Scientific approaches: NUMA

Profilers/analyzing runtime behavior
Non-Uniform Memory Access (NUMA) Seminar

Malte Swart

Hasso-Plattner-Institut

10 December 2014

Malte Swart NUMA Profilers/Analyze runtime behavior 1/33

© Motivation
© Improvable memory access patterns

© Existing Profiles
e SNPERF
NumaTOP
vTune
MemProf
MemAxes

QO Summary

© References

Malte Swart NUMA Profilers/Analyze runtime behavior 2/33

Motivation

Motivation

We have our new powerful NUMA system.
But our application does not scale as it does on UMA systems.
What can we do?

Malte Swart NUMA Profilers/Analyze runtime behavior 3/33

Motivation

Motivation (2)

What can we do?

Upgrade the kernel: We have already a current kernel - so no

automatic improvement by new scheduling
techniques . ..

Look at the source code: We did not write the application, so
no real change for improvement there

Using performance counter: as we see in the last presentation

Analyze our program with profilers: Let's do it ...

Malte Swart NUMA Profilers/Analyze runtime behavior 4/33

Improvable memory access patterns

What is achievable?

@ We concentrate on remote memory accesses, local caches
mostly irrelevant in comparison / not NUMA specific

@ Next: identify common problems that we can optimize
and need to identify

Malte Swart NUMA Profilers/Analyze runtime behavior 5/33

Improvable memory access patterns

Remote usage after allocation

Thread T1| |Thread T2
(node N1)| [(node N2)

Data is create on one NUMA node, I
but only used on another e

(node N1)
Solutions

@ Create data directly on other
node

time time

o Copy data on first access (if

copying is amortized) @

@ Migration thread to node with
data

Figure : Remote usage
after allocation

Malte Swart NUMA Profilers/Analyze runtime behavior 6 /33

Improvable memory access patterns

Alternate remote accesses to an object

Issue Thread T1| [Thread T2
(node N1)| [(node N2)

Data is read by multiple

Use Objl
NUMA nodes, but only from (node N1)
one at a time (concurrent but
not parallel)

v

Possible Solutions

@ Pin threads to NUMA
node with their data (b)

@ Migrate threads over time
to their data

time time

Figure : Alternate remote
accesses to an object

Malte Swart NUMA Profilers/Analyze runtime behavior 7/33

Improvable memory access patterns

Parallel remote accesses to an object

Thread T1| [Thread T2
(node N1)| |(node N2)

Parallel access by multiple [[
NUMA nodes

5 Use Objl| [Use Obj1
Solution (node N1)| |(node N1)
@ Duplicate data, if not or

rarely changed (more
memory needed) timel timel

@ Move on thread to the (c)

other node (might result
in load imbalance) Figure : Concurrent remote
accesses to an object

Malte Swart NUMA Profilers/Analyze runtime behavior 8 /33

Existing Profiles

Existing Profiles

Two common types of profiles (example after [1]):

@ instruction/code-orientated profiles (line 4: 100% latency)

@ data-oriented profiles (Array A: line 4: 1% latency; Array
B: line 4 - 10% latency, Array C: line 4 - 89% latency)

for (int i=0; i < n; i++) {
for (int j=0; j < mn; j++) {
for (int k=0; k < n; k++) {
Ali, j, k]l = A[i, j, k1 + B[j, i, k] + C[k, j, il
¥
}
}

Traditional profiles concentrate on cache optimization and
code hot spots

Malte Swart NUMA Profilers/Analyze runtime behavior 9/33

Existing Profiles

Existing Profiles (2)

Information about code or data itself is less useful
UMA profilers not very helpful for NUMA issues

Challenge

Thread on Node x accessed data from Node y
— Profilers with more information are needed

Malte Swart NUMA Profilers/Analyze runtime behavior 10 / 33

Existing Profiles
©0000

SNPERF - a ccNUMA Profiling Tool

@ One of the earliest NUMA profiler (Developed around
2001)

@ Designed for Origin2000 systems

@ Basic on simple performance counters to measure
memory bandwidth saturation

Malte Swart NUMA Profilers/Analyze runtime behavior 11 /33

Existing Profiles

0Oe000

SNPERF Examples (1)

100 —
node 0
80 - node 1 , l
- node 2 ‘ “\'A
S |
S node 3 | \
S 0 ‘ '*‘J\ L
o
s b |
§ 40+ \
£ \ | ‘
g p" A MJ
20
\ ' |
J |
AY—"K::‘EL::/‘ Lﬁl' ! ‘\
0 e e e
0 1 2 3 4 5
time (s)

Figure : FFT memory utilization profile on four nodes

Malte Swart NUMA Profilers/Analyze runtime behavior 12 /33

Existing Profiles
00000

SNPERF Examples (2)

100 —

7 node 1
g 80+ node 3
= . node 5
-% 60 - node 7
S .
5 l
> 40— A \1
L el i

/

(] n \
2 2o NN [M‘b a _,‘,

T | ot "

0 : , : , . , . , .
15.6 15.8 16.0 16.2 16.4

time (s)

Figure : Unoptimized FFT matrix transpose without staggering

Malte Swart NUMA Profilers/Analyze runtime behavior 13 /33

Existing Profiles
00000

SNPERF Examples (3)

100 —

node 1
9 80 — node 3
= . node 5
Pl e
§ 40 -
g |

|
E _WWW
0 T T T T T
15.4 15.6 15.8 16.0
time (s)

Figure : FFT matrix transpose with optimized staggering

Malte Swart NUMA Profilers/Analyze runtime behavior 14 / 33

Existing Profiles
0000e

SNPERF Examples (4)

100 —
] node 1
g 80 — node 3 f\
- odes | ’J[W AN
o 7, A
£ o0 node 7 | v Vo NW/ M,\
N |
> 40 |
o |
o] | |
20 — |
0 T T ' T '
158 16.0 16.2

time (s)

Figure : FFT matrix transpose with optimized staggering

Malte Swart NUMA Profilers/Analyze runtime behavior 15 / 33

Existing Profiles
0

NumaTOP

Question

Does we have a NUMA problem (high remote memory
access)?

And no poorly scaling application

v

NumaTOP

@ Live ranking between different running tasks

@ Measures local/remote memory access for different
processes / nodes

@ Some special view about stats of NUMA nodes or
memory ranges

Malte Swart NUMA Profilers/Analyze runtime behavior 16 / 33

Existing Profiles
oe

NumaTOP Demo

Monitoring 348 processes and 397 threads (interval: 5.0s)

PID PROC RMA (K) LMA(K) RMA/LMA
stream- 19092.4 506790.6

Figure : Example output of NumaTOP

RMA(K): remote (non-local NUMA node) memory accesses
(in 1000)
LMA(K): local memory accesses (in 1000)
RMA/LMA: remote memory percentage - should be low
CPI: CPU cycles per instruction

Malte Swart NUMA Profilers/Analyze runtime behavior 17 / 33

Existing Profiles

@ Specialized profiler from Intel
@ Based on performance counters

@ But more traditional profiler (cache misses, % operation
stalled)

“If [remote memory] percentage is significant (>20%) ,
consider strategies for improving NUMA access : use a
NUMA-aware memory allocator, privatize variables. System
tuning : ensure memory is balanced across nodes.” [2]

Problem

Generic advices, no hints what to do exactly with a given
problem.

Malte Swart NUMA Profilers/Analyze runtime behavior 18 / 33

Existing Profiles
€000

MemProf

Challange

Combine remote memory access with detailed information
about allocation and object properties

— Generate flow graphs for objects and threads

© Execute program and dump information about object and
thread lifecycle and memory accesses

@ Generate flow graphs (offline - after execution)

Malte Swart NUMA Profilers/Analyze runtime behavior 19 / 33

Existing Profiles
0®00

MemProf: Object lifecycle tracking

Own dynamic library

@ Overrides memory management functions (like malloc) -
stores profile information and calls original library

@ Needs to be loaded manual per LD _PRELOAD or dlsym

Malte Swart NUMA Profilers/Analyze runtime behavior 20 /33

Existing Profiles
0000

MemProf: Thread lifecycle tracking

Own dynamic library

@ Overloaded kernel functions pref_event_task and
perf_event_commO

Malte Swart NUMA Profilers/Analyze runtime behavior 21 /33

Existing Profiles
oooe

MemProf: Memory access tracking

performance monitoring units (PMU)

@ Microarchitecture profiling technique

@ “Instruction Based Sampling” by AMD, “Precise Event
Based Sampling” is similar technique by Intel (PMU
technique)

@ processor selects single instructions on a given frequency

@ interrupt containing information about instruction used to
process the data

@ random based approach — variation of results

Malte Swart NUMA Profilers/Analyze runtime behavior 22 /33

Existing Profiles
©000000

MemAxes

@ Similar profiler like MemProf

o Aggregate profile information from performance
monitoring units (PMUs)

@ Gathers also information about hardware topology
(caches, NUMA nodes .. .)

Malte Swart NUMA Profilers/Analyze runtime behavior 23 /33

Existing Profiles
0®00000

MemAxes: Semantic Annotations

Semantic Annotations

Developer decides which data structures are interested to
profile

Developer can optimal aggregate additional attributes

Listing 1: Profile matrix A

#define N 1024
double A[N][N]; // matrix data object

SMRTree *smrt = new SMRTree();

SMRNode *A_SMR =
smrt ->addSMR ("A", sizeof(double), A, N*N);

Malte Swart NUMA Profilers/Analyze runtime behavior 24 /33

Existing Profiles
0080000

MemAxes: Semantic Annotations (2)

Listing 2: Aggregate further application specific fields

// smrt is from previous example
smrt ->addIntegerAttribute ("x_coord",-1);
smrt ->addIntegerAttribute ("y_coord",-1);

void* mat_attribution(SMRNode *smr, struct mem_sample *
sample)
{
// 0Obtain the index of the address
int bufferIndex = smr->index0f (sample->daddr);
// Calculate the x and y indices (row-major)
sample ->setAttribute("x_coord", bufferIndex % N);
sample->setAttribute("y_coord"”, bufferIndex / N);

Malte Swart NUMA Profilers/Analyze runtime behavior 25 /33

Existing Profiles
000®000

MemAxes: Working Principle

Allocate
i AR [I
Create SMT ping ping ¥
Read Raw
Sample
et s-«-mk
Sample Attribution

Figure : Basic working principle of MemAxes

Malte Swart NUMA Profilers/Analyze runtime behavior 26 /33

Figure : Visualization principle of memAxes; left: hardware topology
in general; right: with cpu latency (color) and usage (line width)

Malte Swart NUMA Profilers/Analyze runtime behavior

Existing Profiles
0000000

MemAxes: Example

Figure : Application with unoptimized affinities

Malte Swart NUMA Profilers/Analyze runtime behavior 28 /33

Existing Profiles

000000e

MemAxes: Example (2)

cpu zidx node index
v I -

Figure : Same application with optimized affinities

Malte Swart NUMA Profilers/Analyze runtime behavior 29 /33

Summary

Tips for algorithm groups

@ Profilers support identifying the cause of intensive remote
memory access

@ NumaTOP is a good start (easily installable, check
whether we have a NUMA problem)

@ vTune could give some hints in what direction to look

@ MemProf not usable as it currently depends on AMD
profiling instructions

@ MemAxes is the most powerful tool, but take a little bit
more time to use it (smaller code adjustments) and | was
unable to find the tracing sources itself

Malte Swart NUMA Profilers/Analyze runtime behavior 30 /33

Summary

Summary

@ Runtime behavior of NUMA applications is difficult to
understand / predict

@ Concrete tracing information needed to identify issues

e Automatic tools (e.g. kernel scheduling) not always able
to produce optimal placing

@ Profilers have currently only limited support for identify
NUMA issues

@ NUMA profilers are an active research and development

field

e Even with this information may it be complicated to
optimize your application
@ NUMA problems remain performance problems

Malte Swart NUMA Profilers/Analyze runtime behavior 31/33

References

References

Images are extracted from the corresponding papers!

@ Lachaize, Renaud, Baptiste Lepers, and Vivien Quéma. MemProf:
A Memory Profiler for NUMA Multicore Systems. USENIX
Annual Technical Conference. 2012. (https://www.usenix.org/
system/files/conference/atcl12/atc12-final229.pdf)

@ MemProf source code. https://github.com/Memprof

@ Alfredo Giménez, Todd Gamblin, Barry Rountree, Abhinav Bhatele,
llir Jusufi, Peer-Timo Bremer, and Bernd Hamann. Dissecting
On-Node Memory Access Performance: A Semantic
Approach. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (to
appear), SC '14, November 2014. LLNL-CONF-658626.
(http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/
sc2014c.pdf)

Malte Swart NUMA Profilers/Analyze runtime behavior 32 /33

https://www.usenix.org/system/files/conference/atc12/atc12-final229.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final229.pdf
https://github.com/Memprof
http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/sc2014c.pdf
http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/sc2014c.pdf

References

References (2)

@ Davis, Alan L., and Uros Prestor. The ccNUMA memory profiler.
Proc. of the 4th IEEE Workshop on Workload Characterization.
2001. (http://www.cs.utah.edu/~ald/pubs/CC-numa.pdf)

@ SNPERF website. http://www.cs.utah.edu/ "uros/snpert/

@ NumaTOP v1.0 Documentation
(https://01.0org/sites/default/files/documentation/
numatop_introduction_0.pdf)

@ PARSEC Benchmark 2.1 (http://parsec.cs.princeton.edu/)
@ [1]: http://www.paradyn.org/CSCADS2013/slides/1iul3.pdf

@ [2]: Vtune Performance Analyze.
http://nsfcac.rutgers.edu/people/irodero/classes/
10-11/ece4b51-566/slides/vtune.pdf

Malte Swart NUMA Profilers/Analyze runtime behavior 33 /33

http://www.cs.utah.edu/~ald/pubs/CC-numa.pdf
http://www.cs.utah.edu/~uros/snperf/
https://01.org/sites/default/files/documentation/numatop_introduction_0.pdf
https://01.org/sites/default/files/documentation/numatop_introduction_0.pdf
http://parsec.cs.princeton.edu/
http://www.paradyn.org/CSCADS2013/slides/liu13.pdf
http://nsfcac.rutgers.edu/people/irodero/classes/10-11/ece451-566/slides/vtune.pdf
http://nsfcac.rutgers.edu/people/irodero/classes/10-11/ece451-566/slides/vtune.pdf

	Motivation
	Improvable memory access patterns
	Existing Profiles
	SNPERF
	NumaTOP
	vTune
	MemProf
	MemAxes

	Summary
	References

