

Scientific approaches to Thread and Data Placement

Fabian Eckert

NUMA Seminar

26.11. 2014
[1]

Agenda

1. Challenges of Thread and Data placement

2. DINO

3. Carrefour

4. Data Shuffling

5. Insights

Challenges of Thread and Data placement

Chart 3
[2]

[3]

Challenges of Thread and Data placement

Chart 4
[2]

Remote memory access:

■ remote wire delays / latency
(RL)

■ Congestion on interconnect
links (IC)

Challenges of Thread and Data placement

Chart 5

[3]

Remote memory access:

■ Contention for memory
controller

Challenges of Thread and Data placement

Chart 6

[3]

Local memory access:

■ Contention for
Shared Cache

DINO

Chart 7

= Distributed Intensity – NUMA Online

Key motivation:

 Contention aware UMA algorythms not suitable for NUMA

 UMA algorythms aim to avoid contention on local cache

 BUT disregard other factors (MC, IC, RL)

 Key novelty: eliminate superfluous thread migrations

DINO

Chart 8

 Based on Distributed Intensity:

 Use miss-rate heuristics for detecting interfering threads

 place to other memory domain

 Migrate threads memory along with thread

 problem: miss-rates can signalize contention

 DINO does miss-rate classification
and hence ignores small changes

DINO

Chart 9

 spreads memory intensive threads across memory domains

 accordingly migrates the corresponding memory pages

domain: dom0 dom1 dom2 dom3

new_core: 0 1 2 3 4 5 6 7

new_class: D t D t d t d d

new_processID: 0 1 4 0 0 0 3 2

new_threadID: 0 1 7 3 4 5 6 2

 Up to 50% better than DI

 20% better than default Linux Scheduler

■ DINO does not address workloads by data-sharing between threads or
processes

Carrefour

Chart 10

■ Page co-location
= re-locate physical page to same node as the thread accessing it

■ Page interleaving
= evenly distributing pages across nodes (IC, MC)

■ Page replication
= placing copy of page on several memory nodes (MC, IC)
- synchronization costs

■ Thread clustering
= colocate threads that share data on same node

Carrefour - Mechanisms

Chart 11

■ Step 1:

□ Decide whether to enable Carrefour

□ Only for applications that generate substantial memory traffic

□ Memory access rate (MAPTU)

Carrefour – Global Decisions

Chart 12

■ Step 2:

□ Decide whether to use Replication

□ Enough RAM?

□ Avoid synchronization overhead (memory read ration > 95%)

Carrefour – Global Decisions

Chart 13

■ Step 3:

□ Decide whether to use Interleaving

□ Memory controller imbalance > 35% ?

Carrefour – Global Decisions

Chart 14

■ Step 4:

□ Decide whether to enable Co-location

□ For pages accessed by single node

□ Thread clustering

□ Local access rate slightly less than ideal?

■ Performance improvements up to 3.6 times

Carrefour – Global Decisions

Chart 15

Instruction-Based Sampling (IBS) is a new profiling technique that provides
rich, precise program performance information

Carrefour Implementation

Chart 16

= threads exchanging roughly equal-sized pieces of data (partitions)

among themselves

■ Naive Shuffling:

□ For each thread i place data partition j on thread j

Chart 17

Data Shuffling
- NUMA-awareness at an example

Chart 18

Data Shuffling
- NUMA-awareness at an example

[4]

■ Coordinated Shuffling

□ Coordinate bandwidth usage

□ Up to 3x as fast

□ Can speed up
join algorythm by 8%

■ Thread migration for threads with
small working sets

□ Can be up to 2x faster than
Data Shuffling

Chart 19

Data Shuffling
- NUMA-awareness at an example

[9]

Key performance factors (bottlenecks):

■ Data locality

■ Bandwidth limits

■ finding a balance between local and remote memory accesses

■ Different processor architectures require adaption of performance
improvement strategies:

□ develop realistic models of the memory system that can guide operating
system and compiler developers

Chart 20

Insights

■ [1] (cc) picture from
https://www.flickr.com/photos/downhilldom1984/6045320051/in/photostream/

■ [2] Figure 1 in [5]

■ [3] Figure 2 in [5]

■ [4] Figure 3 and 4 of [7]

■ [5] A Case for NUMA-aware Contention Management on Multicore Systems by
Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, Alexandra Fedorova
at Simon Fraser University

■ [6] Traffic Management: A Holistic Approach to Memory Placement on NUMA Systems
by Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize,
Baptiste Lepers, Vivien Quema, Mark Roth at Simon Fraser University

■ [7] NUMA-aware algorithms: the case of data shuffling by Yinan Li†, Ippokratis Pandis,
Rene Mueller, Vijayshankar Raman, Guy Lohman

■ [8] Memory System Performance in a NUMA Multicore Multiprocessor (Zoltan Majo, T. R. Gross)

■ [9] Figure 5 of [7]

Chart 21

References

[2]

https://www.flickr.com/photos/downhilldom1984/6045320051/in/photostream/

Questions?

Fabian Eckert

NUMA Seminar

Thank you
for your attention!

Fabian Eckert

NUMA Seminar

