

OpenMP – an overview
Seminar Non-uniform Memory Access (NUMA), WS2014/15

Matthias Springer

Hasso Plattner Institute, Operating Systems and Middleware Group

January 14, 2015

OpenMP – an overview

Overview

What is OpenMP?

Comparison of Multiprocessing Libraries

OpenMP API

ForestGOMP: NUMA with OpenMP

Matrix Multiply with OpenMP and MPI

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 2 / 39

OpenMP – an overview◮ What is OpenMP?

What is OpenMP? [5]

• OpenMP = Open Multi-Processing

• API for multi-platform shared memory multiprocessing

• Set of compiler directives, library routines, and environment

variables

• Programing languages: C, C++, Fortran

• Operating Systems: e.g. Solaris, AIX, Linux, Mac OS X, Windows

• OpenMP Architecture Review Board: group of hardware and software
vendors

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 3 / 39

OpenMP – an overview◮ What is OpenMP?

Shared Memory Multiprocessing [4]

Interconnect

CPU CPU CPU CPU

Memory

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 4 / 39

OpenMP – an overview◮ Comparison of Multiprocessing Libraries

Overview

What is OpenMP?

Comparison of Multiprocessing Libraries

OpenMP API

ForestGOMP: NUMA with OpenMP

Matrix Multiply with OpenMP and MPI

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 5 / 39

OpenMP – an overview◮ Comparison of Multiprocessing Libraries

OpenMP vs. pthreads vs. MPI

• pthreads: low-level programming
− Programmer specifies behavior of each thread
− Links against libpthread: no compiler support required

• OpenMP: higher-level programming
− Programmer specifies that a piece of code should be executed in parallel
− Required compiler support (e.g. preprocessor)

• MPI: Message Passing Interface
− Communication based on message sending and receiving
− No shared memory, designed for distributed systems

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 6 / 39

OpenMP – an overview◮ OpenMP API

Overview

What is OpenMP?

Comparison of Multiprocessing Libraries

OpenMP API
parallel Directive
Compiling OpenMP programs
Notation
Scope of Variables
parallel for Directive
reduce Clause
Synchronization

ForestGOMP: NUMA with OpenMP

Matrix Multiply with OpenMP and MPI
Hasso Plattner Institute, Operating Systems and

Middleware Group OpenMP – an overview January 14, 2015 7 / 39

OpenMP – an overview◮ OpenMP API◮ parallel Directive

Running Function on Multiple Threads [4]

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

void hello_world(void)

{

int my_rank = omp_get_thread_num ();

int thread_count = omp_get_num_threads ();

printf("Thread %d of %d says Hello !\n", my_rank , thread_count);

}

int main(int argc , char* argv [])

{

int thread_count = strtol(argv[1], NULL , 10);

#pragma omp parallel num_threads(thread_count)

hello_world ();

return 0;

}

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 8 / 39

OpenMP – an overview◮ OpenMP API◮ Compiling OpenMP programs

Compiling OpenMP Programs

• Compile: gcc -fopenmp -o hello hello.c

• Run: ./hello 3

Thread 1 of 3 says Hello!

Thread 0 of 3 says Hello!

Thread 2 of 3 says Hello!

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 9 / 39

OpenMP – an overview◮ OpenMP API◮ Compiling OpenMP programs

OpenMP Compilation Process

• Annotated Source Code → OpenMP Compiler → Parallel Object Code

• Compiler can also generate sequential object code

• Compiler Front End: parse OpenMP directives, correctness checks

• Compiler Back End: replace constructs by calls to runtime library,
change structure of program (e.g., put parallel section in a function to
fork it)

• See https://iwomp.zih.tu-dresden.de/downloads/

OpenMP-compilation.pdf for more details

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 10 / 39

https://iwomp.zih.tu-dresden.de/downloads/OpenMP-compilation.pdf

https://iwomp.zih.tu-dresden.de/downloads/OpenMP-compilation.pdf

OpenMP – an overview◮ OpenMP API◮ Notation

Notation (Syntax)

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

void hello_world(void)

{

int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads();

printf("Thread %d of %d says Hello!\n", my_rank , thread_count);

}

int main(int argc, char* argv[])

{

int thread_count = strtol(argv[1], NULL, 10);

#pragma omp parallel num_threads(thread_count)

hello_world();

return 0;

}

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 11 / 39

OpenMP – an overview◮ OpenMP API◮ Notation

Notation (Syntax) [1]

• Directive: pragma statement
e.g. #pragma omp parallel [clause [[,] clause] . . .]
structured-block

• Runtime Library Routine: function defined in omp.h

e.g. omp_get_thread_num()

• Structured Block: Single statement or compound statement with a
single entry at the top and a single exit at the bottom

• Clause: modifies a directive’s behavior
e.g. num_threads(integer-expression)

• Environment Variable: defined outside the program
e.g. OMP_NUM_THREADS

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 12 / 39

OpenMP – an overview◮ OpenMP API◮ Notation

Notation (OpenMP)

• Master Thread: original thread

• Slave Threads: all additional threads

• Team: master thread + slave threads

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 13 / 39

OpenMP – an overview◮ OpenMP API◮ Scope of Variables

Scope of Variables

• shared scope: variable can be accessed by all threads in team
variables declared outside a structured block following a parallel

directive

• private scope: variable can be accessed by a single thread
variable declared inside a structured block following a parallel

directive

int foo = 42;

int bar = 40;

#pragma omp parallel private(foo) shared(bar) default(none)

{

int x;

/* foo and x are private */

/* bar is shared */

}

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 14 / 39

OpenMP – an overview◮ OpenMP API◮ Scope of Variables

Handout only: Scope of Variables

• Private variables are uninitialized.

• Initialize variables with values from master thread: firstprivate.

• default(none) requires programmer to specify visibility for all variables
implicitly (good practice).

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 14E / 39

OpenMP – an overview◮ OpenMP API◮ parallel for Directive

parallel for Directive

#include <stdlib.h>

#include <omp.h>

int main(int argc , char* argv [])

{

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < 3; ++i)

{

printf("Thread %d of %d says Hello !\n",

omp_get_thread_num (), omp_get_num_threads ());

}

}

}

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 15 / 39

OpenMP – an overview◮ OpenMP API◮ parallel for Directive

Handout only: parallel for Directive

• Runs loop iterations in parallel.

• Shortcut: #pragma omp parallel for

• Loop iterations must be data-independent.

• Loop must be in canonical form.
− E.g.: test condition is <, <=, >, etc.; operation is increment.
− OpenMP must be able to determine the number of iterations before

the loop is executed.

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 15E / 39

OpenMP – an overview◮ OpenMP API◮ parallel for Directive

parallel for Directive

Mapping of iterations to threads controlled by schedule clause.

• schedule(static [, chunksize]): block of chunksize iterations statically
assigned to thread

• schedule(dynamic [, chunksize]): thread reserves chunksize iterations from
queue

• schedule(guided [, chunksize]): same as dynamnic, but chunk size starts
big and gets smaller and smaller, until it reaches chunksize.

• schedule(runtime): scheduling behavior determined by environment
variable

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 16 / 39

OpenMP – an overview◮ OpenMP API◮ reduce Clause

Example: Sum of List of Integers

#include <stdlib.h>

#include <omp.h>

int main(int argc , char* argv [])

{

int sum = 0;

int A[100];

int i;

for (i = 0; i < 100; ++i) A[i] = i;

#pragma omp parallel for

for (i = 0; i < 100; ++i)

{

sum += A[i];

}

printf("Sum: %d\n", sum);

}

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 17 / 39

OpenMP – an overview◮ OpenMP API◮ reduce Clause

reduce Clause

#include <stdlib.h>

#include <omp.h>

int main(int argc , char* argv [])

{

int sum = 0;

int A[100];

int i;

for (i = 0; i < 100; ++i) A[i] = i;

#pragma omp parallel for reduction (+:sum)

for (i = 0; i < 100; ++i)

{

sum += A[i];

}

printf("Sum: %d\n", sum);

}

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 18 / 39

OpenMP – an overview◮ OpenMP API◮ reduce Clause

reduce Clause

• Compiler creates local private copy per variable

• +, initial value 0

• −, initial value 0

• ∗, initial value 1

• Also support for &, |, ˆ, &&, || in C/C++

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 19 / 39

OpenMP – an overview◮ OpenMP API◮ Synchronization

Critical Sections

#include <stdlib.h>

#include <omp.h>

int main(int argc , char* argv [])

{

int sum = 0;

int A[100];

int i;

for (i = 0; i < 100; ++i) A[i] = i;

#pragma omp parallel for

for (i = 0; i < 100; ++i)

{

#pragma omp critical

sum += A[i];

}

printf("Sum: %d\n", sum);

}

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 20 / 39

OpenMP – an overview◮ OpenMP API◮ Synchronization

Atomic Statements

#include <stdlib.h>

#include <omp.h>

int main(int argc , char* argv [])

{

int sum = 0;

int A[100];

int i;

for (i = 0; i < 100; ++i) A[i] = i;

#pragma omp parallel for

for (i = 0; i < 100; ++i)

{

#pragma omp atomic

sum += A[i];

}

printf("Sum: %d\n", sum);

}

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 21 / 39

OpenMP – an overview◮ OpenMP API◮ Synchronization

Handout only: Atomic Statements

• Behavior is implementation-specific, but might use special CPU
instructions (e.g. atomic fetch add).

• Supports x binop= y, x++, ++x, x--, --x.

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 21E / 39

OpenMP – an overview◮ OpenMP API◮ Synchronization

More Synchronization Constructs

• #pragma omp barrier: wait until all threads arrive

• #pragma omp for nowait: remove implicit barrier after for loop (also exists
for other directives)

• #pragma omp master: only executed by master thread

• #pragma omp single: only executed by one thread

• Sections: define a number of blocks, every thread executes one block

• Locks: omp_init_lock(), omp_set_lock(), omp_unset_lock(), . . .

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 22 / 39

OpenMP – an overview◮ ForestGOMP: NUMA with OpenMP

Overview

What is OpenMP?

Comparison of Multiprocessing Libraries

OpenMP API

ForestGOMP: NUMA with OpenMP

Matrix Multiply with OpenMP and MPI

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 23 / 39

OpenMP – an overview◮ ForestGOMP: NUMA with OpenMP

Implementation: ForestGOMP [2]

• Objectives and Motivation
− Keep buffers and threads operating on them on the same NUMA node

(reducing contention)
− Processor level: group threads sharing data intensively (improve cache

usage)

• Triggers for scheudling
− Allocation/deallocation of resources
− Processor becomes idle
− Change of hardware counters (e.g., cache miss, remote access rate)

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 24 / 39

OpenMP – an overview◮ ForestGOMP: NUMA with OpenMP

BubbleSched: Hierarchical Bubble-Based Thread Scheduler

4x NUMA Node Runqueues

4x 4x Core Runqueues

Machine Runqueue

• Runqueue for different hierarchical levels

• Bubble: group of threads sharing data or heavy synchronization

• Responsible for scheduling threads

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 25 / 39

OpenMP – an overview◮ ForestGOMP: NUMA with OpenMP

Mami: NUMA-aware Memory Manager

• API for memory allocation

• Can migrate memory to a different NUMA node

• Supports Next Touch policy: migrate data to NUMA node of
accessing thread

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 26 / 39

OpenMP – an overview◮ ForestGOMP: NUMA with OpenMP

Handout only: Memory Relocation with Next Touch [3]

• Buffers are marked as migrate-on-next-touch when a thread migration
is expected

• Buffer is relocated if thread touches buffer that is not located on local
node

• Implemented in kernel mode

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 26E / 39

OpenMP – an overview◮ ForestGOMP: NUMA with OpenMP

ForestGOMP: Mami-aware OpenMP Runtime

• Mami attaches memory hints: e.g., which regions are access frequently
by a certain thread

• Initial distribution: put thread and corresponding memory on same
NUMA node (local accesses)

• Handle idleness: steal threads from local core, then from different
NUMA node (also migrates memory; prefers threads with less memory)

• Two levels of distribution: memory-aware, then cache-aware

Hasso Plattner Institute, Operating Systems and
Middleware Group OpenMP – an overview January 14, 2015 27 / 39

OpenMP – an overview◮ ForestGOMP: NUMA with OpenMP

References

OpenMP Architecture Review Board.
Openmp 3.1 api c/c++ syntax quick reference card, 2011.

François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André
Wacrenier, and Raymond Namyst.
Forestgomp: An efficient openmp environment for numa architectures.
International Journal of Parallel Programming, 38(5-6):418–439, 2010.

Brice Goglin, Nathalie Furmento, et al.
Memory migration on next-touch.
In Linux Symposium, 2009.

P.S. Pacheco.
An Introduction to Parallel Programming.
An Introduction to Parallel Programming. Morgan Kaufmann, 2011.

Wikipedia.
Openmp — wikipedia, the free encyclopedia, 2014.
[Online; accessed 14-December-2014].Hasso Plattner Institute, Operating Systems and

Middleware Group OpenMP – an overview January 14, 2015 28 / 39

Matrix Multiply with OpenMP and MPI
Seminar Non-uniform Memory Access (NUMA), WS2014/15

Carolin Fiedler, Matthias Springer

Hasso Plattner Institute, Operating Systems and Middleware Group

January 14, 2015

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Overview

What is OpenMP?

Comparison of Multiprocessing Libraries

OpenMP API

ForestGOMP: NUMA with OpenMP

Matrix Multiply with OpenMP and MPI

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 30 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Idea

• Distribute work on nodes with MPI (no memory sharing)
1 worker per node

• Parallelize work on a single node with OpenMP (shared memory)
1 thread per core

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 31 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Message Passing

A

B

C

• Replicate B on all MPI workers

• For n MPI workers, divide A in n stripes, every worker gets one stripe

• Result matrix C contains one stripe per worker

• Message passing (remote memory access) during send (distribute) and
collect phases

• Local memory access only during multiplication and add

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 32 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Live Demo and Source Code

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 33 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Source Code (OpenMP)

#pragma omp parallel default (none) shared(A,B,C,offset ,rows)

private(i,j,k)

{

#pragma omp for

for (j = 0; j < M; j++)

for (i = offset; i < offset + rows; i++)

for (k = 0; k < P; k++)

C[i][j] += A[i][k] * B[k][j];

}

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 34 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Performance Measurements

• Matrix size: 2048 x 2048

• (MPI) 1 x (OpenMP) 1: 110.3 s

• 1 x 2: 55.6 s

• 1 x 12: 12.7 s

• 1 x 24: 10 s

• 2 x 12: 9.8 s

• 12 x 2: 10.7 s

• 24 x 1: 11.5 s

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 35 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Best Configuration

• 2 x 12: 9.8 s

• System has 2 NUMA nodes (sockets)

• Every socket has 12 cores (6 real ones + 6 HyperThreading)

• Only local memory accesses inside an OpenMP thread

export OMP_NUM_THREADS =12

mpirun -np 2 --bysocket --bind -to -socket --report -bindings ./a.out

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 36 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Hardware-specific Performance Optimizations

• ubuntu-numa0101 machine details
− 2x Intel Xeon E5-2620 (Sandy Bridge) CPU

• 6 cores, 2.0 GHz each
• 6x 32 KB L1 cache (32 KB instruction, 32 KB data)
• 6x 256 KB L2 cache
• 1x 15 MB shared L3 cache

− 64 GB RAM

• Optimizations
− Transposition: read matrices row-wise
− Blocking: access matrices in chunks that fit into the cache
− SSE (Streaming SIMD Extensions): add, multiply two 128-bit vectors;

some CPUs have fused multiply-add units
− Alignment: aligned (16 byte) loads are faster than unaligned loads
− Loop Unrolling: less branches in the assembly code, instruction-level

parallelism
− Parameter Tuning: brute-force different blocking sizes per matrix size

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 37 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

Matrix Transposition
Image taken from Wikipedia [6]

A

B

a1,1

a3,1 a3,2

a2,1 a2,2

a4,1 a4,2

a1,2

b1,2

b2,2

b1,3

b2,3

b1,1

b2,1

• Matrices stored row-wise in main memory

• Matrix A: reading row-wise, Matrix B: reading column-wise

• Prefetching: 64 byte cache line, will read 8 doubles from B but only
use one of them

• Transpose matrix B for more cache hits

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 38 / 39

Matrix Multiply with OpenMP and MPI◮ Matrix Multiply with OpenMP and MPI

L1/L2 Blocking

A

B

a1,1

a3,1 a3,2

a2,1 a2,2

a4,1 a4,2

a1,2

b1,2

b2,2

b1,3

b2,3

b1,1

b2,1

• Divide matrices in block and iterate over all combinations of blocks

• L1 Blocking: cache big enough for 32768
8

= 4096 doubles, block size
√

4096
2

= 45.2, use 40 × 40 blocks to ensure that entire cache line is

used

• L2 Blocking: 128 × 128 blocks

Hasso Plattner Institute, Operating Systems and
Middleware Group Matrix Multiply with OpenMP and MPIJanuary 14, 2015 39 / 39

		What is OpenMP?

		Comparison of Multiprocessing Libraries

		OpenMP API

		parallel Directive

		Compiling OpenMP programs

		Notation

		Scope of Variables

		parallel for Directive

		reduce Clause

		Synchronization

		ForestGOMP: NUMA with OpenMP

		Matrix Multiply with OpenMP and MPI

