMP Synchronization

• Alternative: #pragma omp reduction (op: list)

• Execute parallel tasks based on private copies of list, perform reduction
on results with op afterwards, without race conditions

• Supported associative operands:
+, *, -, ^, bitwise AND, bitwise OR, logical AND, logical OR

26

#pragma omp parallel for reduction(+:sum)
 for(i = 0; i < N; i++) {
 sum += a[i] * b[i];
 }

ParProg | Languages PT 2011

OpenMP Best Practices [Süß & Leopold]

• Typical correctness mistakes

• Access to shared variables not protected

• Use of locks / shared variables without flush

• Declaring parallel loop variable as shared

• Typical performance mistakes

• Use of critical when atomic would be sufficient

• Too much work inside a critical section

• Unnecessary flush / critical

27

ParProg | Languages PT 2011

OpenMP Tasks

• Main change with OpenMP v3,
allows description of non-data
driven parallelization strategy

• Farmer / worker algorithms

• Recursive algorithms

• Unbounded loops
(e.g. while loops)

• Definition of tasks as composition of code to execute, data environment, and
control variables

• Implicit task generation with parallel and for constructs

• Explicit task generation with sections and task constructs

28

ParProg | Languages PT 2011

OpenMP Tasks

• Certain construct act as task scheduling point

• When thread encounters this construct, it can switch to another task

• Example: Generating task will suspend on exit barrier

• Executing thread can help processing the task pool, or run the spawned
task directly (cache-friendly)

29

ParProg | Languages PT 2011

Intel TBB

• Task concept - define what to run in parallel, instead of managing threads

• Portable C++ library, toolkits for different operating systems

• Complements basic OpenMP features

• Loop parallelization, parallel reduction, synchronization, explicit tasks

• High-level concurrent containers (hash map, queue, vector)

• High-level parallel operations (prefix scan, sorting, data-flow pipelining)

• Unfair scheduling approach, to favor threads having data in cache

• Supported for cache-aware memory allocation

• Comparable: Microsoft C++ Concurrency Runtime

30

ParProg | Languages PT 2011

Easy Mappings [Dig]

31

Java TBB TPL

Parallel For

Concurrent Collections

Atomic Classes

ForkJoin Task
Parallelism

ParallelArray parallel_for Parallel.For

ConcurrentHashMap,
...

concurrent_hash_map,
...

AtomicInteger, ... atomic<T> Interlocked

ForkJoinTask
framework task Task, ReplicableTask

ParProg | Languages PT 2011

Work Stealing

• Blumofe, Robert D.; Leiserson, Charles E.: Scheduling Multithreaded
Computations by Work Stealing. In: In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (FOCS. 1994), S. 356-368

• Problem of scheduling scalable multithreading problems on processors

• Work sharing: When processors create new work, the scheduler migrates
threads for balanced utilization

• Work stealing: Underutilized processor takes work from other processor

• Intuitively, less thread migrations

• Goes back to work stealing research in Multilisp (1984)

• Communication reaches lower bound for parallel divide-and-conquer

• Approach by Blumofe et al. relies on „fully strict multithreaded computation“

32

ParProg | Languages PT 2011

Randomized Work Stealing

• Lock-free ready dequeue per processor

• Task are inserted on the bottom, and can be taken from both sides

• Processor obtains local work by taking one task from the bottom

• Migrated tasks are taken from the top

• If no ready task is available on task stall / dead, the processor steals the
top-most one from a randomly chosen processor

• If no victim is available, processor continues to randomly search for one

• Stalled tasks which are enabled again by other tasks are placed on the
bottom of the ready dequeue of their enabling processor

• Algorithm maintains the busy-leaves property - ready tasks are either executed
or wait for a processor becoming free

• Supported in Microsoft TPL, Intel TBB, Java, Cilk, ...
33

ParProg | Languages PT 2011

Apple Grand Central Dispatch

• Part of MacOS X operating system since 10.6

• Task parallelism concept for developer, execution in thread pools

• Tasks can be functions or blocks (C / C++ / ObjectiveC extension)

• Submitted to dispatch queues, executed in thread pool under control of the
Mac OS X operating system

• Main queue: Tasks execute serially on application‘s main thread

• Concurrent queue: Tasks start executing in FIFO order,
but might run concurrently

• Serial queue: Tasks execute serially in FIFO order

• Dispatch groups for aggregate synchronization

• On events, dispatch sources can submit tasks to dispatch queues automatically

34

ParProg | Languages PT 201135

Linda Model

• Concurrent programming model, developed in Yale University research project

• Tuple-space concept

• Abstraction of distributed shared memory

• Set of programming language extensions for facilitating parallel programming

• Tuple: Fixed fixed-length list containing elements of different type

• Associative memory - tuples are accessed not by their address but rather by
their content and type

• Destructive (in) and nondestructive (rd) reads

• Sequential programs embed insert/retrieve tuple operations

• Multiple implementations (LindaSpaces, GigaSpaces, IBM TSpaces, …)

ParProg | Languages PT 2011

Tuple Spaces

36

out(„peter“, 88, 1.5) in(„mary“, u, v)

rd(„peter“, x, y)

(„mary“, 43, 2.0)

(„fred“, 56, 2.8)

37

(C
) h

tt
p:

//
w

w
w

.m
cs

.a
nl

.g
ov

/

http://www.mcs.anl.gov
http://www.mcs.anl.gov

