
NUMA Kernel APIs
Dimitri Korsch
NUMA Seminar | 03.12.2014

NUMA Kernel APIs Dec 3rd, 2014

Agenda

2

1. Solaris

2. Linux

3. Windows

4. Portable Hardware Locality - hwloc

NUMA Kernel APIs Dec 3rd, 2014

0. What is a “Node”?

node = at least one processor
and associated local memory

node = all memory has the
same speed as seen from a

particular set of CPUs

node = “Each node has its own
processors and memory ...”

Solaris [1]

Windows [3]

Linux [2]

3

NUMA Kernel APIs Dec 3rd, 2014

1. Solaris
locality groups

- Locality groups (lgrp): processor and memory resources

- lgrp is an hierarchical directed acyclic graph (DAG)

- lgrps are enumerated with respect to the root node of the DAG

- LIVE DEMO: lgrpinfo

DEFINITION:
node = at least one processor
and associated local memory [1]

4

NUMA Kernel APIs Dec 3rd, 2014

lgroup 0 (root):

 Children: 1 2

 CPUs: 0-7

 Memory: installed 16G, allocated 3.8G, free 12G

 Lgroup resources: 1 2 (CPU); 1 2 (memory)

 Latency: 90

lgroup 1 (leaf):

 Children: none, Parent: 0

 CPUs: 0-3

 Memory: installed 8.0G, allocated 1.8G, free 6.2G

 Lgroup resources: 1 (CPU); 1 (memory)

 Load: 0.263

 Latency: 54

lgroup 2 (leaf):

 Children: none, Parent: 0

 CPUs: 4-7

 Memory: installed 8.0G, allocated 2.0G, free 6.0G

 Lgroup resources: 2 (CPU); 2 (memory)

 Load: 0

 Latency: 54
5

NUMA Kernel APIs Dec 3rd, 2014

1. Solaris
memory placement

- 2 Modes:

- next-touch

- next thread which touches a specific block of memory will

possibly have access to it locally i.e. if remote memory is

accessed it will possibly be migrated

- default for thread private data

- random

- Memory is placed randomly amongst the lgrps

- useful for shared memory regions accessed by multiple

threads

- placement verification:

- variety of tools to monitor process and thread lgrp mappings

6

NUMA Kernel APIs Dec 3rd, 2014

1. Solaris
kernel API: liblgrp (#include <sys/lgrp_user.h>)

- lgrp information

- provide memory management hints to the OS

- madvise():

memory placement advice to kernels virtual memory manager

- meminfo():

virtual to physical memory mapping information

- 3 levels of thread affinity: strong, weak or none

- memory placement is determined

- firstly by the allocation policy

- then with respect to threads accessing it

- NO direct API for allocating memory to specific lgrp

- bind thread ot specific processor with processor_bind()

7

NUMA Kernel APIs Dec 3rd, 2014

2. Linux

- support since 2.5 Linux Kernel

- more information from Lukas and Fredrik

DEFINITION:
node = all memory has the same
speed as seen from a particular

set of CPUs
[2]

8

NUMA Kernel APIs Dec 3rd, 2014

1. local (default)

○ map pages on to the physical node which faulted them in

○ maximizes data locality in many cases

2. strict allocation to a node

○ Memory allocation at a given node, fails if there is not enough

○ memory on the node

3. prefered

○ try on prefered node

○ fallback to default policy

4. interleaved

○ memory is dispersed equally amongst the nodes

2. Linux
memory management policies

9

NUMA Kernel APIs Dec 3rd, 2014

sys calls to implement different NUMA policies:

- modify scheduling and virtual memory related variables within the

kernel

- mbind(): set NUMA policy for a specific memory area

- set_mempolicy(): set policy for a specific process

- sched_setaffinity(): set process' CPU affinity

 ⇒ difficult to use

2. Linux
kernel API

10

NUMA Kernel APIs Dec 3rd, 2014

2. Linux
kernel API: libnuma (#include <numa.h>) & numactl

numactl

- command line tool to control the NUMA policy and CPU placement of an

entire executable

- also can be used to display NUMA related hardware configuration and

configuration status

libnuma

- user space shared library (cc <...> -lnuma)

- usefull functions like numa_run_on_node() for application programming

- for more information: man libnuma

- does NOT provide a means for determining where a given area of memory

is physically located

11

NUMA Kernel APIs Dec 3rd, 2014

2. Linux
kernel API: libnuma example
https://gist.github.com/dc8c4283ac2bdae4322e.git

if(numa_available() < 0)

printf("System does not support NUMA API!\n");

int n = numa_max_node();

int size = 1024 * 1024;

printf("There are %d nodes on your system\n", n + 1);

void *mem = numa_alloc_onnode(size, n);

if(mem == NULL)

printf("could not allocate memory on node %d!\n", n);

numa_free(mem, size);

if (numa_run_on_node(n) != 0)

printf("could not assign current thread to node %d!\n", n);

12

https://gist.github.com/dc8c4283ac2bdae4322e.git
https://gist.github.com/dc8c4283ac2bdae4322e.git

NUMA Kernel APIs Dec 3rd, 2014

- Basic terminology:

- logical processor < core < physical processor

- processor group = up to 64 logical processors

⇒ not supported by XP, Vista, Server 2003, Server 2008

DEFINITION (from Windows online Docs):
node = “Each node has its own

processors and memory ...”

3. Windows

[3]

13

NUMA Kernel APIs Dec 3rd, 2014

- logical processors are assigned on the start to a group

- system takes physical locality into account when assigning

- nodes are assigned to a single group; multiple nodes in one group

possible

- node with more than 64 logical processors ⇒ node is splitted

3. Windows
processor groups

14

NUMA Kernel APIs Dec 3rd, 2014

3. Windows
processor groups

2x Xeon E5-2620

6 Cores / 12 Logical Procs

Xeon Phi

50+ Cores

15

NUMA Kernel APIs Dec 3rd, 2014

1. node layout

- GetNumaHighestNodeNumber

- GetProcessAffinityMask - returns list (mask) of processors

- GetNumaProcessorNode / -Ex - returns node of a processor

- GetNumaNodeProcessorMask / -Ex - returns list (mask) of processors in a node

2. set process’ / thread’s affinities

- SetProcessAffinityMask

- SetThreadAffinityMask

3. allocate memory

- GetNumaAvailableMemoryNode / -Ex - available memory to a node

- VirtualAllocExNuma - specify prefered node

⇒ memory allocation on demand; if node out of memory, allocate from other

nodes

3. Windows
kernel API (#include <windows.h>) [3]

16

NUMA Kernel APIs Dec 3rd, 2014

PSYSTEM_LOGICAL_PROCESSOR_INFORMATION buffer = NULL;
GetLogicalProcessorInformation(buffer, &size); // MAGIC
while(offset + sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION) <= size){
 switch (buffer->Relationship){
 case RelationNumaNode: numaNodeCount++; break;

 case RelationProcessorCore: processorCoreCount++;

 logicalProcessorCount += CountSetBits(buffer->ProcessorMask);

 break;

 case RelationCache:

 if (&buffer->Cache->Level == 1) processorL1CacheCount++;

 else if (&buffer->Cache->Level == 2) processorL2CacheCount++;

 else if (&buffer->Cache->Level == 3) processorL3CacheCount++;

 break;

 }

 offset += sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION); buffer++;

}

3. Windows
kernel API example
https://gist.github.com/df6bc5953babc6fd3a7a.git

17

https://gist.github.com/df6bc5953babc6fd3a7a.git
https://gist.github.com/df6bc5953babc6fd3a7a.git

NUMA Kernel APIs Dec 3rd, 2014

GetLogicalProcessorInformation results:

Number of NUMA nodes: 1

Number of processor cores: 2

Number of logical processors: 4

Number of processor L1/L2/L3 caches: 4/2/1

3. Windows
kernel API example
https://gist.github.com/df6bc5953babc6fd3a7a.git

18

https://gist.github.com/df6bc5953babc6fd3a7a.git
https://gist.github.com/df6bc5953babc6fd3a7a.git

NUMA Kernel APIs Dec 3rd, 2014

4. Portable Hardware Locality - hwloc

- Subproject of OpenMPI group

- command line tools and a C API

- gathers various attributes such as cache and memory information

- primarily aims at helping high-performance computing applications

- supported operating systems:

- Linux

- Microsoft Windows

- Solaris

- AIX

- Darwin / OS X

- FreeBSD and its variants (such as kFreeBSD/GNU)

- NetBSD

- OSF/1 (a.k.a., Tru64)

- HP-UX

- IBM BlueGene/Q Compute Node Kernel (CNK)

19

NUMA Kernel APIs Dec 3rd, 2014

4. Portable Hardware Locality - hwloc: lstopo

20

NUMA Kernel APIs Dec 3rd, 2014

4. Portable Hardware Locality - hwloc
installation (Linux) and compilation

- get sources (http://www.open-mpi.org/projects/hwloc/)

- ./configure --prefix=$HWLOC_HOME

(HWLOC_HOME = ~/hwloc)

- make && make install

- create hwloc_ex.c

- gcc hwloc_ex.c \

-I$(HWLOC_HOME)/include \

-o hwloc-ex \

-L$(HWLOC_HOME)/lib -lhwloc

21

http://www.open-mpi.org/projects/hwloc/

NUMA Kernel APIs Dec 3rd, 2014

/* Allocate and initialize topology object. */

hwloc_topology_t topology;

hwloc_topology_init(&topology);

hwloc_topology_load(topology);

int topodepth = hwloc_topology_get_depth(topology);

>>> [go over each level and show objects(devices)] <<<

int depth = hwloc_get_type_depth(topology, HWLOC_OBJ_SOCKET);

printf("%u sockets\n", hwloc_get_nbobjs_by_depth(topology, depth));

4. Portable Hardware Locality - hwloc
1st example
https://gist.github.com/4c5f9e4b90c5a2276e9b.git

22

https://gist.github.com/4c5f9e4b90c5a2276e9b.git
https://gist.github.com/4c5f9e4b90c5a2276e9b.git

NUMA Kernel APIs Dec 3rd, 2014

/***
 * 1. allocate some memory on the last NUMA node

 * 2. bind some existing memory to the last NUMA node.
 ***/
 int n = hwloc_get_nbobjs_by_type(topology, HWLOC_OBJ_NODE);

 void *m; int size = 1024*1024;

 hwloc_obj_t obj = hwloc_get_obj_by_type(

topology, HWLOC_OBJ_NODE, n - 1);

 m = hwloc_alloc_membind_nodeset(

topology, size, obj->nodeset, HWLOC_MEMBIND_DEFAULT, 0);

 hwloc_free(topology, m, size);

 m = malloc(size);

 hwloc_set_area_membind_nodeset(

topology, m, size, obj->nodeset, HWLOC_MEMBIND_DEFAULT, 0);

 free(m);

4. Portable Hardware Locality - hwloc
2nd example
https://gist.github.com/4c5f9e4b90c5a2276e9b.git

23

https://gist.github.com/4c5f9e4b90c5a2276e9b.git
https://gist.github.com/4c5f9e4b90c5a2276e9b.git

NUMA Kernel APIs
Dimitri Korsch
NUMA Seminar | 03.12.2014

NUMA Kernel APIs Dec 3rd, 2014

Sources

[1] - Antony, Joseph, Pete P. Janes, and Alistair P. Rendell. "Exploring thread and memory

placement on NUMA architectures: Solaris and Linux, UltraSPARC/FirePlane and

Opteron/HyperTransport." High Performance Computing-HiPC 2006. Springer Berlin

Heidelberg, 2006. 338-352. http://cs.anu.edu.au/people/Alistair.

Rendell/papers/ThreadAndMemoryPlacement.Springer.pdf

[2] - http://linux.die.net/man/3/numa

[3] - http://msdn.microsoft.com/en-us/library/windows/desktop/aa363804(v=vs.85).aspx

[4] - http://www.open-mpi.org/projects/hwloc/doc/

http://cs.anu.edu.au/people/Alistair.Rendell/papers/ThreadAndMemoryPlacement.Springer.pdf
http://cs.anu.edu.au/people/Alistair.Rendell/papers/ThreadAndMemoryPlacement.Springer.pdf
http://cs.anu.edu.au/people/Alistair.Rendell/papers/ThreadAndMemoryPlacement.Springer.pdf
http://linux.die.net/man/3/numa
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363804(v=vs.85).aspx
http://www.open-mpi.org/projects/hwloc/doc/

