Patrick Schmidt, Christoph Sterz
NUMA-aware SURF

Speeded Up Robust Features

ion in images.

ing images

ect detecti

- Obj
— Stitch
— Descr

ion of images.

Ipt

[Branzel et al.]

i SURF &NUM
atellite imag

» o .

P e

03

Outline

. SURF
Keypoint Extraction (our Focus):
— Wavelet Responses
— Approximation with Box-Filters
— Octaves and Scales
- Speeding up Filters with the Integral Image
Keypoint Description:
— Direction
— Results
Limitations

04

Outline

ll. SURF & NUMA

Experiments:

- Time Performance

— Data Access Patterns

Implementation Proposal:

- Distributed Integral Image

- Ghost Cells within the Integral Image

Peformance Comparison:

- Single Thread vs. Multi Thread vs. Ours
Conclusion

05

Speeded-Up Robust Features (SURF)

Herbert Bay? , Andreas Ess?® , Tinne Tuytelaars® , and Luc Van Gool ®P
“BTH Zurich, BIWI

Sternwartstrasse 7
CH-8092 Zurich
Switzerland
bK. U. Leuven, ESAT-PSI
Kasteelpark Arenberg 10
B-3001 Leuven
Belgium

Abstract

This article presents a novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features).
SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness,
yet can be computed and compared much faster.

This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors
and descriptors (specifically, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by
simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps.

The paper encompasses a detailed description of the detector and descriptor and then explores the effect of the most important
parameters. We conclude the article with SURF’s application to two challenging, yet converse goals: camera calibration as a special
case of image registration, and object recognition. Our experiments underline SURF’s usefulness in a broad range of topics in
computer vision.

Key words: interest points, local features, feature description, camera calibration, object recognition

PACS:

1. Introduction between the vectors, e.g. the Mahalanobis or Euclidean dis-
tance. The dimension of the descriptor has a direct impact

T < A, = -~ 2 = Dl B Ry TR By PG oy e gl toih [(IRt ha i [e e s R s SR Al WSSO SRSl [(Sl (LR

06

Wavelet Responses

- SURF tracks edges (=gradient changes)

- gradient changes have high derivations
in the image

- wavelets are used to calculate those

derivations

ryy =) Imagell, J]-Lyyl,]]
]

o

Approximation with Box-Filters

- computation of wavelets is expensive
- let’s approximate them with box filters

- actually we want to compute the determinant of the Hessian
- with approximation we have to account for a bias w = 0.9

M Ix
H = |: r ’ 4 :| det(}[) ~ Dxx ' Dyy — (W'ny)2

yXx yy

=

03

Octaves and Scales

- objects can be differently sized in the image
> let’s use different filter sizes with different step sizes
- each area is analyzed with multiple octaves and scales

A

4

v’

\

scales octaves application

=

09

Speeding up Filters with the Integral Image

performance issue:
\addition:

per position
N o X scales
Imageli, j]-Dy, i,] x octaves

i x filter size

x 3 box filters

1 MByte greyscale image, just first octave
-> 7.05 GByte memaccess

10

The Integral Image
»Our Rescue« — Reducing memory acc. by 2 orders of magnitude

integral image integral image

z (-) = A-B-C+D (4 mem accesses) Im
[Viola&Jones]

first octave - 7T0MB memaccess

11

Computing the Integral Image
(in parallel)—Addition is commutative, associative!

embarassingly parallel embarassingly parallel
cache-friendly not cache-friendly (on CPUs)

=

Excursus: GPU Memory Caching {

caching)
% infos ()
(compute) texture cache content, optimized
shader cache for filter operation

unit and compute unit m
thanks to HPI3D I

12}

13

Back to CPU Caching: Box Filters

- itis good to compute all three filters in one pass!

> improves cache hits in one line \

B 32 memory accesses
f—s— 10 cache lines hit
R N (assuming small filter)

D

yy Dxx Dxx

- implementations exist that try to also overlay access points of

various filter scales! m
' TERRIBERRY et al.] L

14

Last Step: Feature Description

- just features with det (#H) > threshold are processed further!

- the strongest direction is retrieved, and rotated filters are computed
— additionally, nxn sub-directions are obtained and stored as descriptor

=

images: cs.wahsington.edu, docs.opencv.org]

Results: Image Stitching

images: TERRIBERRY et al.

repeatability %

16

Qualitative Strengths & Limitations

- SURF’s quality remains slightly inferior to SIFT
- rotational errors stem partly from pixel-grid combined with rotation

100¢ 100¢ 100¢
80} 080-\ LB .
60| 2 60| \ 2 60|
O O
40} 5 40| 5 40|
S S
201 £ 20t £ 20t
o . — e 0 ' ' ' ' 0 ' ' ' '
20 25 30 35 40 45 50 55 60 1 1.5 2 2.5 3 2 3 4 5 6
viewpoint angle scale change resolution change
robustness (rotation) robustness (scale) robustness (resolution)

(images simplified) [Bay et al. (SURF)] L

Part l1l: SURF & NUMA

Experiments: Time
o — We analyzed the implementation parallelsurf 0.96 as a base (OpenMP)

time(sec)

15

10

Assign Ori.

Make Desc.

Detect Filters
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Integral Image

#threads

I

Experiments: Time (Speedup)

speedup

10 11 12 13 14 15 16 17 18 19 20 21 22 23
#threads

2 3 4 5 6 7 8 9

24

assign Orientations

make Descriptors

Detect filters

Integral Image

19

Idea: Calculate many Integral Images
- vertical is smarter if image is large (if biggest filter < stripe)

worst case: 4acc > 1bacc worst case: 4acc > 8acc, ‘partners’ Ln

20

Experiments: Memory Access

- we recorded the memory access pattern of first step (pre-thresholding)

.........

..........

....................

512x512, 1 part 512x512, 4 parts Im

(images visually enhanced)

R R R R R R O R R R R R e b T UYLV UEF UV LR LR LY U LY LR LR LR LR LY TEF 3

VI VRS VRS VRS VRS VRS GRS WAL GRS GRS GRS WAL WAL GAS WAL WAL WAS WAL WAL WAL WA AAS AEs ams o,

VI VA VRS VRS VRS WA WA WA WA WA WA WA WA WA VRS GRS WA VRS GRS VRS VRS GRS VRS VRS VRS VRS GRS GRS VRS VRS GRS GRS GRS GRS GRS GRS GRS GRS GRS WAS GRS GRS GRS GRS GRS VAP GRS GRS GRS WAS WAS WAS WAS WAS WAS WAS WAS WAS WAS WAS WAS WAS WAS WA m,

VI VRS VRS VRS VRS GRS GRS WA WA GRS GRS WA WA WS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GAS GRS GAS GRS GRS GAS GRS GRS GAS GRS GAS GAS WAS GAS WAS GAS WAS GAS WAS WAS WAS WAS WAS WAS WAS GAS WAS GAS GAS 4m, 4m, AW, W,

VI VRS VRS VRS VRS VRS VRS GRS WAL GAS GRS GAS GRS WAL WAS WAL WAL WAL WAL WAL WA AAS Am, 4m, M, m,

VNS NS WS GRS GRS GRS GRS GRS GRS WP G GRp GRS G WP G G LR G GRS G GRS GRS GRS GRS GRS GEP GRS LES GRS GRS LR GRS ARS SRS GRS ARS ARS ARS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS NRS MRS NRS AR WAL AR 4R

EEREEER
EEEEEE
$ %% % %8s
R
I
I
EEEEEE

-

-
.
-
-
-
-

-

-

-

SN R R wy ey wp wp w S A A A AP AN VRS VRS VRS VRS VRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS WAS WAS WAS WAS WAS WAS GAS GAS WA GES AEs Aas

.

SN N R R R R W A A A A A VR VR VR VRS VRS VRS VRS VRS VRS VRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS WAL GRS WAS WAL WAS AAS WA e

.

SO R R R mp mp mp mp mp m m AS AS A AY AY AY VRS VRS VRS VRS VRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS WA GRS AES e e

.

NN N R R R o R W AR A A A A AV VR VR VR VA VRS VRS VRS VRS VRS VRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS WAS WAS GRS WAS AR amp

’

22

Implementation: Algorithm & Locality
- Example: Detection

//Collect
FOR scales
ALLOCATE scale_1images
FOR octaves
#tomp parallel for
FOR filters
FOR RANGE vy
FOR RANGE Xx
scale_images[scale] « Filter(x,y)
/ /Detect
FOR scales
DetectFeatures(scale_images)

=

/3

Implementationl: memcpy Integral-Images to all Nodes
- to test the performance of memory accesses, we consider

the best scenario > every node does just local accesses

_112 = (double*x*) numa_alloc_onnode(
widthxheightxsizeof (double),1);

1f(1_112)
1
std::cout << "[NUMA] Could not allocate Memory"

<< std::endl;
return;

}
memcpy(_112, _11, 1Width*xiHeightxsizeof(double));

24

Implementationl: Memory Dispatch

- we once memecpy the integral image to other node(s)
— dispatch accesses based on thread locality

#include <utmpx.h>
#include <numa.h>

inline double **x getIntegrallmage()
{
int cpuld = sched_getcpu();
int nodelId = numa_node_of_cpu(cpuld);
if(nodeld == 1) return _112;
return _11;

¥

slowdown!

time 10x
24 threads

=

25

buffered:

1.05x%

Side Note: Measuring Dispatch cost
24 threads

- using std::chrono::high_resolution_clock

auto t1 = std::chrono::high_resolution_clock::now();

auto t2 = std::chrono::high_resolution_clock::now();
std::cout << "Detect:"

<< std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count()
<< " nSH

<<std::endl;

579.96 s
— called - 100m times. Extreme Overhead... not feasable Im

26

OMP PROC_BIND

- disallowing movement of threads between processors

> might ensure more locality

significant speedup
of 5%

24 threads

=

2/

Conclusion & Future Work

- SURF is the art of approximation applied to

a mathematically complex task
- NUMA requires data locality, SURF allows for it
- parallelsurf does not respect locality at all

— parallelsurf already speeds up ‘OK on NUMA machines using OMP
- memory access patterns super-interesting for further research

— micro-optimising OMP yields ~5% speedup

> for further speedup full restructuring of code is needed!

Our Conclusion: Location, Location, Location!

=

23

Thank youl!

Patrick Schmidt, Christoph Sterz Lﬂ

17 2 3 4 5 6 7 8 91011121314151617181920212223244

SOURCES

[SURF paper] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool,
"SURF: Speeded Up Robust Features", Computer Vision and Image
Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008

[Viola & Jones] Viola, P.; Jones, M., "Rapid object detection using a
boosted cascade of simple features,” Computer Vision and Pattern
Recognition, 2001. CVPR 2001.

[Branzel et al.] Alan Branzel, GravitySpace: tracking users and their
poses in a smart room using a pressure-sensing floor. 2013.
Proceedings of the SIGCHI(CHI '13).

SOURCES ctd.

[Terriberry et al.] Presentation: GPU Accelerating Speeded-Up Robust
Features at Argon ST
http://people.xiph.org/ -tterribe/pubs/gpusurf-talk.pdf, visited 02.02.15

[OpenMP] OpenMP Architecture Review Board, "OpenMP Application
Program Interface, Version 3.1", July 2011. You can add "available from
http://www.openmp.org

[parallelsurf] http://sourceforge.net/projects/parallelsurf/, visited
02.02.2015

