
Performance Counter

Non-Uniform Memory Access Seminar

Karsten Tausche

2014-12-10

Performance Counter

Hardware Unit for event measurements
“Performance Monitoring Unit” (PMU)

Originally for CPU-Debugging
used by manufacturers

Model Specific Register (MSR)

Program and access PMUs

2014-12-10 NUMA Seminar - Karsten Tausche 2

Categories

Total instruction count

Branch instruction (total/conditional)

Load and Store instructions

Arithmetic instructions

Cache events

Uncore events

2014-12-10 NUMA Seminar - Karsten Tausche 3

Motivation
Analyze CPU behavior on instruction level

High Performance Computing
CPU simulators
Embedded

Unmodified Code

Does not effect cache contents
Performance Counter vs. Instrumentation

No performance impact with active PMUs

2014-12-10 NUMA Seminar - Karsten Tausche 4

Outline
• Accessing PMUs
• Performance Counters on Intel Xeon

Definitions
Core/Uncore events

• Accuracy
Analysis
Dependencies
Reducing Inaccuracies

• Tools
Intel Performance Counter Monitor
Perf
PAPI
Intel Perf

2014-12-10 NUMA Seminar - Karsten Tausche 5

Counter Access
Select counted events

Either fixed function PMU
Or multiple countable events per PMU

Configure counters
Start/stop
Count in kernel/user-mode
Read/write values

Programming via MSR bitfields
CPU model specific field definitions
MSRs accessible only in kernel mode

2014-12-10 NUMA Seminar - Karsten Tausche 6

Counter Access

PMU event counting per core/hyper thread

Kernel mode driver and user space library/tool
Counter per software thread

Generalized PMU programming with event IDs

Access in user mode, without root privileges

[Abstraction from platform/operating system]

2014-12-10 NUMA Seminar - Karsten Tausche 7

Performance Counter on Intel Xeon

“instructions_retired”
Executed by speculative
out-of-order pipeline

Handled by Retirement Unit

Results visible to user

2014-12-10 NUMA Seminar - Karsten Tausche 8

Performance Counter on Intel Xeon

“Uncore”
per socket
resources

“Box”
modular
uncore unit

2014-12-10 NUMA Seminar - Karsten Tausche 9

Intel Xeon E5-2600 Family (Sandy Bridge EP)

Core Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 10

Instructions counts
total, branches,

arithmetic, …

Core Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 11

Intel Turbo Boost
frequencies

Core Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 12

L1, L2 Cache
hits and misses

Uncore Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 13

Last Level Cache
(shared L3 cache)
hits and misses

Uncore Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 14

Home Agent
memory controller and

cache coherency
memory read/write,

local/remote,
conflicts,

directory/snooping

Pbox
Physical connection

between cores
or sockets

Uncore Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 15

Integrated
Memory Controller

DRAM access
read/write queues,

ECC correctable errors,
refreshes,

thermal throttling

Uncore Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 16

QPI
Ring ↔ Link Layer

(socket interconnect)

Filter event counts:
physical address,
Home Node ID,

instruction

Uncore Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 17

QPI
Ring ↔ Link Layer

(socket interconnect)

link speed,
transfers,

total link utilization

Uncore Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 18

Power Controller Unit
Socket energy usage
DRAM energy usage

Uncore Performance Counter on Intel Xeon

2014-12-10 NUMA Seminar - Karsten Tausche 19

Power Controller Unit
per core

temperature
time spent in power states

Performance Counters per Box

2014-12-10 NUMA Seminar - Karsten Tausche 20

CBox: 4

Home Agent: 4

iMC: 4 per channel

PCU: 4 QPI: 4 per port + 3 Ubox (system config): 2

PCIe: 4

Performance Counters on Intel Xeon

ubuntu-numa0101.fsoc: Linux 3.13, 2x Intel Xeon E5-2620

• 57 (+x) Performance Monitoring Units per socket

• 634 countable events

• Allowing comprehensive runtime analysis

• Mostly focused on a few context specific events

2014-12-10 NUMA Seminar - Karsten Tausche 21

Accuracy

Not defined/guarantied by manufacturer
At least not for Intel/AMD

Speculative architecture
Out-of-order pipeline, serving multiple computing units

Branch prediction

Hardware parallelization
CPU behavior depending on timings, cache-contents, etc.

2014-12-10 NUMA Seminar - Karsten Tausche 22

Accuracy Analysis

[Weaver2013]

Non-determinism
Identical run, different result

Overcount
Same (wrong) result for identical runs

2014-12-10 NUMA Seminar - Karsten Tausche 23

Accuracy Analysis
[Weaver2013]

One deterministic event without overcount on Sandy Bridge EP:
 BR_INST_RETIRED_CONDITIONAL

(executed conditional branch instructions)

PMU hardly usable for deterministic implementations
Deterministic replay
Deterministic threading libraries
CPU simulators

Don’t use micro-operation-counter
System specific, undocumented low-level instructions in CISC processors

2014-12-10 NUMA Seminar - Karsten Tausche 24

Inaccuracy Sources

[Weaver2013]

Hardware Interrupts: increment most events
Nondeterministic overcount

Wrong/unintuitive counter behavior
Floating point instructions with “wait for exception” – count twice?

Count µOPs instead of retired instructions (e.g., load/store events)

Accessing counters
Requires system call (interrupt, context switch)

2014-12-10 NUMA Seminar - Karsten Tausche 25

Reduce Inaccuracies

Carefully controlled test environment
Kernel version, tool versions

Running processes

BIOS/Power saving settings

Compiler/Runtime configuration
E.g., Address space layout randomization

2014-12-10 NUMA Seminar - Karsten Tausche 26

Reduce Inaccuracies

Prefer low-level APIs
Prefer dynamic library over command line tool

Compare tools/libraries

[Read papers]

[Check errors with well known Assembly]

2014-12-10 NUMA Seminar - Karsten Tausche 27

Error Rates
Counted instructions in the micro benchmark use by [Weaver2013]

Integer divides
Nehalem: 11.2%
Nehalem-EX: 1.1%
Sandy Bridge EP: n/a
Ivy Bridge: 2.8%

Floating point instructions
Nehalem: 0.0%
Nehalem EX 0.0%
Sandy Bridge EP: 0.003%
Ivy Bridge: 0.08%

2014-12-10 NUMA Seminar - Karsten Tausche 28

Using Performance Counters

Use Profilers first
Using automated tests

Partly implemented with Performance Counter

Optimize as much as possible

Low level analysis with Performance Counters
Optimize problematic code sections

Platform specific optimization

Benefit from minimal overhead

2014-12-10 NUMA Seminar - Karsten Tausche 29

Tools and Libraries

• Intel Performance Counter Monitor

• Perfmon/libpfm

• Linux Perf

• PAPI

2014-12-10 NUMA Seminar - Karsten Tausche 30

Intel Performance Counter Monitor

Tools and C++ programming interface

Full support for Intel core/uncore events

Supports newer Intel Xeon, Core i, Atom
Uncore mainly available on server platforms

2014-12-10 NUMA Seminar - Karsten Tausche 31

Intel Performance Counter Monitor

Provided by Intel as source code
Driver; GUI/command line tools; C++ library

Linux
build upon MSR kernel module

KDE: ksysguard plug-in

Windows
compile/modify sample driver

Perfmon plug-in

2014-12-10 NUMA Seminar - Karsten Tausche 32

Intel Performance Counter Monitor
Ksysguard (KDE System Monitor)

2014-12-10 NUMA Seminar - Karsten Tausche 33

Intel Performance Counter Monitor
Windows Performance Monitor

2014-12-10 NUMA Seminar - Karsten Tausche 34

perf – “Performance Counters for Linux”

Part of Linux since v2.6.31 (2009)
before: patch and compile your kernel

Command-line tool “perf” (userspace)
Debian/Ubuntu-Package “linux-tools”

perf list
Detects supported events
But no support for finding relevant events

perf stat -e [eventName] command
Run command and count eventName

2014-12-10 NUMA Seminar - Karsten Tausche 35

Linux: perfmon2 / libpfm

Originated from own kernel subsystem
Kernel driver: perfmon2, userspace library: libpfm

Superseded by Linux’ perf_events interface
Part of kernel since v2.6.31, 2009

Libpfm3 – IA64-subsystem in Linux by HP

Libpfm4 – complete rewrite by Google

2014-12-10 NUMA Seminar - Karsten Tausche 36

Linux: libpfm4
Using Linux perf_events interface
libpfm4

Retrieve supported events per source
Translating event IDs and names
Program events

Architecture support
Intel x86: since Pentium P6, Core Duo/Solo, Atom, Nehalem
AMD64 x86: K7, K8 and newer; uncore since Bulldozer
Some ARM, SPARC, IBM Power, MIPS models

2014-12-10 NUMA Seminar - Karsten Tausche 37

Libpfm4 on ubuntu-numa0101.fsoc

Source code: examples and tools

showevtinfo (example tool)
Lists supported and detected PMUs

Xeon E5-2620 (Sandy Bridge EP):

Lists 4196 available events, 634 supported

Per event: PMU, index, parameters, description

2014-12-10 NUMA Seminar - Karsten Tausche 38

Libpfm4 on ubuntu-numa0101.fsoc
showeventinfo

IDX : 37748741
PMU name : ix86arch (Intel X86 architectural PMU)
Name : BRANCH_INSTRUCTIONS_RETIRED
Equiv : None
Flags : None
Desc : count branch instructions at retirement. Specifically, this event counts the retirement of the
last micro-op of a branch instruction
Code : 0xc4
Modif-00 : 0x00 : PMU : [k] : monitor at priv level 0 (boolean)
Modif-01 : 0x01 : PMU : [u] : monitor at priv level 1, 2, 3 (boolean)
Modif-02 : 0x02 : PMU : [e] : edge level (may require counter-mask >= 1) (boolean)
Modif-03 : 0x03 : PMU : [i] : invert (boolean)
Modif-04 : 0x04 : PMU : [c] : counter-mask in range [0-255] (integer)
Modif-05 : 0x05 : PMU : [t] : measure any thread (boolean)

2014-12-10 NUMA Seminar - Karsten Tausche 39

PAPI
Performance Application Programming Interface

Platform independent PMU interface
Provide standard definitions for performance metrics
“easy to use, well documented, freely available”

Windows support discontinued after XP
Preset Events

Supported across [nearly] all platforms

High Level API
Simplified access to Preset Events

Low Level API
Adds access to native events

2014-12-10 NUMA Seminar - Karsten Tausche 40

PAPI
Performance Application Programming Interface

High Level API: core events only
Uncore still requiring Low Level API

papi_avail
Check available events

papi_event_chooser
List events that can be combined with a given list

papi_native_avail
Detailed information about native events

2014-12-10 NUMA Seminar - Karsten Tausche 41

Demo
perf
• perf stat -e instructions:u -e cache-misses:u ./cache-miss

count total instructions and cache-misses, both in user mode

• perf stat -r 10 …
run command 10 times, print average and stddev

libpfm4 examples in libpfm/libpfm-4.5.0/examples
• ./showevtinfo | less

lists first PMUs supported by libpfm and detected on your system
also lists all supported events with description and parameters

2014-12-10 NUMA Seminar - Karsten Tausche 42

Demo sources
/NUMASem/demo_PerformanceCounter/
• cache-miss / cache-miss2

use perf stat to check cache misses with different array iteration patterns

• libpfm_cache-miss
Uses libpfm4 library calls to count cache events
List of measured events is defined by “eventNames” string vector
This is a simplified version of libpfm examples:
 /NUMASem/libpfm-4.5.0/perf_examples/self.c

• libpfm_qpi_remote
Uses libpfm4 to count QPI events and libnuma to pin the task and allocated memory
to different sockets.
See line 75 to switch between allocating memory on local or remote socket.

2014-12-10 NUMA Seminar - Karsten Tausche 43

Sources
• Zaparanuks, D.; Jovic, M.; Hauswirth, M., “Accuracy of performance

counter measurements”, 2009
• Weaver, V.M.; Terpstra, D.; Moore, S. “Non-determinism and overcount on

modern hardware performance counter implementations”, 2013
• “Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume

3B: System Programming Guide, Part 2”, September 2014
• https://software.intel.com/en-us/articles/intel-performance-counter-

monitor-a-better-way-to-measure-cpu-utilization
• http://perfmon2.sourceforge.net/
• http://icl.cs.utk.edu/projects/papi/wiki/Main_Page
• Linux man pages

2014-12-10 NUMA Seminar - Karsten Tausche 44

https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/
http://icl.cs.utk.edu/projects/papi/wiki/Main_Page
http://icl.cs.utk.edu/projects/papi/wiki/Main_Page

