Parallel Programming Concepts

Multi- Tasking

Peter Troger
Sources:

Clay Breshears: The Art of Concurrency
Blaise Barney: Introduction to Parallel Computing
OpenMP 3.0 Specification

MPI2 Specification
Blaise Barney: OpenMP Tutorial, https://computing.linl.gov/tutorials/openMP/

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

Parallel Programming

_ Data Parallel / Task Parallel /
TMUk|T[I- PThreadE,., gpeg!\lﬂkp, OpenCL, SIMD MIMD
asxing naa, LA, ... GPU, Cell, SSE, ManyCore/
Shared Vector SMP system
Message MPI, PVM, CSP Channels, Memory processor
Passing Actors, ... (SM)
Implicit Map/Reduce, PLINQ, HPF, Shared
Parallelism Lisp, Fortress, ... : processor-array | cluster systems
Nothing / systems MPP systems
Distributed | gy stolic arrays
Mixed Ada, Scala, Clojure, Erlang, Memory Hadoop
Approaches X10, ... (DM)
Parallel Execution
Application Environment

ParProg | Languages 2 PT 2011

Multi-Tasking

Multi- PThreads, OpenMP, OpenCL,
Tasking Linda, Cilk, ...

Message MPI, PVM, CSP Channels,
Passing Actors, ...

Implicit Map/Reduce, PLINQ, HPF,
Parallelism Lisp, Fortress, ...

Mixed Ada, Scala, Clojure, Erlang,
Approaches X10, ...

ParProg | Languages 3 PT 2011

Classical Add-Ons: Java

¢ Java supports concurrency on-top-of operating system threads for a while
e Functions bundled in java.util.concurrent
e Classical concurrency support, based on reentract intrinsic object lock

e synchronized methods: Allow only one thread in an objects’
synchronized methods, based on intrinsic object lock

¢ For static methods, locking based on class object

e synchronized statements: Synchronize execution by intrinsic lock of the
given object

e volatile keyword: Indicate shared nature of variable - ensure atomic
synchronized access, no thread-local caching

e wait /notify semantics in Object

ParProg | Languages 4 PT 2011

Java Examples

public class HelloRunnable implements Runnable {

public void run() {
System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}
}
T — —
public class HelloThread extends Thread {
public void run() {
System.out.println("Hello from a thread!”);
}
public static void main(String args[]) {
(new HelloThread()).start();
public void addName(String name) ({ }
synchronized(this) {
lastName = name; }
nameCount++;
nameList.add(name);
}
r *

ParProg | Languages 5 PT 2011

Java wait / notify

e Each object can act as guard with wait () /notify () functions

e Guard waiting must always be surrounded by explicit condition check

public synchronized guardedJoy() {

//This guard only loops once for each special event, which may not
//be the event we're waiting for.
while(!joy) {

try {

wait();

} catch (InterruptedException e) {}

}

System.out.println("Joy and efficiency have been achieved!");

ParProg | Languages 6 PT 2011

Java High-Level Concurrency

¢ Introduced with Java 5, summarized in java.util.concurrent
e java.util.concurrent.locks

e Separation of thread management and parallel activities - Executors

e java.utll.concurrent.Executor

e Implementing object provides execute () method, is able to execute
submitted Runnable tasks

¢ No assumption on where the task runs, might be even in the callers
context, but typically in managed thread pool

e ThreadPoolExecutor implementation provided by class library

ParProg | Languages 7 PT 2011

Java High-Level Concurrency

e java.util.concurrent.ExecutorService
e Supports also Callable objects as input, which can return a value
e Additional submit () function, which returns a Future object on the result
e F'uture object allows to wait on the result, or cancel execution
e Methods for submitting large collections of Callable's

e Methods for managing executor shutdown
e java.util.concurrent.ScheduledExecutorService
e Additional methods to schedule tasks repeatedly

¢ Available thread pools from executor implementations:
Single background thread, fixed size, unbound with automated reclamation

ParProg | Languages 8 PT 2011

Java High-Level Concurrency

interface ArchiveSearcher { String search(String target); }
class App {
ExecutorService executor = ...
ArchiveSearcher searcher = ...
void showSearch(final String target)
throws InterruptedException {
Future<String> future
= executor.submit(new Callable<String>() {
public String call() {
return searcher.search(target);

}});
displayOtherThings(); // do other things while searching

try {
displayText(future.get()); // use future
} catch (ExecutionException ex) { cleanup(); return; }

}
}

ParProg | Languages 9

PT 2011

Java High-Level Concurrency

class NetworkService implements Runnable {
private final ServerSocket serverSocket;
private final ExecutorService pool;

public NetworkService(int port, int poolSize)

throws IOException {
serverSocket = new ServerSocket(port);

pool = Executors.newFixedThreadPool (poolSize);

}
public void run() { // run the service
try {
for (;;) {

pool.execute(new Handler(serverSocket.accept())):

}
} catch (IOException ex) {
pool.shutdown();
}
}
}

class Handler implements Runnable {
private final Socket socket;

Handler(Socket socket) { this.socket = socket; }
public void run() {

// read and service request on socket
}

}

I — ———
ParProg | Languages

10

PT 2011

Parallel Programming in .NET

e As Java, .NET CLR relies on native thread model
e Synchronization and scheduling mapped to operating system concepts
e NET 4 has variety of support libraries
e JTask Parallel Library (TPL) - Loop parallelization, task concept
e Task factories, task schedulers
e Parallel LINQ (PLINQ) - Implicit data parallelism through query language
e Collection classes, synchronization support

e Debugging and visualization support

ParProg | Languages 11 PT 2011

Threads vs. Tasks

* Process: Address space, handles, code, set of threads
e Thread: control flow

* Preemptive scheduling by the operating system

e Can migrate between cores
e Task: control flow

e Typically modeled as object (TBB, Java) or statement / lambda expression /
anonymous function (OpenMP, MS TPL)

e Cooperative scheduling by a user-mode library, mapping to thread pool
* Task model replaces context switch with yielding approach

* Typical scheduling policy for tasks is central queue or work stealing

ParProg | Languages 12 PT 2011

Multi-Tasking

¢ Relevant issues: Task generation, execution synchronization, data access

e Manual coordination in a sequential language
(operating system threads, Java / .NET threads, ...)
-> explicit” threading

e Using a framework for parallel tasks
(OpenMP, OpenCL, Intel TBB, MS TPL, ...)
-> . implicit® threading

e Concurrency problems remain
e Critical section problem with shared variables in different tasks

¢ | ow-level synchronization primitives wrapped by ,,concurrent data structures*
in task framework

e Already covered: OpenCL

ParProg | Languages 13 PT 2011

OpenMP

e Specification for C/C++ and Fortran language extension (currently v3.1)
e Portable shared memory thread programming
e High-level abstraction of task- and loop parallelism

e Derived from compiler-directed parallelization of serial language code (HPF),
with support for incremental change of source code

* Programming model: Fork-Join-Parallelism
e Master thread spawns group of threads for limited code region
e PARALLEL directive

e Barrier concept /

Master
Thread

Parallel Regions

ParProg | Languages 14 PT 2011

OpenMP Pragmas

* #fpragma omp construct ... (include omp.h)
e OpenMP runtime library: query functions, runtime functions, lock functions
¢ Parallel region

e OpenMP constructs are applied to dedicated code blocks,
marked by #pragma omp parallel

e Parallel region should have only one entry and one exit point

e Implicit barrier at beginning and end of the block

a
Y
::.‘-'&\

=2

* Thread pool for execution of parallel activities .

Parallel Regions

e |dle worker threads may sleep or spin, depending on library configuration
(performance issue in serial parts)

ParProg | Languages 15 PT 2011

OpenMP Parallel Construct

* Encountering thread for the parallel region generates a set of implicit tasks
* Each resulting implicit task is assigned to a different thread

* Implementation may suspend task execution at a scheduling point

A set of implicit tasks, equal in number to the number of threads in the team, is
generated by the encountering thread. The structured block of the parallel construct
determines the code that will be executed in each implicit task. Each task is assigned to
a different thread in the team and becomes tied. The task region of the task being
executed by the encountering thread is suspended and each thread in the team executes
its implicit task. Each thread can execute a path of statements that is different from that
of the other threads.

The implementation may cause any thread to suspend execution of its implicit task at a
task scheduling point, and switch to execute any explicit task generated by any of the
threads in the team, before eventually resuming execution of the implicit task (for more
details see Section 2.7 on page 59).

L — S

ParProg | Languages 16 PT 2011

OpenMP Configuration / Query Functions

e Environment variables

e OMP NUM THREADS: number of threads during execution, upper limit for
dynamic adjustment of threads

e OMP SCHEDULE: set schedule type and chunk size for parallelized loops of
scheduling type runtime

e Query functions
e omp get num threads: Number of threads in the current parallel region
e omp get thread num: Current thread number in the team, master=0

e omp get num procs: Available number of processors

ParProg | Languages 17 PT 2011

OpenMP Work Sharing

¢ Possibilities for distribution of tasks across threads (,work sharing’)
e omp sections - Define code blocks usable as tasks

e omp for - Automatically divide a loop‘s iterations into tasks

¢ Implicit barrier at the end

e omp task - Explicitly define a task

e omp single / master - Denotes a task to be executed only by first
arriving thread resp. the master thread

e I[mplicit barrier at the end, intended for non-thread-safe activities (I/O)
e Scheduling of tasks defined is handled by the OpenMP implementation

e Clause combinations possible: #pragma omp parallel for

ParProg | Languages 18 PT 2011

OpenMP Work Sharing with Sections

e Explicit definition of code blocks as parallel tasks with section directive
(function partitioning)

e Executed in the context of the implicit task

e One task may execute more than one section - runtime decision

#pragma omp parallel
{

fpragma omp sections [clause [clause] ...]

{

[#pragma omp section]

structured-blockl
[#pragma omp section]

structured-block?
b}

ParProg | Languages 19 PT 2011

OpenMP Data Scoping

e Shared memory programming model - communication through variables
e Shared variable: Name provides access to same memory in all tasks

e Shared by default: global variables, static variables,
variables with namespace scope, variables with file scope

e shared clause can be added to any omp construct, defines a list of
additionally shared variables

¢ Provides no automatic protection, just marking of variables for handling by
runtime environment

e Private variable: Clone variable in each task, by default no initialization

e Private by default: Local variables in functions called from parallel regions,
loop iteration variables, automatic variables

e |nitialization with last value before region (firstprivate) possible
ParProg | Languages 20 PT 2011

OpenMP Work Sharing with Loop Parallelization

. :
Loop construct: Parallel #pragma omp parallel for

execution of iterations for(ii = @; ii < n; ii++){
value = some_complex_long_fuction(Ca[ii]);
e |[teration variable must #pragma omp critical
be integer sum = sum + value;
ks
e Mapping of threads to F— —
iterations is controlled
#include <math.h>
by Schedule Clause void a92(int n, float *a, flcat *b, float *c, flocat *y, float *z)
{
. . int i;
L |mp|ICat|0nS on #pragma omp parallel
. . {
exceptlon handllng’ #ipragma omp for schedule(static) nowait
break-out calls and for (i=0; i<n; i++)
. ey cli) = (a[i)] + b[i)) / 2.0;
Contlnue p”m't'Ve #pragma omp for schedule(static) nowait

for (i=0; i<n; i++)
z[i] = sgrt(cli]);
#pragma omp for schedule(static) nowait
for (iwl; i<wn; i++)
ylil = z[i-1] + alil;
}
}

ParProg | Languages

OpenMP Consistency Model

e Thread’s temporary view of memory is not required to be consistent with
memory at all times (weak-ordering consistency)

e Example: Keeping loop variable in a register for efficiency reasons
e Compiler needs to be informed when consistent view is demanded

e Implicit flush on different occasions, such as barrier region

e |In all other cases, shared variables must be flushed before reading

¢ Directive:
#pragma omp flush

a=>ba=20
thread 1 thread 2
b =1 a=1
flush(a,b) flush (a,b)
if (a == 0) then if (b == 0) then
critical section critical section
end if

end if
ParProg | Languages

OpenMP Loop Parallelization Scheduling

e schedule (static, [chunk]) - Contiguous ranges of iterations (chunks)
are assigned to the threads

e | ow overhead, round robin assignment to free threads

e Static scheduling for predictable and similar work per iteration

¢ Increasing chunk size reduces overhead, improves cache hit rate
e Decreasing chunk size allows finer balancing of work load

e schedule (dynamic, [chunk]) - Threads grab iteration resp. chunk

e Higher overhead, but good for unbalanced iteration work load

e schedule (guided, [chunk]) - Dynamic schedule, shrinking ranges per
step, starting with large block, until minimum chunk size is reached

e Computations with increasing iteration length (e.g. prime sieve test)

ParProg | Languages 23 PT 2011

OpenMP Synchronization

e Synchronizing with task completion
e Implicit barrier at the end of single block, removable by nowait clause

e #fpragma omp barrier (wait for all other threads in the team)

e #fpragma omp taskwait (wait for completion of created child tasks)

#include <omp.h>
#include <stdio.h>
int main() {
#pragma omp parallel
{
printf("Start: %d\n", omp_get_thread_num());
#pragma omp single //nowait
printf("Got 1t: %d\n", omp_get_thread_num());
printf("Done: %d\n", omp_get_thread_num());
by
return 0;

}

ParProg | Languages 24 PT 2011

OpenMP Synchronization

e Synchronizing variable access
e fpragma omp critical [name]
¢ Enclosed block executed by all threads, but restricted to one at a time

¢ All unnamed directives map to the same unspecified name

float dot prod(float* a, float* b, int N)
{
float sum = 0.0;
#pragma omp parallel for
for(int i = 0; 1 < N; 1i++) {
#pragma omp critical
sum += al[i] * b[i];
}

return sum;

ParProg | Languages 25 PT 2011

OpenMP Synchronization

« Alternative: #pragma omp reduction (op: list)

e Execute parallel tasks based on private copies of 1ist, perform reduction
on results with op afterwards, without race conditions

e Supported associative operands:
+, %, -, A, bitwise AND, bitwise OR, logical AND, logical OR

#pragma omp parallel for reduction (+:sum)
for(i = 0; 1 < N; i++) {
sum += al[i] * b[i];

}

ParProg | Languages 26 PT 2011

OpenMP Best Practices [Suf3 & Leopold]

¢ Typical correctness mistakes
e Access to shared variables not protected
e Use of locks / shared variables without f1ush
e Declaring parallel loop variable as shared

* Typical performance mistakes

e Use of critical when atomic would be sufficient
e Too much work inside a critical section

e Unnecessary flush / critical

ParProg | Languages 27 PT 2011

OpenMP Tasks

¢ Main change with OpenMP v3,
allows description of non-data
driven parallelization strategy

e Farmer / worker algorithms
e Recursive algorithms

e Unbounded loops
(e.g. while loops)

struct node {
struct node *left;
struct node *right;
}:
extern void process(struct node *);
void postorder traverse(struct node *p) {
if (p-»>left)
$#pragma omp task // p is firstprivate by default
postorder traverse(p->left);
if (p->right)
#pragma omp task // p is firstprivate by default
postorder traverse(p->right);
#pragma omp taskwait
process(p);

¢ Definition of tasks as composition of code to execute, data environment, and

control variables

e Implicit task generation with parallel and for constructs

e Explicit task generation with sections and task constructs

ParProg | Languages

28 PT 2011

OpenMP Tasks

e Certain construct act as task scheduling point

¢ \When thread encounters this construct, it can switch to another task

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task

process (item([i]) ;

e Example: Generating task will suspend on exit barrier

e Executing thread can help processing the task pool, or run the spawned
task directly (cache-friendly)

ParProg | Languages 29 PT 2011

Intel TBB

e Jask concept - define what to run in parallel, instead of managing threads
e Portable C++ library, toolkits for different operating systems
e Complements basic OpenMP features
¢ | oop parallelization, parallel reduction, synchronization, explicit tasks
¢ High-level concurrent containers (hash map, queue, vector)
e High-level parallel operations (prefix scan, sorting, data-flow pipelining)
e Unfair scheduling approach, to favor threads having data in cache
e Supported for cache-aware memory allocation

e Comparable: Microsoft C++ Concurrency Runtime

ParProg | Languages 30 PT 2011

Fasy Mappings [Dig]

Java BB TPL
Parallel For ParallelArray parallel_for Parallel.For
Concurrent Collections ConcurrentHashMap, | concurrent_hash_map,
Atomic Classes Atomiclnteger, ... atomic<T> Interlocked
ForkJoianask ForkJoinTask task Task, ReplicableTask
Parallelism framework

ParProg | Languages

31

PT 2011

Work Stealing

e Blumofe, Robert D.; Leiserson, Charles E.: Scheduling Multithreaded
Computations by Work Stealing. In: In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (FOCS. 1994), S. 356-368

e Problem of scheduling scalable multithreading problems on processors

¢ \Work sharing: When processors create new work, the scheduler migrates
threads for balanced utilization

¢ \Work stealing: Underutilized processor takes work from other processor
e Intuitively, less thread migrations
e Goes back to work stealing research in Multilisp (1984)
e Communication reaches lower bound for parallel divide-and-conquer

e Approach by Blumofe et al. relies on ,,fully strict multithreaded computation®

ParProg | Languages 32 PT 2011

Randomized Work Stealing

¢ |ock-free ready dequeue per processor
e Task are inserted on the bottom, and can be taken from both sides
e Processor obtains local work by taking one task from the bottom
e Migrated tasks are taken from the top

e [f no ready task is available on task stall / dead, the processor steals the
top-most one from a randomly chosen processor

e [f no victim is available, processor continues to randomly search for one

e Stalled tasks which are enabled again by other tasks are placed on the
bottom of the ready dequeue of their enabling processor

¢ Algorithm maintains the busy-leaves property - ready tasks are either executed
or wait for a processor becoming free

e Supported in Microsoft TPL, Intel TBB, Java, Cilk, ...

ParProg | Languages 33 PT 2011

Apple Grand Central Dispatch

e Part of MacOS X operating system since 10.6
¢ Task parallelism concept for developer, execution in thread pools
e Tasks can be functions or blocks (C / C++ / ObjectiveC extension)

e Submitted to dispatch queues, executed in thread pool under control of the
Mac OS X operating system

¢ Main queue: Tasks execute serially on application‘s main thread

e Concurrent queue: Tasks start executing in FIFO order,
but might run concurrently

e Serial queue: Tasks execute serially in FIFO order
e Dispatch groups for aggregate synchronization

¢ On events, dispatch sources can submit tasks to dispatch queues automatically

ParProg | Languages 34 PT 2011

Linda Model

e Concurrent programming model, developed in Yale University research project

¢ Tuple-space concept
e Abstraction of distributed shared memory
e Set of programming language extensions for facilitating parallel programming
e Tuple: Fixed fixed-length list containing elements of different type

e Associative memory - tuples are accessed not by their address but rather by
their content and type

e Destructive (in) and nondestructive (rd) reads
e Sequential programs embed insert/retrieve tuple operations

e Multiple implementations (LindaSpaces, GigaSpaces, IBM TSpaces, ...)

ParProg | Languages 35 PT 2011

Tuple Spaces

out(,peter”, 88, 1.5) in(,mary*, u, v)

(,mary*, 43, 2.0)

(,fred”, 56, 2.8)

rd(,peter, X, y)

ParProg | Languages 36 PT 2011

procedures manager
begin
count = 0
until end-of-file do
read datum from file
OUT ("datum",datum)
count = count+l
enddo
best = 0.0
for i = 1 to count
IN("score" ,value)
if value > best then best = value
endfor
for i = 1 to numworkers
OUT("datum","stop")
endfor
end

(C) http://www.mcs.anl.gov/

procedure worker
begin
IN("datum",datum)
until datum = “stop" do
value = compare(datum,target)
OUT("8core",value)
IN("datum" ,datum)
enddo

end

Program 4.2 : Pseudo-code [or master and worker Lasks 1o a tuple-space solution

Lo the database search problewm. 37

http://www.mcs.anl.gov
http://www.mcs.anl.gov

