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Remote memory access:


■ remote wire delays / latency 
(RL)


■ Congestion on interconnect 
links (IC)
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Remote memory access:


■ Contention for memory 
controller
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Local memory access:


■ Contention for 
Shared Cache







DINO
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= Distributed Intensity – NUMA Online


Key motivation:


 Contention aware UMA algorythms not suitable for NUMA


 UMA algorythms aim to avoid contention on local cache 


 BUT disregard other factors (MC, IC, RL)


 Key novelty: eliminate superfluous thread migrations
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 Based on Distributed Intensity:


 Use miss-rate heuristics for detecting interfering threads


 place to other memory domain


 Migrate threads memory along with thread


 problem: miss-rates can signalize contention


 DINO does miss-rate classification 
and hence ignores small changes







DINO
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 spreads memory intensive threads across memory domains


 accordingly migrates the corresponding memory pages


domain: dom0 dom1 dom2 dom3


new_core: 0   1 2   3 4   5 6   7


new_class: D t D t d t d   d


new_processID: 0   1 4   0 0   0 3   2


new_threadID: 0   1 7   3 4   5 6   2


 Up to 50% better than DI


 20% better than default Linux Scheduler







■ DINO does not address workloads by data-sharing between threads or 
processes


Carrefour
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■ Page co-location
= re-locate physical page to same node as the thread accessing it


■ Page interleaving 
= evenly distributing pages across nodes (IC, MC)


■ Page replication
= placing copy of page on several memory nodes (MC, IC)
- synchronization costs


■ Thread clustering
= colocate threads that share data on same node


Carrefour - Mechanisms
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■ Step 1:


□ Decide whether to enable Carrefour


□ Only for applications that generate substantial memory traffic


□ Memory access rate (MAPTU)


Carrefour – Global Decisions
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■ Step 2:


□ Decide whether to use Replication


□ Enough RAM?


□ Avoid synchronization overhead (memory read ration > 95%)


Carrefour – Global Decisions
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■ Step 3:


□ Decide whether to use Interleaving


□ Memory controller imbalance > 35% ?


Carrefour – Global Decisions
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■ Step 4:


□ Decide whether to enable Co-location


□ For pages accessed by single node


□ Thread clustering


□ Local access rate slightly less than ideal?


■ Performance improvements up to 3.6 times


Carrefour – Global Decisions
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Instruction-Based Sampling (IBS) is a new profiling technique that provides 
rich, precise program performance information


Carrefour Implementation
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= threads exchanging roughly equal-sized pieces of data (partitions)


among themselves


■ Naive Shuffling:


□ For each thread i place data partition j on thread j
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Data Shuffling
- NUMA-awareness at an example
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Data Shuffling
- NUMA-awareness at an example
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■ Coordinated Shuffling


□ Coordinate bandwidth usage


□ Up to 3x as fast


□ Can speed up
join algorythm by 8%


■ Thread migration for threads with
small working sets


□ Can be up to 2x faster than
Data Shuffling
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Data Shuffling
- NUMA-awareness at an example
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Key performance factors (bottlenecks):


■ Data locality


■ Bandwidth limits


■ finding a balance between local and remote memory accesses


■ Different processor architectures require adaption of performance 
improvement strategies:


□ develop realistic models of the memory system that can guide operating 
system and compiler developers
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