
NUMA-aware SURF
Patrick Schmidt, Christoph Sterz

 – Object detection in images.
 – Stitching images.
 – Description of images.

01

Speeded Up Robust Features

02 [Bränzel et al.]

03

SURF & NUMA
satellite images

03

Outline
 I. SURF
 Keypoint Extraction (our Focus):
 – Wavelet Responses
 – Approximation with Box-Filters
 – Octaves and Scales
 – Speeding up Filters with the Integral Image
 Keypoint Description:
 – Direction
 – Results
 Limitations

04

Outline
 II. SURF & NUMA
 Experiments:
 – Time Performance
 – Data Access Patterns
 Implementation Proposal:
 – Distributed Integral Image
 – Ghost Cells within the Integral Image
 Peformance Comparison:
 – Single Thread vs. Multi Thread vs. Ours
 Conclusion

05

06

Wavelet Responses

Lyy Lxx Lxy

 – SURF tracks edges (≙gradient changes)
 – gradient changes have high derivations
 in the image
 – wavelets are used to calculate those
 derivations

Σ
i,j

Image[i, j] .Lyy[i, j] ryy =

07

Approximation with Box-Filters
 – computation of wavelets is expensive
 – let’s approximate them with box filters

 – actually we want to compute the determinant of the Hessian
 – with approximation we have to account for a bias w ≈ 0.9

Dyy Dxx Dxy

H = []rxx

ryy

rxy
ryx

 det(H) ≈ Dxx Dyy – (w Dxy)2 ..

Octaves and Scales
 – objects can be differently sized in the image
 → let’s use different filter sizes with different step sizes
 – each area is analyzed with multiple octaves and scales

scales octaves application
08

09

Speeding up Filters with the Integral Image
performance issue:

Σ
i,j

Image[i, j] .Dyy[i, j] ryy =

addition:
per position
 × scales
 × octaves
 × filter size
 × 3 box filtersparallelsurf 0.96, naïve:

1 MByte greyscale image, just first octave
→ 7.05 GByte memaccess

10

x, y

Σ

A

B

C

D

integral image integral image

Σ()= A – B – C + D (4 mem accesses)
first octave ~ 70MB memaccess

The Integral Image
»Our Rescue« – Reducing memory acc. by 2 orders of magnitude

[Viola&Jones]

11

Computing the Integral Image
(in parallel)—Addition is commutative, associative!

embarassingly parallel
cache-friendly

 embarassingly parallel
 not cache-friendly (on CPUs)

12

Excursus: GPU Memory Caching {

} thanks to HPI3D

L2

L1

VRAM

image

———

(compute)
shader

texture
cache
unit

caching
infos s,t ()

cache content, optimized
for filter operation
and compute unit

13

Back to CPU Caching: Box Filters

[TERRIBERRY et al.]

 – it is good to compute all three filters in one pass!
 → improves cache hits in one line

32 memory accesses
10 cache lines hit

(assuming small filter)

 – implementations exist that try to also overlay access points of
 various filter scales!

Dyy Dxx Dxx

14

Last Step: Feature Description

 – just features with det(H) > threshold are processed further!
 – the strongest direction is retrieved, and rotated filters are computed
 – additionally, n×n sub-directions are obtained and stored as descriptor

[images: cs.wahsington.edu, docs.opencv.org]

15

Results: Image Stitching

[images: TERRIBERRY et al.]

+

+

16

Qualitative Strengths & Limitations
re

pe
at

ab
ili

ty
 %

viewpoint angle

100

80

60

40

20

020 25 30 35 40 45 50 55 60

(images simplified) [Bay et al. (SURF)]

robustness (rotation) robustness (resolution)robustness (scale)

re
pe

at
ab

ili
ty

 %

scale change

100

80

60

40

20

0
1 31.5 2 2.5

re
pe

at
ab

ili
ty

 %

resolution change

100

80

60

40

20

0
2 63 4 5

 – SURF’s quality remains slightly inferior to SIFT
 – rotational errors stem partly from pixel-grid combined with rotation

Part II: SURF & NUMA

1 2 3 4 5 6 7 8 9 Integral Image
Detect Filters
Make Desc.
Assign Ori.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 2410

20

15

10

5

#threads

time(sec)

17

Experiments: Time
 – we analyzed the implementation parallelsurf 0.96 as a base (OpenMP)

18

Experiments: Time (Speedup)

1 2 3 4 5 6 7 8 9
Integral Image

Detect filters

make Descriptors

assign Orientations

10 11 12 13 14 15 16 17 18 19 20 21 22 23 2410

1

2

3

4

5

6

7

8

#threads

speedup

19

Idea: Calculate many Integral Images
 – vertical is smarter if image is large (if biggest filter < stripe)

II1 II2

II3 II4

worst case: 4acc → 16acc worst case: 4acc → 8acc, ‘partners’

II1 II3II2 II4

20

Experiments: Memory Access
 – we recorded the memory access pattern of first step (pre-thresholding)

512×512, 1 part 512×512, 4 parts
(images visually enhanced)

21

22

Implementation: Algorithm & Locality

//Collect
FOR scales
 ALLOCATE scale_images
 FOR octaves
 #omp parallel for
 FOR filters
 FOR RANGE y
 FOR RANGE x
 scale_images[scale] ← Filter(x,y)
//Detect
FOR scales
 DetectFeatures(scale_images)

 – Example: Detection

23

Implementation1: memcpy Integral-Images to all Nodes
 – to test the performance of memory accesses, we consider
 the best scenario → every node does just local accesses

_ii2 = (double**) numa_alloc_onnode(
 width*height*sizeof(double),1);

if(!_ii2)
{
 std::cout << "[NUMA] Could not allocate Memory"
 << std::endl;
return;

}
memcpy(_ii2, _ii, iWidth*iHeight*sizeof(double));

24

Implementation1: Memory Dispatch
 – we once memecpy the integral image to other node(s)
 – dispatch accesses based on thread locality
#include <utmpx.h>
#include <numa.h>

inline double ** getIntegralImage()
{
int cpuId = sched_getcpu();
int nodeId = numa_node_of_cpu(cpuId);
if(nodeId == 1) return _ii2;
return _ii;
}

slowdown!
time 10×

24 threads

25

Side Note: Measuring Dispatch cost

auto t1 = std::chrono::high_resolution_clock::now();
…
auto t2 = std::chrono::high_resolution_clock::now();
 std::cout << "Detect:"

<< std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count()
<< " ns"
<<std::endl;

 – using std::chrono::high_resolution_clock

 → 79.96 µs
– called ~ 100m times. Extreme Overhead… not feasable

buffered:
1.05×

24 threads

26

OMP PROC_BIND
 – disallowing movement of threads between processors

 → might ensure more locality

significant speedup
of 5%

24 threads

27

Conclusion & Future Work
 – SURF is the art of approximation applied to
 a mathematically complex task
 – NUMA requires data locality, SURF allows for it
 – parallelsurf does not respect locality at all

 – parallelsurf already speeds up ~OK on NUMA machines using OMP
 – memory access patterns super-interesting for further research
 – micro-optimising OMP yields ~5% speedup
 → for further speedup full restructuring of code is needed!
 Our Conclusion: Location, Location, Location!

Thank you!

28 Patrick Schmidt, Christoph Sterz

Dyy Dxx Dxy
A

B

C

D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2410

1

2

3

4

5

6

7

8

II1 II3II2 II4

1 2 3

4 5

SOURCES
[SURF paper] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool,
"SURF: Speeded Up Robust Features", Computer Vision and Image
Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008

[Viola & Jones] Viola, P.; Jones, M., "Rapid object detection using a
boosted cascade of simple features," Computer Vision and Pattern
Recognition, 2001. CVPR 2001.

[Bränzel et al.] Alan Bränzel, GravitySpace: tracking users and their
poses in a smart room using a pressure-sensing floor. 2013.
Proceedings of the SIGCHI(CHI '13).

[Terriberry et al.] Presentation: GPU Accelerating Speeded-Up Robust
Features at Argon ST
http://people.xiph.org/~tterribe/pubs/gpusurf-talk.pdf, visited 02.02.15

[OpenMP] OpenMP Architecture Review Board, "OpenMP Application
Program Interface, Version 3.1", July 2011. You can add "available from
http://www.openmp.org

[parallelsurf] http://sourceforge.net/projects/parallelsurf/, visited
02.02.2015

SOURCES ctd.

