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Why Parallel ?

• Amdahl‘s Law (1967)

• P is the portion of the program that benefits from parallelization

• Maximum speedup by N processors:

• Maximum speedup tends to 1 / (1-P)

• Parallelism only reasonable with small N or small (1-P)

• Gustafson‘s Law

• Let p be a measure of problem size, S(p) the time for the sequential part

• Maximum speedup by N processors:

• When serial function part shrinks with increasing p, speedup grows as N
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s = (1−P )+P
(1−P )+ P

N

S(p) + N ∗ (1− S(p))
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Amdahl's Law
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Why Parallel ?

• Karp-Flatt-Metric (Alan H. Karp and Horace P. Flatt, 1990)

• Measure degree of code parallelization, by determining serial fraction 
through experimentation

• Rearrange Amdahl‘s law for sequential portion

• Allows computation of empirical sequential portion, based on 
measurements of execution time, without code inspection
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Distributed Algorithms [Lynch]

• Originally only for concurrent algorithms across geographically 
distributed processors

• Attributes

• IPC method (shared memory, point-to-point, broadcast, RPC)

• Timing model (synchronous, partially synchronous, asynchronous)

• Fault model

• Problem domain

• Have to deal with uncertainties

• Unknown number of processors, unknown network topology, inputs at 
different locations, non-synchronized code execution, processor 
nondeterminism, uncertain message delivery times, unknown message 
ordering, processor and communication failures

5



ParProg | Algorithms PT 2011

Designing Parallel Algorithms [Breshears]

• Parallel solution must keep sequential consistency property

• „Mentally simulate“ the execution of parallel streams on suspected parts of the 
sequential application

• Amount of computation per parallel task must offset the overhead that is always 
introduced by moving from serial to parallel code

• Granularity: Amount of computation done before synchronization is needed

• Fine-grained granularity overhead vs. 
coarse-grained granularity concurrency

• Iterative approach of finding the right granularity

• Decision might be only correct only for the execution host under test

• Execution order dependency vs. data dependency
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Designing Parallel Algorithms [Foster]
• Translate problem specification into an algorithm achieving concurrency, 

scalability, and locality

• Best parallel solution typically differs massively from the sequential version

• Four distinct stages of a methodological approach

• Search for concurrency and scalability:

• 1) Partitioning - decompose computation and data into small tasks

• 2) Communication - define necessary coordination of task execution

• Search for locality and other performance-related issues:

• 3) Agglomeration - consider performance and implementation costs

• 4) Mapping - maximize processor utilization, minimize communication

• Might require backtracking or parallel investigation of steps
7
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Partitioning Step

• Expose opportunities for parallel execution - fine-grained decomposition

• Good partition keeps computation and data together

• First deal with data partitioning - domain / data decomposition

• First deal with computation partitioning - functional / task decomposition

• Complementary approaches, can lead to different algorithm versions

• Reveal hidden structures of the algorithm that have potential through 
complementary views on the problem

• Avoid replication of either computation or data, can be revised later to reduce 
communication overhead

• Step results in multiple candidate solutions

8
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Partitioning - Decomposition Types
• Domain Decomposition

• Define small data fragments, then specify 
computation for them

• Different phases of computation on the 
same data are handled separately

• Rule of thumb: First focus on large or 
frequently used data structures

• Functional Decomposition

• Split up computation into disjoint tasks, 
ignore the data accessed for the moment

• Example: Producer / consumer

• With significant data overlap, domain 
decomposition is more appropriate
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Parallelization Strategies [Breshears]

• Loop parallelization

• Reason about code behavior when loop would be executed backwards - 
strong indicator for independent iterations

• Produce at least as many tasks as there will be threads / cores

• But: Might be more effective to use only fraction of the cores (granularity)  

• Computation part must pay-off with respect to parallelization overhead

• Avoid synchronization, since it adds up as overhead to serial execution time

• Patterns for data decomposition: by element, by row, by column group, 
by block

• Influenced by surface-to-volume ratio
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Partitioning - Checklist

• Checklist for resulting partitioning scheme

• Order of magnitude more tasks than processors ? 
-> Keeps flexibility for next steps

• Avoidance of redundant computation and storage requirements ?
-> Scalability for large problem sizes

• Tasks of comparable size ?
-> Goal to allocate equal work to processors

• Does number of tasks scale with the problem size ?
-> Algorithm should be able to solve larger tasks with more processors

• Resolve bad partitioning by estimating performance behavior, 
and eventually reformulating the problem
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Communication Step

• Specify links between data consumers and data producers

• Specify kind and number of messages on these links

• Domain decomposition problems might have tricky communication 
infrastructures, due to data dependencies

• Communication in functional decomposition problems can easily be modeled 
from the data flow between the tasks

• Categorization of communication patterns

• Local communication (few neighbors) vs. global communication

• Structured communication (e.g. tree) vs. unstructured communication

• Static vs. dynamic communication structure

• Synchronous vs. asynchronous communication
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Communication - Hints

• Distribute computation and communication, don‘t centralize algorithm

• Bad example: Central manager for parallel reduction

• Divide-and-conquer helps as mental model to identify concurrency

• Unstructured communication is hard to agglomerate, better avoid it

• Checklist for communication design

• Do all tasks perform the same amount of communication ?
-> Distribute or replicate communication hot spots

• Does each task performs only local communication ?

• Can communication happen concurrently ?

• Can computation happen concurrently ?

13
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Ghost Cells

• Domain decomposition might lead to chunks that demand data 
from each other for their computation

• Solution 1: Copy necessary portion of data (,ghost cells‘)

• Feasible if no synchronization is needed after update

• Data amount and frequency of update influences 
resulting overhead and efficiency

• Additional memory consumption

• Solution 2: Access relevant data ,remotely‘ as needed

• Delays thread coordination until the data is really needed

• Correctness („old“ data vs. „new“ data) must be 
considered on parallel progress
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Agglomeration Step

• Algorithm so far is correct, but not specialized for some execution environment

• Revisit partitioning and communication decisions 

• Agglomerate tasks for more efficient execution on some machine

• Replicate data and / or computation for efficiency reasons

• Resulting number of tasks can still be greater than the number of processors

• Three conflicting guiding decisions

• Reduce communication costs by coarser granularity of computation 
and communication 

• Preserve flexibility with respect to later mapping decisions

• Reduce software engineering costs (serial -> parallel version)
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Agglomeration [Foster]
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Agglomeration - Granularity vs. Flexibility

• Reduce communication costs by coarser granularity

• Sending less data

• Sending fewer messages (per-message initialization costs)

• Agglomerate tasks, especially if they cannot run concurrently anyway

• Reduces also task creation costs

• Replicate computation to avoid communication (helps also with reliability)

• Preserve flexibility

• Flexible large number of tasks still prerequisite for scalability

• Define granularity as compile-time or run-time parameter
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Agglomeration - Checklist

• Communication costs reduced by increasing locality ?

• Does replicated computation outweighs its costs in all cases ?

• Does data replication restrict the range of problem sizes / processor counts ?

• Does the larger tasks still have similar computation / communication costs ?

• Does the larger tasks still act with sufficient concurrency ?

• Does the number of tasks still scale with the problem size ?

• How much can the task count decrease, without disturbing load balancing, 
scalability, or engineering costs ?

• Is the transition to parallel code worth the engineering costs ?
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Mapping Step

• Only relevant for distributed systems, since shared memory systems typically 
perform automatic task scheduling

• Minimize execution time by

• Place concurrent tasks on different nodes

• Place tasks with heavy communication on the same node 

• Conflicting strategies, additionally restricted by resource limits

• In general, NP-complete bin packing problem

• Set of sophisticated (dynamic) heuristics for load balancing

• Preference for local algorithms that do not need global scheduling state

19
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Surface-To-Volume Effect [Foster, Breshears]

• Communication requirements of a task are proportional to the surface of the 
data part it operates upon - amount of ,borders‘ on the data

• Computational requirements of a task are proportional to the volume of the 
data part it operates upon - granularity of decomposition

• Communication / computation ratio 
decreases (good) for increasing data size 
per task

• Result: Better to increase granularity 
by agglomerating tasks in all dimensions

• For given volume (computation), 
the surface area (communication) 
then goes down

20
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Surface-to-Volume Effect [Foster]
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• Computation on 8x8 grid

• (a): 64 tasks, one point each

• 64x4=256 communications

• 256 data values are 
transferred

• (b): 4 tasks, 16 points each

• 4x4=16 communications

• 16x4=64 data values are 
transferred
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Patterns for Parallel Programming [Mattson]

• Categorization of general parallelization concepts as linear hierarchy

• Finding Concurrency Design Space - task / data decomposition, task 
grouping and ordering due to data flow dependencies, design evaluation

• Identify and analyze exploitable concurrency

• Algorithm Structure Design Space - task parallelism, divide and conquer, 
geometric decomposition, recursive data, pipeline, event-based coordination

• Mapping of concurrent design elements to units of execution

• Supporting Structures Design Space - SPMD, master / worker, 
loop parallelism, fork / join, shared data, shared queue, distributed array

• Program structures and data structures used for code creation

• Implementation Mechanisms Design Space - threads, processes, 
synchronization, communication 
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Data Decomposition [Mattson]

• Good strategy if ...

• ... most computation is organized around the manipulation of a large data 
structure

• ... similar operations are applied to different parts of the data structure

• Data decomposition is often driven by needs from task decomposition

• Array-based computation (row, column, block), recursive structures

• In a good data decomposition, dependencies scale at lower dimension than 
the computational effort for each chunk

• Example: Matrix multiplication

• C=A*B - decompose C into row blocks, 
requires full B, but only the corresponding A row block
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Task Grouping [Mattson]

• Consider constraints for task groups, not for single items

• Temporal dependency - Data flow from group A to group B necessary

• Semantics - Group members have to run at the same time (fork / join)

• Independent task groups - Clear identification for better scheduling

• Finding task groups, based on abstract constraints

• Tasks that correspond to a high-level operation naturally group together

• If tasks share a constraint (e.g. data), keep them as distinct group

• Merge groups with same constraints

24
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Data Sharing [Mattson]

• In addition to task-local data, central dependency to shared data exists

• Tasks might also need other tasks data, global shared read does not scale

• Analyze shared data according to its class

• Read-Only: no protection overhead necessary

• Effectively-local: data partitioned into independent sub sets, no locking

• Read-write: global behavior must comply to a consistency model

• Accumulate: Each task has local copy, final accumulation to one result

• Multiple-read / single-write: Data decomposition problems

• Define abstract type with according operations

• Solve by one-time-execution, non-interfering operations, reader / writer 
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Algorithm Design Evaluation [Mattson]

• Minimal consideration of suitability for target platform

• Number of processing elements and data sharing amongst them

• System implications on physical vs. logical cores

• Overhead for technical realization of dependency management (e.g. MPI)

• Flexibility criteria

• Flexible number of decomposed tasks supported ?

• Task definition independent from scheduling strategy ?

• Can size and number of chunks be parameterized ?

• Are boundary cases handled correctly ?
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Algorithm Structure Design Space [Mattson]

• Organize by tasks

• Linear -> Task Parallelism

• Recursive -> Divide and Conquer (e.g. Merge Sort)

• Organize by Data Decomposition

• Linear -> Geometric decomposition

• Recursive -> Recursive Data

• Organize by Flow of Data

• Regular -> Pipeline

• Irregular -> Event-Based Coordination

27
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Supporting Structures [Mattson]

• Program structures

• Single-program-multiple-data (SPMB)

• Master / worker

• Loop parallelism

• Fork / Join

• Data structures

• Shared data

• Shared queue

• Distributed array

28
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What‘s Not Parallel [Breshears]

• Algorithms with state that cannot be handled through parallel tasks (e.g. I/O)

• Recurrence relations - each loop run is a function of the previous one

• Example: Fibonacci

• Reduction - take arrays of values and reduce them to a single value

• For associative and commutative operators, parallelization is possible

• Loop-carried dependency - use results of previous iterations in loop body

for (n=0; n<=N; ++n) {
    opt[n] = Sn;
    Sn *= 1.1; }

29
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Parallel Algorithms and Design Patterns

• Vast body of knowledge in books and scientific publications

• Typically discussion based on abstract machine model (e.g. PRAM), 
to allow theoretical complexity analysis

• Rule of thumb: Somebody else is smarter than you - reuse !!

• Jaja, Joseph: An introduction to parallel algorithms. Redwood City, CA, 
USA : Addison Wesley Longman Publishing Co., Inc., 1992. , 0-201-54856-9

• Herlihy, Maurice; Shavit, Nir: The Art of Multiprocessor Programming. 
Morgan Kaufmann, 2008. , 978-0123705914

• ParaPLoP - Workshop on Parallel Programming Patterns

• ,Our Pattern Language‘ (http://parlab.eecs.berkeley.edu/wiki/patterns/)

• Programming language support libraries

30
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Parallel Sum [Breshears]

• Parallel sum works with every commutative and associative operation

• Addition, multiplication, maximum, minimum, 
some logical operations, some set operations (e.g. union of sets)

• Already supported by OpenMP reduction operation

• Inverted binary tree approach - Leaf nodes correspond to vector elements

• Each addition per node is independent within the same tree level 

• In-place variant:
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Parallel Sorting - Bubblesort [Breshears]

• Data decomposition

• Execution order and data 
dependencies due to 
compare-exchange approach

• Task decomposition

• Independent outer loop runs, 
while data still overlaps
-> wavefront approach

• Delayed start of threads, by 
blocking regions of the data 
space per thread

32

void BubbleSort(int *A, int N) {
  int i,j,temp;
  for(i=N-1; i>0; i--) {
    for(j=0; j<i;j++) {
      if (A[j] > A[j+1]) {
        temp=A[j]; A[j]=A[j+1]; A[j+1]=temp;
}}}}



void LinearSearch (int *A, int N, 
                   int key, 
                   int *position) {
  int i;
  *position=-1;
#pragma omp parallel for
  for(i=0; i<N; i++) {
   if (A[i]==key) {
      *position=i;
}}}
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Searching [Breshears]

• Search parallelization

• Divide into non-overlapping chunks for data 
parallelism

• Finding the smallest key index when duplicates 
are allowed

• No issue with serial version

• Parallel version needs local result per task, 
and reduction step afterwards

• Global flag needed for signaling result 
availability to other parallel task 
-> granularity vs. overhead ?

33

void BinarySearch( int *A, int lo, 
                   int hi, int key, 
                   int *position) {
  int mid;
  *position = -1;
  while (lo <= hi) {
    mid=(lo+hi)/2;
    if (A[mid] > key)
      hi=mid-1;
    else if (A[mid] < key)
      lo=mid+1;
    else {
      *position=mid;
      break;
}}}
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Parallel Graph Algorithms [Breshears]

• Typical representation of a graph as 
adjacency matrix (row and columns 
represent node ID‘s, matrix value 
represents edge weight)

• Depth search - visit adjacent nodes, 
starting with the most-left unvisited leaf 

• Check row-by-row in the adjacency 
matrix

• Visiting a node typically represents 
some computation 
(e.g. labeling, 
check for winning / losing position)

• Serial recursive solution

34

int * visited;
int **adj;
int V;         // # nodes in graph

void visit(int l) {
  int i;
  visited[k]=1;
  // some computation with node
  for(i=0; i<V; i++) {
    if(adj[k][j])
      if(!visited[i]) visit(i);
}}

void dfsearch() {
  int k;
  for(k=0;k<V;k++) visited[k]=0;
  for(k=0;k<V;k++)
    if (!visited[k]) visit(k);
}
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Parallel Graph Algorithms [Breshears]

• Recursive serial algorithms are tough to 
parallelize, so switch to iterative solution

• Concurrent solution

• Task decomposition, model computation 
per unvisited node separately

• visited array and stack become 
shared data structure

• Reader / writer lock for visited array 
would be appropriate, but no 
performance advantage due to small 
critical region (no reader overlap)

• Other extreme would be one lock per 
array item - state / speed tradeoff

35

int * visited;
int **adj;
int V;
stack S;

void dfsearch() {
  int i,k;
  for(k=0; k<V; k++) visited[k]=0;
  for(k=V-1; k>=0; k--) {
    push(S, k); }
  while (size(S)>0) {
    k=pop(S);
    if (!visited[k]) {
      visited[k]=1;
      // perform node operation
      for(i=V-1; i>=0; i--)
        if(adj[k][i]) push(S,i);
}}}
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Parallel Graph Algorithms [Breshears]

36

long *visited;
long gCount=0;
stack S;

unsigned __stdcall parwindfsearch(void *pArg) {
  int i,k,willVisit=0;
  while (1) {
    WaitForSingleObject(hSem, INFINITE); // check if there are nodes on the stack
    if(gCount==V) break;                 // termination if all nodes are checked
    k=pop(S);
    if (!InterlockedCompareExchange(&visited[k], 1L, 0L)) {   // grab node safely
      willVisit=1;
      InterlockedIncrement(&gCount); }
    if (willVisit) {                     // check a complete row in this thread
      // perform node computation
      for(i=V-1;i<=0;i--) {
        int semCount=0;                  // use variable semCount to update 
        if (adj[k][i]) {                 // number of stack nodes only ones
          push(S, i);
          semCount++; }
        if (semCount) ReleaseSemaphore(hSem, semCount, NULL); }
      willVisit=0;
      if (gCount==V) SetEvent(tSignal);  // trigger external ReleaseSemaphore,
  }}                                     // in case all threads wait on an
  return 0;}                             // empty stack


