
Motivation Improvable memory access patterns Existing Pro�les Summary References

Scienti�c approaches: NUMA

Pro�lers/analyzing runtime behavior
Non-Uniform Memory Access (NUMA) Seminar

Malte Swart

Hasso-Plattner-Institut

10 December 2014

Malte Swart NUMA Pro�lers/Analyze runtime behavior 1 / 33



Motivation Improvable memory access patterns Existing Pro�les Summary References

1 Motivation

2 Improvable memory access patterns

3 Existing Pro�les
SNPERF
NumaTOP
vTune
MemProf
MemAxes

4 Summary

5 References

Malte Swart NUMA Pro�lers/Analyze runtime behavior 2 / 33



Motivation Improvable memory access patterns Existing Pro�les Summary References

Motivation

Problem

We have our new powerful NUMA system.
But our application does not scale as it does on UMA systems.
What can we do?
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Motivation (2)

What can we do?

Upgrade the kernel: We have already a current kernel - so no
automatic improvement by new scheduling
techniques . . .

Look at the source code: We did not write the application, so
no real change for improvement there

Using performance counter: as we see in the last presentation

Analyze our program with pro�lers: Let's do it . . .
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What is achievable?

We concentrate on remote memory accesses, local caches
mostly irrelevant in comparison / not NUMA speci�c

Next: identify common problems that we can optimize
and need to identify
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Remote usage after allocation

Issue

Data is create on one NUMA node,
but only used on another

Solutions

Create data directly on other
node

Copy data on �rst access (if
copying is amortized)

Migration thread to node with
data

point in time during the run of an application, and ad-

ditional information such as the source and target nodes

of each memory access. However, existing profilers like

OProfile [13], Linux Perf [19], VTune [7] and Mem-

phis [12] do not provide this required information in the

general case. Some of them are able to provide this in-

formation in the specific case of global static memory

objects but these objects often account for a negligible

ratio of all remote memory accesses. As an example, for

the four applications that we study in this paper, global

static memory objects are involved in less than 4% of all

remote memory accesses. For the other kinds of objects,

the only data provided by the existing profilers are the

target memory address and the corresponding program

instruction that triggered the access.

In this paper, we present MemProf, the first profiler

able to determine the thread and object involved in a

given remote memory access performed by an applica-

tion. MemProf builds temporal flows of the memory ac-

cesses that occur during the run of an application. Mem-

Prof achieves this result by (i) instrumenting thread and

memory management operations with a user library and a

kernel module, and (ii) leveraging hardware support from

the processors (Instruction-Based Sampling) to monitor

the memory accesses. MemProf allows precisely iden-

tifying the objects that are involved in remote memory

accesses and the corresponding causes (e.g., inefficient

object allocation strategies, saturation of a memory node,

etc.). Besides, MemProf also provides additional infor-

mation such as the source code lines corresponding to

thread and object creations and destructions. MemProf

can thus help a programmer quickly introduce simple and

efficient optimizations within a complex and unfamiliar

code base. We illustrate the benefits of MemProf on four

case studies with real applications (FaceRec [9], Stream-

cluster [2], Psearchy [4], and Apache [1]). In each case,

MemProf allowed us to detect the causes of the remote

memory accesses and to introduce simple optimizations

(impacting less than 10 lines of code), and thus to achieve

a significant performance increase (the gains range from

6.5% to 161%). We also show that these application-

specific optimizations can outperform generic heuristics.

The rest of the paper is organized as follows. Sec-

tion 2 describes a few examples of execution patterns

that can benefit from NUMA optimizations and then ex-

plains why traditional profilers are not able to pinpoint

them. Section 3 presents the main principles of MemProf

and how it can be used. Section 4 provides implementa-

tion details. Section 5 presents an evaluation of MemProf

on four applications. Finally, Section 6 discusses related

work and Section 7 concludes the paper.

2 The case for a new profiler

In this section, we present a few examples of optimiza-

tions that can be implemented when specific memory ac-

cess patterns occur in an application. We then explain

why existing profilers fail to detect such patterns.

2.1 Application-level NUMA optimizations

We describe a set of three example patterns that

negatively impact the performance of applications

deployed on NUMA machines. These patterns are

inefficient because they increase the number of re-

mote memory accesses performed by an application

and their overhead can be significant if they impact

objects that are heavily accessed. We review each

pattern in turn and explain typical optimizations that

can be applied at the application level in order to avoid it.
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Figure 1: Three memory access patterns that can nega-

tively impact the performance of applications deployed

on NUMA machines.

Remote usage after allocation. This pattern (depicted

in Figure 1 (a)) occurs when an object is allocated by

a thread T1 on a memory node N1, and later accessed

exclusively (or mostly) by a thread T2 running on a node

N2. This pattern often occurs in an application with

a producer-consumer scheme when the producer and

consumer threads are pinned on distinct cores. A simple

optimization consists in directly allocating the object on

N2, using NUMA-aware allocation functions. When the

application is such that N2 cannot be determined at the

time of the object allocation, another solution consists

in migrating the object when T2 starts to access it,

provided that the cost of the data copy can be amortized.

Such a migration can be implemented in two ways in

the application: (i) using an explicit copy to a buffer

allocated on a given node with a NUMA-aware function,

or (ii) using a system call to transparently migrate and

Figure : Remote usage

after allocation
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Alternate remote accesses to an object

Issue

Data is read by multiple
NUMA nodes, but only from
one at a time (concurrent but
not parallel)

Possible Solutions

Pin threads to NUMA
node with their data

Migrate threads over time
to their data

point in time during the run of an application, and ad-

ditional information such as the source and target nodes

of each memory access. However, existing profilers like

OProfile [13], Linux Perf [19], VTune [7] and Mem-

phis [12] do not provide this required information in the

general case. Some of them are able to provide this in-

formation in the specific case of global static memory

objects but these objects often account for a negligible

ratio of all remote memory accesses. As an example, for

the four applications that we study in this paper, global

static memory objects are involved in less than 4% of all

remote memory accesses. For the other kinds of objects,

the only data provided by the existing profilers are the

target memory address and the corresponding program

instruction that triggered the access.

In this paper, we present MemProf, the first profiler

able to determine the thread and object involved in a

given remote memory access performed by an applica-

tion. MemProf builds temporal flows of the memory ac-

cesses that occur during the run of an application. Mem-

Prof achieves this result by (i) instrumenting thread and

memory management operations with a user library and a

kernel module, and (ii) leveraging hardware support from

the processors (Instruction-Based Sampling) to monitor

the memory accesses. MemProf allows precisely iden-

tifying the objects that are involved in remote memory

accesses and the corresponding causes (e.g., inefficient

object allocation strategies, saturation of a memory node,

etc.). Besides, MemProf also provides additional infor-

mation such as the source code lines corresponding to

thread and object creations and destructions. MemProf

can thus help a programmer quickly introduce simple and

efficient optimizations within a complex and unfamiliar

code base. We illustrate the benefits of MemProf on four

case studies with real applications (FaceRec [9], Stream-

cluster [2], Psearchy [4], and Apache [1]). In each case,

MemProf allowed us to detect the causes of the remote

memory accesses and to introduce simple optimizations

(impacting less than 10 lines of code), and thus to achieve

a significant performance increase (the gains range from

6.5% to 161%). We also show that these application-

specific optimizations can outperform generic heuristics.

The rest of the paper is organized as follows. Sec-

tion 2 describes a few examples of execution patterns

that can benefit from NUMA optimizations and then ex-

plains why traditional profilers are not able to pinpoint

them. Section 3 presents the main principles of MemProf

and how it can be used. Section 4 provides implementa-

tion details. Section 5 presents an evaluation of MemProf

on four applications. Finally, Section 6 discusses related

work and Section 7 concludes the paper.

2 The case for a new profiler

In this section, we present a few examples of optimiza-

tions that can be implemented when specific memory ac-

cess patterns occur in an application. We then explain

why existing profilers fail to detect such patterns.

2.1 Application-level NUMA optimizations

We describe a set of three example patterns that

negatively impact the performance of applications

deployed on NUMA machines. These patterns are

inefficient because they increase the number of re-

mote memory accesses performed by an application

and their overhead can be significant if they impact

objects that are heavily accessed. We review each

pattern in turn and explain typical optimizations that

can be applied at the application level in order to avoid it.
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Figure 1: Three memory access patterns that can nega-

tively impact the performance of applications deployed

on NUMA machines.

Remote usage after allocation. This pattern (depicted

in Figure 1 (a)) occurs when an object is allocated by

a thread T1 on a memory node N1, and later accessed

exclusively (or mostly) by a thread T2 running on a node

N2. This pattern often occurs in an application with

a producer-consumer scheme when the producer and

consumer threads are pinned on distinct cores. A simple

optimization consists in directly allocating the object on

N2, using NUMA-aware allocation functions. When the

application is such that N2 cannot be determined at the

time of the object allocation, another solution consists

in migrating the object when T2 starts to access it,

provided that the cost of the data copy can be amortized.

Such a migration can be implemented in two ways in

the application: (i) using an explicit copy to a buffer

allocated on a given node with a NUMA-aware function,

or (ii) using a system call to transparently migrate and

Figure : Alternate remote

accesses to an object
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Parallel remote accesses to an object

Issue

Parallel access by multiple
NUMA nodes

Solution

Duplicate data, if not or
rarely changed (more
memory needed)

Move on thread to the
other node (might result
in load imbalance)

point in time during the run of an application, and ad-

ditional information such as the source and target nodes

of each memory access. However, existing profilers like

OProfile [13], Linux Perf [19], VTune [7] and Mem-

phis [12] do not provide this required information in the

general case. Some of them are able to provide this in-

formation in the specific case of global static memory

objects but these objects often account for a negligible

ratio of all remote memory accesses. As an example, for

the four applications that we study in this paper, global

static memory objects are involved in less than 4% of all

remote memory accesses. For the other kinds of objects,

the only data provided by the existing profilers are the

target memory address and the corresponding program

instruction that triggered the access.

In this paper, we present MemProf, the first profiler

able to determine the thread and object involved in a

given remote memory access performed by an applica-

tion. MemProf builds temporal flows of the memory ac-

cesses that occur during the run of an application. Mem-

Prof achieves this result by (i) instrumenting thread and

memory management operations with a user library and a

kernel module, and (ii) leveraging hardware support from

the processors (Instruction-Based Sampling) to monitor

the memory accesses. MemProf allows precisely iden-

tifying the objects that are involved in remote memory

accesses and the corresponding causes (e.g., inefficient

object allocation strategies, saturation of a memory node,

etc.). Besides, MemProf also provides additional infor-

mation such as the source code lines corresponding to

thread and object creations and destructions. MemProf

can thus help a programmer quickly introduce simple and

efficient optimizations within a complex and unfamiliar

code base. We illustrate the benefits of MemProf on four

case studies with real applications (FaceRec [9], Stream-

cluster [2], Psearchy [4], and Apache [1]). In each case,

MemProf allowed us to detect the causes of the remote

memory accesses and to introduce simple optimizations

(impacting less than 10 lines of code), and thus to achieve

a significant performance increase (the gains range from

6.5% to 161%). We also show that these application-

specific optimizations can outperform generic heuristics.

The rest of the paper is organized as follows. Sec-

tion 2 describes a few examples of execution patterns

that can benefit from NUMA optimizations and then ex-

plains why traditional profilers are not able to pinpoint

them. Section 3 presents the main principles of MemProf

and how it can be used. Section 4 provides implementa-

tion details. Section 5 presents an evaluation of MemProf

on four applications. Finally, Section 6 discusses related

work and Section 7 concludes the paper.

2 The case for a new profiler

In this section, we present a few examples of optimiza-

tions that can be implemented when specific memory ac-

cess patterns occur in an application. We then explain

why existing profilers fail to detect such patterns.

2.1 Application-level NUMA optimizations

We describe a set of three example patterns that

negatively impact the performance of applications

deployed on NUMA machines. These patterns are

inefficient because they increase the number of re-

mote memory accesses performed by an application

and their overhead can be significant if they impact

objects that are heavily accessed. We review each

pattern in turn and explain typical optimizations that

can be applied at the application level in order to avoid it.
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Figure 1: Three memory access patterns that can nega-

tively impact the performance of applications deployed

on NUMA machines.

Remote usage after allocation. This pattern (depicted

in Figure 1 (a)) occurs when an object is allocated by

a thread T1 on a memory node N1, and later accessed

exclusively (or mostly) by a thread T2 running on a node

N2. This pattern often occurs in an application with

a producer-consumer scheme when the producer and

consumer threads are pinned on distinct cores. A simple

optimization consists in directly allocating the object on

N2, using NUMA-aware allocation functions. When the

application is such that N2 cannot be determined at the

time of the object allocation, another solution consists

in migrating the object when T2 starts to access it,

provided that the cost of the data copy can be amortized.

Such a migration can be implemented in two ways in

the application: (i) using an explicit copy to a buffer

allocated on a given node with a NUMA-aware function,

or (ii) using a system call to transparently migrate and

Figure : Concurrent remote

accesses to an object
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Existing Pro�les

Two common types of pro�les (example after [1]):

1 instruction/code-orientated pro�les (line 4: 100% latency)

2 data-oriented pro�les (Array A: line 4: 1% latency; Array
B: line 4 - 10% latency, Array C: line 4 - 89% latency)

for (int i=0; i < n; i++) {

for (int j=0; j < n; j++) {

for (int k=0; k < n; k++) {

A[i, j, k] = A[i, j, k] + B[j, i, k] + C[k, j, i]

}

}

}

Traditional pro�les concentrate on cache optimization and
code hot spots
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Existing Pro�les (2)

Problem

Information about code or data itself is less useful
UMA pro�lers not very helpful for NUMA issues

Challenge

Thread on Node x accessed data from Node y
→ Pro�lers with more information are needed
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SNPERF - a ccNUMA Pro�ling Tool

One of the earliest NUMA pro�ler (Developed around
2001)

Designed for Origin2000 systems

Basic on simple performance counters to measure
memory bandwidth saturation
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SNPERF Examples (1)
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Figure 6: FFT memory utilization profile on four nodes

points referred to as the complex roots of unity. Both sets are organized as
√
n × √n matrices, and the matrices

are partitioned so that every processor is assigned a continuous set of rows that are allocated in its local memory.
Interprocessor communication is limited to the transpose steps.

Figure 6 shows the memory utilization profile on four nodes for the entire duration of a 8-processor FFT run. The
first phase of the execution is the initialization of the roots of unity and the generation of random input data. The
initialization is performed on the main thread, which runs on processor 0. The memory utilization profiles for each
node show that the data set was distributed equally among the four nodes—the plot from start to ≈ 3 sec shows first
utilization on node 0, then node 1, node 2 and node 3; the utilization has two peaks on each node, the first time when
the application initializes the data for the roots of unity matrix and the second time when it generates the random data.

The second phase shows the progress of the FFT algorithm. The three peaks in the memory utilization plot
correspond to the matrix transposes. These are the interprocessor communication phases, where every processor
transposes a portion of the data matrix. The two valleys in between correspond to the 1-D FFT transformation on each
(local) row and the application of the roots of unity. The barriers before the second and third transpose are visible as
the sharp drops in memory utilization.

The transpose algorithm used by the SPLASH-2 FFT kernel works in two phases: first, each processor transposes
a patch (contiguous submatrix) of size

√
n
p ×

√
n
p from every other processor, and then transposes the patch locally. The

transpose takes advantage of long cache lines by blocking. The original SPLASH-2 FFT uses staggering to communi-
cate patches between processors: processor i first transposes a patch from processor i+ 1, then from processor i+ 2,
etc., to prevent hotspotting. If the processors move in lockstep, no two processors read from the same processor’s
patch of memory at the same time. We will call this communication pattern the basic stagger. However, there are no
barriers inside the SPLASH-2 FFT transpose algorithm. It is entirely possible that one or more processors fall behind
the others, because it was preempted by system activity, for example. Since the processors transpose patches in a se-
quential manner, one delayed processor could cause a domino effect, and further delay other processors that follow it.
To avoid this scenario, a second transpose algorithm uses a binary scrambling function to compute the next processor
whose patch is to be transposed; this is the optimized stagger algorithm. Both staggered transposes are contrasted with
the naive matrix transpose where each processor first replaces a patch from processor 0, then processor 1, and so on.
This is the unoptimized transpose algorithm.

Figures 7–9 show high-resolution memory utilization profiles for unoptimized transpose, basic, and optimized
staggering, respectively. All figures show the second transpose step in a 16-processor run for a data set size of 4M el-
ements; each run assigned two threads to each node, allocating memory on 8 nodes. The memory utilization is shown
for even-numbered nodes only.

Not surprisingly, the unoptimized transpose algorithm results in memory hotspots: as the processors transpose
patches, they first overrun the memory capacity on node 0, then node 1 and so on. The basic stagger eliminates

9

Figure : FFT memory utilization pro�le on four nodes
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SNPERF Examples (2)
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Figure 7: Unoptimized FFT matrix transpose without staggering
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Figure 8: FFT matrix transpose with basic staggering
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Figure 9: FFT matrix transpose with optimized staggering
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Figure : Unoptimized FFT matrix transpose without staggering

Malte Swart NUMA Pro�lers/Analyze runtime behavior 13 / 33



Motivation Improvable memory access patterns Existing Pro�les Summary References

SNPERF Examples (3)
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Figure 7: Unoptimized FFT matrix transpose without staggering
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Figure 8: FFT matrix transpose with basic staggering
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Figure 9: FFT matrix transpose with optimized staggering
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Figure : FFT matrix transpose with optimized staggering
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SNPERF Examples (4)
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Figure 7: Unoptimized FFT matrix transpose without staggering
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Figure 8: FFT matrix transpose with basic staggering
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Figure 9: FFT matrix transpose with optimized staggering
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Figure : FFT matrix transpose with optimized staggering
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NumaTOP

Question

Does we have a NUMA problem (high remote memory
access)?
And no poorly scaling application

NumaTOP

Live ranking between di�erent running tasks

Measures local/remote memory access for di�erent
processes / nodes

Some special view about stats of NUMA nodes or
memory ranges
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NumaTOP Demo

Figure : Example output of NumaTOP

RMA(K): remote (non-local NUMA node) memory accesses
(in 1000)

LMA(K): local memory accesses (in 1000)

RMA/LMA: remote memory percentage - should be low

CPI: CPU cycles per instruction
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vTune

Specialized pro�ler from Intel

Based on performance counters

But more traditional pro�ler (cache misses, % operation
stalled)

�If [remote memory] percentage is signi�cant (>20%) ,
consider strategies for improving NUMA access : use a
NUMA-aware memory allocator, privatize variables. System
tuning : ensure memory is balanced across nodes.� [2]

Problem

Generic advices, no hints what to do exactly with a given
problem.
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MemProf

Challange

Combine remote memory access with detailed information
about allocation and object properties

→ Generate �ow graphs for objects and threads

1 Execute program and dump information about object and
thread lifecycle and memory accesses

2 Generate �ow graphs (o�ine - after execution)
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MemProf: Object lifecycle tracking

Own dynamic library

Overrides memory management functions (like malloc) �
stores pro�le information and calls original library

Needs to be loaded manual per LD_PRELOAD or dlsym
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MemProf: Thread lifecycle tracking

Own dynamic library

Overloaded kernel functions pref_event_task and
perf_event_comm0
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MemProf: Memory access tracking

performance monitoring units (PMU)

Microarchitecture pro�ling technique

�Instruction Based Sampling� by AMD, �Precise Event
Based Sampling� is similar technique by Intel (PMU
technique)

processor selects single instructions on a given frequency

interrupt containing information about instruction used to
process the data

random based approach → variation of results
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MemAxes

Similar pro�ler like MemProf

Aggregate pro�le information from performance
monitoring units (PMUs)

Gathers also information about hardware topology
(caches, NUMA nodes . . . )
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MemAxes: Semantic Annotations

Semantic Annotations

Developer decides which data structures are interested to
pro�le
Developer can optimal aggregate additional attributes

Listing 1: Pro�le matrix A
#define N 1024

double A[N][N]; // matrix data object

SMRTree *smrt = new SMRTree ();

SMRNode *A_SMR =

smrt ->addSMR("A", sizeof(double), A, N*N);
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MemAxes: Semantic Annotations (2)

Listing 2: Aggregate further application speci�c �elds
// smrt is from previous example

smrt ->addIntegerAttribute("x_coord" ,-1);

smrt ->addIntegerAttribute("y_coord" ,-1);

void* mat_attribution(SMRNode *smr , struct mem_sample *

sample)

{

// Obtain the index of the address

int bufferIndex = smr ->indexOf(sample ->daddr);

// Calculate the x and y indices (row -major)

sample ->setAttribute("x_coord", bufferIndex % N);

sample ->setAttribute("y_coord", bufferIndex / N);

}
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MemAxes: Working Principle

Figure : Basic working principle of MemAxes
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MemAxes: Visualization

(a) (b)

Fig. 2: The radial hierarchy (sunburst) visualization for hard-
ware topology. (a) Dark purple arcs are NUMA domains, light
purple are L3 caches, dark orange are CPUs, and light orange
are L1 and L2 caches. (b) shows a more complex topology
with performance data annotated. We annotate the number of
cycles caused by access to a resource with color; darker means
more cycles. Resource traversal is indicated by lines between
resources, where thicker indicates more data.

Fig. 3: The parallel coordinate visualization for a single
memory access sample. The red line represents the sample,
and the black lines represent its attributes. The intersections
denote the values of the sample for each attribute.

With the knowledge that the matrices are stored in row-
major ordering, we define the following function to populate
these attributes:

void* mat_attribution(SMRNode *smr,
struct mem_sample *sample)

{
// Obtain the index of the address
int bufferIndex =

smr->indexOf(sample->daddr);

// Calculate the x and y indices (row-major)
sample->setAttribute("x_coord", bufferIndex % N);
sample->setAttribute("y_coord", bufferIndex / N);

}

The indexOf function provides the array index, with
which we can calculate the x and y coordinates for a row-major
ordering. The resulting data will have these values appended
for every memory access sample.

VI. VISUALIZATION AND ANALYSIS

We developed a tool, MemAxes, that allows a user to vi-
sually analyze the acquired memory access performance data.
The contributions of MemAxes are described in detail in [3]
(submitted for review to VIS 2014. the submission is available
for the use of the reviewer at http://csiflabs.cs.ucdavis.edu/
∼aagimene/VIS2014/gimenez vis2014.pdf). We briefly de-
scribe the visualization methods of MemAxes and how they
are interpreted, and we show screenshots of the tool to explain
our results in Section VII.

MemAxes takes advantage of the semantic attributes of the
data to create intuitive visualizations with context. It features
multiple coordinated views, each of which represents the data
in a different context, and allows the user to specify selections
in the various views. The tightly linked nature of the different
views allows us to examine patterns and correlations between
different contexts. We briefly describe three views featured in
MemAxes, (1) the application view, (2) the hardware topology
view, and (3) the parallel coordinates [10] view.

A. Application

As described in Section V, we can attribute memory access
samples to spatial locations with respect to the applied dataset.
We can then employ the same visualization methods that are
typically used to show the dataset. MemAxes employs direct
volume rendering (DVR), a technique capable of displaying
scalar 3-dimensional data, to do so. DVR represents scalar
values using colors and opacities in 3-dimensional space. In
this case, locations of higher opacity and green color indicate
more cycles taken to access elements mapped to a particular
spatial location (shown in Fig. 4). In order to effectively
navigate the 3-dimensional space, MemAxes allows interactive
rotating and zooming as well.

B. Hardware Topology

We record performance data in terms of the node hardware
topology, as outlined in Section V, and thus we can visualize
the data laid out in a representation of the topology. MemAxes
displays the hardware topology in the form of a radial hierar-
chy known as a sunburst chart [11]. Larger memory resources
are placed in the center, CPU IDs are placed on the outer
leaves, and caches are shown for their associated CPUs in
between, as shown in Fig. 2. The color of each segment in
the sunburst chart indicate the number of cycles associated
with the access samples that resolved in a particular resource.
The resource traversal is represented by black lines connecting
radial segments—thicker indicates more samples were copied
between a pair of resources.

C. Parallel Coordinates

Lastly, MemAxes employs a multidimensional visualiza-
tion technique called parallel coordinates [10]. This view
shows each sample as a polyline intersecting a set of parallel
axes. The polyline is constructed such that the intersection
between it and the parallel axes indicate the value of a single
attribute in the sample. An example is shown in Fig. 3. This
view enables a user to view correlations between a high num-
ber of different attributes by examining line segments between

Figure : Visualization principle of memAxes; left: hardware topology

in general; right: with cpu latency (color) and usage (line width)
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MemAxes: Example

axes—crossing line segments indicate negative correlation,
while parallel line segments indicate positive correlation.

We modified the standard parallel coordinate implementa-
tion to include histograms along each axis in MemAxes. The
histograms represent the distribution of values along one axis
for the shown data, shown in Fig. 6 and 7

VII. CASE STUDIES

We used our method to identify real performance problems
in two different benchmark applications, LULESH and XS-
Bench. All executions were performed on an isolated single
node of Hyperion. This node runs on an Intel Xeon E5-
2660, which features 32 logical CPUs (16 physical with
Hyperthreading), 16 32kB L1 caches, 16 256kB L2 caches,
2 20MB L3 caches, and 2 32GB NUMA domains.

A. LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics (LULESH) is a proxy application for calculating
the Sedov blast problem [12]. It highlights the performance
characteristics involved with performing simulations on an
unstructured mesh. Specifically, as the mesh deforms to match
the underlying Lagrangian structures, the changing mesh co-
ordinate locations must be looked up via a secondary array.
This indirect method for determining coodinate locations often
causes memory access inefficiency. LULESH takes advantage
of parallelism via OpenMP, which we suspected to cause
further memory access bottlenecks due to data races.

We instrumented all persistent data buffers that contained
state information for the simulated mesh. We also provided two
application-specific semantic attributes: 3-dimensional location
and iteration. Like the example in Section V we created a
function to determine mesh coordinates. In this case, the mesh
is a 3-dimensional, row-major ordered array. We also provided
a function to look up and record the currently executing
iteration.

We ran LULESH for a 453-resolution mesh while obtaining
semantic memory access samples for the code segment that
runs the iterative simulation steps. We set the memory sam-
pling configuration to sample an access every four instructions
and only those with access latencies greater than 30 cycles.

Post-mortem analysis revealed a highly unexpected rela-
tionship between the utilized resources and the decomposition
of the dataset. In our visualization program, we selected the
accesses associated with a portion of the mesh, specifically, a
range of coordinates in the z-axis. Fig. 4 shows the location
of this selection in terms of the applied dataset. This selection
represents a contiguous block of data in the applied domain,
but we can see in Fig. 5 (a) and (b) that its accesses are
associated with a sparse set of hardware resources divided
between both sockets.

The OpenMP directives were unchanged from the defaults,
except to bind threads to CPUs. The default thread affinity is
in order, meaning thread N is bound to CPU N for all threads
and CPUs. In most cases, this is reasonable to do, because
most architectures number CPU IDs such that consecutive
IDs are close in proximity to one another. However, on this
architecture, we found the CPU numbering is quite different

Fig. 4: The memory access performance data visualized in
the context of the application dataset. Colored boxes in 3-
dimensional space indicate the number of samples taken to
access a data element associated with that location over the
whole execution. We selected a range of values along the z
axis similar to Fig. 5 and can see a fairly uniform distribution
of access cycles within it.

(a) (b)

(c) (d)

Fig. 5: The visualized memory access performance data for
two executions of LULESH with different specified thread
affinities. (a) and (b) correspond to the execution with the
default thread affinity, and (c) and (d) correspond to the
execution using an optimized thread affinity for this particular
hardware. The first execution shows that while the selected data
is associated with a contiguous block of locations along the
z axis, the utilized resources are split between both sockets,
indicating poor thread locality. The second shows the same
selection, this time with utilized resources lying next to each
other on a single socket, indicating improved thread locality.

Figure : Application with unoptimized a�nities
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MemAxes: Example (2)

axes—crossing line segments indicate negative correlation,
while parallel line segments indicate positive correlation.

We modified the standard parallel coordinate implementa-
tion to include histograms along each axis in MemAxes. The
histograms represent the distribution of values along one axis
for the shown data, shown in Fig. 6 and 7

VII. CASE STUDIES

We used our method to identify real performance problems
in two different benchmark applications, LULESH and XS-
Bench. All executions were performed on an isolated single
node of Hyperion. This node runs on an Intel Xeon E5-
2660, which features 32 logical CPUs (16 physical with
Hyperthreading), 16 32kB L1 caches, 16 256kB L2 caches,
2 20MB L3 caches, and 2 32GB NUMA domains.

A. LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics (LULESH) is a proxy application for calculating
the Sedov blast problem [12]. It highlights the performance
characteristics involved with performing simulations on an
unstructured mesh. Specifically, as the mesh deforms to match
the underlying Lagrangian structures, the changing mesh co-
ordinate locations must be looked up via a secondary array.
This indirect method for determining coodinate locations often
causes memory access inefficiency. LULESH takes advantage
of parallelism via OpenMP, which we suspected to cause
further memory access bottlenecks due to data races.

We instrumented all persistent data buffers that contained
state information for the simulated mesh. We also provided two
application-specific semantic attributes: 3-dimensional location
and iteration. Like the example in Section V we created a
function to determine mesh coordinates. In this case, the mesh
is a 3-dimensional, row-major ordered array. We also provided
a function to look up and record the currently executing
iteration.

We ran LULESH for a 453-resolution mesh while obtaining
semantic memory access samples for the code segment that
runs the iterative simulation steps. We set the memory sam-
pling configuration to sample an access every four instructions
and only those with access latencies greater than 30 cycles.

Post-mortem analysis revealed a highly unexpected rela-
tionship between the utilized resources and the decomposition
of the dataset. In our visualization program, we selected the
accesses associated with a portion of the mesh, specifically, a
range of coordinates in the z-axis. Fig. 4 shows the location
of this selection in terms of the applied dataset. This selection
represents a contiguous block of data in the applied domain,
but we can see in Fig. 5 (a) and (b) that its accesses are
associated with a sparse set of hardware resources divided
between both sockets.

The OpenMP directives were unchanged from the defaults,
except to bind threads to CPUs. The default thread affinity is
in order, meaning thread N is bound to CPU N for all threads
and CPUs. In most cases, this is reasonable to do, because
most architectures number CPU IDs such that consecutive
IDs are close in proximity to one another. However, on this
architecture, we found the CPU numbering is quite different

Fig. 4: The memory access performance data visualized in
the context of the application dataset. Colored boxes in 3-
dimensional space indicate the number of samples taken to
access a data element associated with that location over the
whole execution. We selected a range of values along the z
axis similar to Fig. 5 and can see a fairly uniform distribution
of access cycles within it.

(a) (b)

(c) (d)

Fig. 5: The visualized memory access performance data for
two executions of LULESH with different specified thread
affinities. (a) and (b) correspond to the execution with the
default thread affinity, and (c) and (d) correspond to the
execution using an optimized thread affinity for this particular
hardware. The first execution shows that while the selected data
is associated with a contiguous block of locations along the
z axis, the utilized resources are split between both sockets,
indicating poor thread locality. The second shows the same
selection, this time with utilized resources lying next to each
other on a single socket, indicating improved thread locality.

Figure : Same application with optimized a�nities
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Tips for algorithm groups

Pro�lers support identifying the cause of intensive remote
memory access

NumaTOP is a good start (easily installable, check
whether we have a NUMA problem)

vTune could give some hints in what direction to look

MemProf not usable as it currently depends on AMD
pro�ling instructions

MemAxes is the most powerful tool, but take a little bit
more time to use it (smaller code adjustments) and I was
unable to �nd the tracing sources itself
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Summary

Runtime behavior of NUMA applications is di�cult to
understand / predict

Concrete tracing information needed to identify issues

Automatic tools (e.g. kernel scheduling) not always able
to produce optimal placing

Pro�lers have currently only limited support for identify
NUMA issues

NUMA pro�lers are an active research and development
�eld

Even with this information may it be complicated to
optimize your application

NUMA problems remain performance problems
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