
Parallel Programming Concepts

Parallel Algorithms

Peter Tröger

Sources:

• Ian Foster. Designing and Building Parallel Programs. Addison-Wesley. 1995.
• Mattson, Timothy G.; S, Beverly A.; ers,; Massingill, Berna L.: Patterns for Parallel
Programming (Software Patterns Series). 1st. Addison-Wesley Professional, 2004.
• Breshears, Clay: The Art of Concurrency: A Thread Monkey's Guide to Writing
Parallel Applications. O'Reilly Media, Inc., 2009.

ParProg | Algorithms PT 2011

Why Parallel ?

• Amdahl‘s Law (1967)

• P is the portion of the program that benefits from parallelization

• Maximum speedup by N processors:

• Maximum speedup tends to 1 / (1-P)

• Parallelism only reasonable with small N or small (1-P)

• Gustafson‘s Law

• Let p be a measure of problem size, S(p) the time for the sequential part

• Maximum speedup by N processors:

• When serial function part shrinks with increasing p, speedup grows as N

2

s = (1−P)+P
(1−P)+ P

N

S(p) + N ∗ (1− S(p))

1 10 100 1000 1!10
4

5

10

15

20

P=90%

P=75%

P=50%

P=25%

P=10%

Number of processors

S
p
e
e
d
u
p P=95%

ParProg | Algorithms PT 2011

Amdahl's Law

3

ParProg | Algorithms PT 2011

Why Parallel ?

• Karp-Flatt-Metric (Alan H. Karp and Horace P. Flatt, 1990)

• Measure degree of code parallelization, by determining serial fraction
through experimentation

• Rearrange Amdahl‘s law for sequential portion

• Allows computation of empirical sequential portion, based on
measurements of execution time, without code inspection

4

SpeedN = S + P
N = S + 1−S

N

S =
SpeedN− 1

N

1− 1
N

ParProg | Algorithms PT 2011

Distributed Algorithms [Lynch]

• Originally only for concurrent algorithms across geographically
distributed processors

• Attributes

• IPC method (shared memory, point-to-point, broadcast, RPC)

• Timing model (synchronous, partially synchronous, asynchronous)

• Fault model

• Problem domain

• Have to deal with uncertainties

• Unknown number of processors, unknown network topology, inputs at
different locations, non-synchronized code execution, processor
nondeterminism, uncertain message delivery times, unknown message
ordering, processor and communication failures

5

ParProg | Algorithms PT 2011

Designing Parallel Algorithms [Breshears]

• Parallel solution must keep sequential consistency property

• „Mentally simulate“ the execution of parallel streams on suspected parts of the
sequential application

• Amount of computation per parallel task must offset the overhead that is always
introduced by moving from serial to parallel code

• Granularity: Amount of computation done before synchronization is needed

• Fine-grained granularity overhead vs.
coarse-grained granularity concurrency

• Iterative approach of finding the right granularity

• Decision might be only correct only for the execution host under test

• Execution order dependency vs. data dependency

6

ParProg | Algorithms PT 2011

Designing Parallel Algorithms [Foster]
• Translate problem specification into an algorithm achieving concurrency,

scalability, and locality

• Best parallel solution typically differs massively from the sequential version

• Four distinct stages of a methodological approach

• Search for concurrency and scalability:

• 1) Partitioning - decompose computation and data into small tasks

• 2) Communication - define necessary coordination of task execution

• Search for locality and other performance-related issues:

• 3) Agglomeration - consider performance and implementation costs

• 4) Mapping - maximize processor utilization, minimize communication

• Might require backtracking or parallel investigation of steps
7

ParProg | Algorithms PT 2011

Partitioning Step

• Expose opportunities for parallel execution - fine-grained decomposition

• Good partition keeps computation and data together

• First deal with data partitioning - domain / data decomposition

• First deal with computation partitioning - functional / task decomposition

• Complementary approaches, can lead to different algorithm versions

• Reveal hidden structures of the algorithm that have potential through
complementary views on the problem

• Avoid replication of either computation or data, can be revised later to reduce
communication overhead

• Step results in multiple candidate solutions

8

ParProg | Algorithms PT 2011

Partitioning - Decomposition Types
• Domain Decomposition

• Define small data fragments, then specify
computation for them

• Different phases of computation on the
same data are handled separately

• Rule of thumb: First focus on large or
frequently used data structures

• Functional Decomposition

• Split up computation into disjoint tasks,
ignore the data accessed for the moment

• Example: Producer / consumer

• With significant data overlap, domain
decomposition is more appropriate

9

ParProg | Algorithms PT 2011

Parallelization Strategies [Breshears]

• Loop parallelization

• Reason about code behavior when loop would be executed backwards -
strong indicator for independent iterations

• Produce at least as many tasks as there will be threads / cores

• But: Might be more effective to use only fraction of the cores (granularity)

• Computation part must pay-off with respect to parallelization overhead

• Avoid synchronization, since it adds up as overhead to serial execution time

• Patterns for data decomposition: by element, by row, by column group,
by block

• Influenced by surface-to-volume ratio

10

ParProg | Algorithms PT 2011

Partitioning - Checklist

• Checklist for resulting partitioning scheme

• Order of magnitude more tasks than processors ?
-> Keeps flexibility for next steps

• Avoidance of redundant computation and storage requirements ?
-> Scalability for large problem sizes

• Tasks of comparable size ?
-> Goal to allocate equal work to processors

• Does number of tasks scale with the problem size ?
-> Algorithm should be able to solve larger tasks with more processors

• Resolve bad partitioning by estimating performance behavior,
and eventually reformulating the problem

11

ParProg | Algorithms PT 2011

Communication Step

• Specify links between data consumers and data producers

• Specify kind and number of messages on these links

• Domain decomposition problems might have tricky communication
infrastructures, due to data dependencies

• Communication in functional decomposition problems can easily be modeled
from the data flow between the tasks

• Categorization of communication patterns

• Local communication (few neighbors) vs. global communication

• Structured communication (e.g. tree) vs. unstructured communication

• Static vs. dynamic communication structure

• Synchronous vs. asynchronous communication

12

ParProg | Algorithms PT 2011

Communication - Hints

• Distribute computation and communication, don‘t centralize algorithm

• Bad example: Central manager for parallel reduction

• Divide-and-conquer helps as mental model to identify concurrency

• Unstructured communication is hard to agglomerate, better avoid it

• Checklist for communication design

• Do all tasks perform the same amount of communication ?
-> Distribute or replicate communication hot spots

• Does each task performs only local communication ?

• Can communication happen concurrently ?

• Can computation happen concurrently ?

13

ParProg | Algorithms PT 2011

Ghost Cells

• Domain decomposition might lead to chunks that demand data
from each other for their computation

• Solution 1: Copy necessary portion of data (,ghost cells‘)

• Feasible if no synchronization is needed after update

• Data amount and frequency of update influences
resulting overhead and efficiency

• Additional memory consumption

• Solution 2: Access relevant data ,remotely‘ as needed

• Delays thread coordination until the data is really needed

• Correctness („old“ data vs. „new“ data) must be
considered on parallel progress

14

ParProg | Algorithms PT 2011

Agglomeration Step

• Algorithm so far is correct, but not specialized for some execution environment

• Revisit partitioning and communication decisions

• Agglomerate tasks for more efficient execution on some machine

• Replicate data and / or computation for efficiency reasons

• Resulting number of tasks can still be greater than the number of processors

• Three conflicting guiding decisions

• Reduce communication costs by coarser granularity of computation
and communication

• Preserve flexibility with respect to later mapping decisions

• Reduce software engineering costs (serial -> parallel version)

15

ParProg | Algorithms PT 2011

Agglomeration [Foster]

16

ParProg | Algorithms PT 2011

Agglomeration - Granularity vs. Flexibility

• Reduce communication costs by coarser granularity

• Sending less data

• Sending fewer messages (per-message initialization costs)

• Agglomerate tasks, especially if they cannot run concurrently anyway

• Reduces also task creation costs

• Replicate computation to avoid communication (helps also with reliability)

• Preserve flexibility

• Flexible large number of tasks still prerequisite for scalability

• Define granularity as compile-time or run-time parameter

17

ParProg | Algorithms PT 2011

Agglomeration - Checklist

• Communication costs reduced by increasing locality ?

• Does replicated computation outweighs its costs in all cases ?

• Does data replication restrict the range of problem sizes / processor counts ?

• Does the larger tasks still have similar computation / communication costs ?

• Does the larger tasks still act with sufficient concurrency ?

• Does the number of tasks still scale with the problem size ?

• How much can the task count decrease, without disturbing load balancing,
scalability, or engineering costs ?

• Is the transition to parallel code worth the engineering costs ?

18

ParProg | Algorithms PT 2011

Mapping Step

• Only relevant for distributed systems, since shared memory systems typically
perform automatic task scheduling

• Minimize execution time by

• Place concurrent tasks on different nodes

• Place tasks with heavy communication on the same node

• Conflicting strategies, additionally restricted by resource limits

• In general, NP-complete bin packing problem

• Set of sophisticated (dynamic) heuristics for load balancing

• Preference for local algorithms that do not need global scheduling state

19

ParProg | Algorithms PT 2011

Surface-To-Volume Effect [Foster, Breshears]

• Communication requirements of a task are proportional to the surface of the
data part it operates upon - amount of ,borders‘ on the data

• Computational requirements of a task are proportional to the volume of the
data part it operates upon - granularity of decomposition

• Communication / computation ratio
decreases (good) for increasing data size
per task

• Result: Better to increase granularity
by agglomerating tasks in all dimensions

• For given volume (computation),
the surface area (communication)
then goes down

20

(C) nicerweb.com

ParProg | Algorithms PT 2011

Surface-to-Volume Effect [Foster]

21

• Computation on 8x8 grid

• (a): 64 tasks, one point each

• 64x4=256 communications

• 256 data values are
transferred

• (b): 4 tasks, 16 points each

• 4x4=16 communications

• 16x4=64 data values are
transferred

ParProg | Algorithms PT 2011

Patterns for Parallel Programming [Mattson]

• Categorization of general parallelization concepts as linear hierarchy

• Finding Concurrency Design Space - task / data decomposition, task
grouping and ordering due to data flow dependencies, design evaluation

• Identify and analyze exploitable concurrency

• Algorithm Structure Design Space - task parallelism, divide and conquer,
geometric decomposition, recursive data, pipeline, event-based coordination

• Mapping of concurrent design elements to units of execution

• Supporting Structures Design Space - SPMD, master / worker,
loop parallelism, fork / join, shared data, shared queue, distributed array

• Program structures and data structures used for code creation

• Implementation Mechanisms Design Space - threads, processes,
synchronization, communication

22

ParProg | Algorithms PT 2011

Data Decomposition [Mattson]

• Good strategy if ...

• ... most computation is organized around the manipulation of a large data
structure

• ... similar operations are applied to different parts of the data structure

• Data decomposition is often driven by needs from task decomposition

• Array-based computation (row, column, block), recursive structures

• In a good data decomposition, dependencies scale at lower dimension than
the computational effort for each chunk

• Example: Matrix multiplication

• C=A*B - decompose C into row blocks,
requires full B, but only the corresponding A row block

23

(C
) W

ik
ip

ed
ia

ParProg | Algorithms PT 2011

Task Grouping [Mattson]

• Consider constraints for task groups, not for single items

• Temporal dependency - Data flow from group A to group B necessary

• Semantics - Group members have to run at the same time (fork / join)

• Independent task groups - Clear identification for better scheduling

• Finding task groups, based on abstract constraints

• Tasks that correspond to a high-level operation naturally group together

• If tasks share a constraint (e.g. data), keep them as distinct group

• Merge groups with same constraints

24

ParProg | Algorithms PT 2011

Data Sharing [Mattson]

• In addition to task-local data, central dependency to shared data exists

• Tasks might also need other tasks data, global shared read does not scale

• Analyze shared data according to its class

• Read-Only: no protection overhead necessary

• Effectively-local: data partitioned into independent sub sets, no locking

• Read-write: global behavior must comply to a consistency model

• Accumulate: Each task has local copy, final accumulation to one result

• Multiple-read / single-write: Data decomposition problems

• Define abstract type with according operations

• Solve by one-time-execution, non-interfering operations, reader / writer

25

ParProg | Algorithms PT 2011

Algorithm Design Evaluation [Mattson]

• Minimal consideration of suitability for target platform

• Number of processing elements and data sharing amongst them

• System implications on physical vs. logical cores

• Overhead for technical realization of dependency management (e.g. MPI)

• Flexibility criteria

• Flexible number of decomposed tasks supported ?

• Task definition independent from scheduling strategy ?

• Can size and number of chunks be parameterized ?

• Are boundary cases handled correctly ?

26

ParProg | Algorithms PT 2011

Algorithm Structure Design Space [Mattson]

• Organize by tasks

• Linear -> Task Parallelism

• Recursive -> Divide and Conquer (e.g. Merge Sort)

• Organize by Data Decomposition

• Linear -> Geometric decomposition

• Recursive -> Recursive Data

• Organize by Flow of Data

• Regular -> Pipeline

• Irregular -> Event-Based Coordination

27

ParProg | Algorithms PT 2011

Supporting Structures [Mattson]

• Program structures

• Single-program-multiple-data (SPMB)

• Master / worker

• Loop parallelism

• Fork / Join

• Data structures

• Shared data

• Shared queue

• Distributed array

28

ParProg | Algorithms PT 2011

What‘s Not Parallel [Breshears]

• Algorithms with state that cannot be handled through parallel tasks (e.g. I/O)

• Recurrence relations - each loop run is a function of the previous one

• Example: Fibonacci

• Reduction - take arrays of values and reduce them to a single value

• For associative and commutative operators, parallelization is possible

• Loop-carried dependency - use results of previous iterations in loop body

for (n=0; n<=N; ++n) {
 opt[n] = Sn;
 Sn *= 1.1; }

29

ParProg | Algorithms PT 2011

Parallel Algorithms and Design Patterns

• Vast body of knowledge in books and scientific publications

• Typically discussion based on abstract machine model (e.g. PRAM),
to allow theoretical complexity analysis

• Rule of thumb: Somebody else is smarter than you - reuse !!

• Jaja, Joseph: An introduction to parallel algorithms. Redwood City, CA,
USA : Addison Wesley Longman Publishing Co., Inc., 1992. , 0-201-54856-9

• Herlihy, Maurice; Shavit, Nir: The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008. , 978-0123705914

• ParaPLoP - Workshop on Parallel Programming Patterns

• ,Our Pattern Language‘ (http://parlab.eecs.berkeley.edu/wiki/patterns/)

• Programming language support libraries

30

http://parlab.eecs.berkeley.edu/wiki/patterns/
http://parlab.eecs.berkeley.edu/wiki/patterns/

ParProg | Algorithms PT 2011

Parallel Sum [Breshears]

• Parallel sum works with every commutative and associative operation

• Addition, multiplication, maximum, minimum,
some logical operations, some set operations (e.g. union of sets)

• Already supported by OpenMP reduction operation

• Inverted binary tree approach - Leaf nodes correspond to vector elements

• Each addition per node is independent within the same tree level

• In-place variant:

31

ParProg | Algorithms PT 2011

Parallel Sorting - Bubblesort [Breshears]

• Data decomposition

• Execution order and data
dependencies due to
compare-exchange approach

• Task decomposition

• Independent outer loop runs,
while data still overlaps
-> wavefront approach

• Delayed start of threads, by
blocking regions of the data
space per thread

32

void BubbleSort(int *A, int N) {
 int i,j,temp;
 for(i=N-1; i>0; i--) {
 for(j=0; j<i;j++) {
 if (A[j] > A[j+1]) {
 temp=A[j]; A[j]=A[j+1]; A[j+1]=temp;
}}}}

void LinearSearch (int *A, int N,
 int key,
 int *position) {
 int i;
 *position=-1;
#pragma omp parallel for
 for(i=0; i<N; i++) {
 if (A[i]==key) {
 *position=i;
}}}

ParProg | Algorithms PT 2011

Searching [Breshears]

• Search parallelization

• Divide into non-overlapping chunks for data
parallelism

• Finding the smallest key index when duplicates
are allowed

• No issue with serial version

• Parallel version needs local result per task,
and reduction step afterwards

• Global flag needed for signaling result
availability to other parallel task
-> granularity vs. overhead ?

33

void BinarySearch(int *A, int lo,
 int hi, int key,
 int *position) {
 int mid;
 *position = -1;
 while (lo <= hi) {
 mid=(lo+hi)/2;
 if (A[mid] > key)
 hi=mid-1;
 else if (A[mid] < key)
 lo=mid+1;
 else {
 *position=mid;
 break;
}}}

ParProg | Algorithms PT 2011

Parallel Graph Algorithms [Breshears]

• Typical representation of a graph as
adjacency matrix (row and columns
represent node ID‘s, matrix value
represents edge weight)

• Depth search - visit adjacent nodes,
starting with the most-left unvisited leaf

• Check row-by-row in the adjacency
matrix

• Visiting a node typically represents
some computation
(e.g. labeling,
check for winning / losing position)

• Serial recursive solution

34

int * visited;
int **adj;
int V; // # nodes in graph

void visit(int l) {
 int i;
 visited[k]=1;
 // some computation with node
 for(i=0; i<V; i++) {
 if(adj[k][j])
 if(!visited[i]) visit(i);
}}

void dfsearch() {
 int k;
 for(k=0;k<V;k++) visited[k]=0;
 for(k=0;k<V;k++)
 if (!visited[k]) visit(k);
}

ParProg | Algorithms PT 2011

Parallel Graph Algorithms [Breshears]

• Recursive serial algorithms are tough to
parallelize, so switch to iterative solution

• Concurrent solution

• Task decomposition, model computation
per unvisited node separately

• visited array and stack become
shared data structure

• Reader / writer lock for visited array
would be appropriate, but no
performance advantage due to small
critical region (no reader overlap)

• Other extreme would be one lock per
array item - state / speed tradeoff

35

int * visited;
int **adj;
int V;
stack S;

void dfsearch() {
 int i,k;
 for(k=0; k<V; k++) visited[k]=0;
 for(k=V-1; k>=0; k--) {
 push(S, k); }
 while (size(S)>0) {
 k=pop(S);
 if (!visited[k]) {
 visited[k]=1;
 // perform node operation
 for(i=V-1; i>=0; i--)
 if(adj[k][i]) push(S,i);
}}}

ParProg | Algorithms PT 2011

Parallel Graph Algorithms [Breshears]

36

long *visited;
long gCount=0;
stack S;

unsigned __stdcall parwindfsearch(void *pArg) {
 int i,k,willVisit=0;
 while (1) {
 WaitForSingleObject(hSem, INFINITE); // check if there are nodes on the stack
 if(gCount==V) break; // termination if all nodes are checked
 k=pop(S);
 if (!InterlockedCompareExchange(&visited[k], 1L, 0L)) { // grab node safely
 willVisit=1;
 InterlockedIncrement(&gCount); }
 if (willVisit) { // check a complete row in this thread
 // perform node computation
 for(i=V-1;i<=0;i--) {
 int semCount=0; // use variable semCount to update
 if (adj[k][i]) { // number of stack nodes only ones
 push(S, i);
 semCount++; }
 if (semCount) ReleaseSemaphore(hSem, semCount, NULL); }
 willVisit=0;
 if (gCount==V) SetEvent(tSignal); // trigger external ReleaseSemaphore,
 }} // in case all threads wait on an
 return 0;} // empty stack

