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Roadmap

• Real-time Systems, Tasks, Scheduling, Priority Inversion

• Real-time CORBA Specification 

• Distributed Real-time Specification for Java (D-RTSJ)

• Composite Objects

• Time-triggered Message-triggered Objects (TMO)

• OSA+
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What is Real-Time ?

• “A system is a real-time system if the correctness of an operation depends not 
only upon the logical correctness but also upon the time at which it is 
performed.”

• Hard real-time: Missing a deadline could result in catastrophe 

• Flight control systems, drive-by-wire, avionics, nuclear power plants

• Soft real-time: Result arrival after deadline has still value

• multi-media, airline reservation systems

• Typically strongly coupled to the real world (embedded devices)
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Structure of a real-time system

• Deadlines are given by the environment

• A sensor must be read every 10 seconds

• or the landing gear of a airplane must be released before landing
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Tasks & Scheduling

• Scheduling: Find order for task execution so that every tasks meets its deadline

• Periodic vs. aperiodic vs. sporadic tasks

• Preemptive vs. non-preemptive execution

• Static (priority-based) scheduling (RMS) vs. dynamic scheduling (EDF, LSF)

• Task synchronization & unbounded priority inversion / avoidance
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Static Scheduling & Schedulability

• Rate Monotonic Scheduling (RMS)

• Periodic, preemptable, independent tasks

• Deadlines are equal to task period

• A set of n tasks is schedulable if total processor utilization is no greater than 

n(21/n-1)

• Task priorities are static; inversely related to periods

• Optimal static-priority uniprocessor algorithm

• All tasks, deadlines and execution times must be known before runtime
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RMS - Scheduling Example
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Task Ti Period/Deadling Di Exection Time Ci Priority Utilization (Ui)

1 4 2 1 50%

2 3 1 0(Highest) 33%

3 5 1 2 20%

0   1   2   3   4   5   6   7   8   9 

1

2

3

0   1   2   3  

Utilization: U = ∑Ui = ∑Ci/Di = 103 % 
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Priority Inversion - Priority Inversion Avoidance

• Priority Inversion Avoidance Protocols:

• Priority Inheritance (low-priority task’s priority raised when high-priority task 
tries to aquire resource)

• Priority Ceiling (priority of task aquiring a resource raised to highest priority 
of task’s using the resource)
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Distributed Real-Time Embedded Systems (DRE)

• Real-time computing is about predictability of timeliness

• Distributed real-time computing is about predictability of timeliness of multi-
node (trans-node) behaviors

• Embedded systems must often deal with limited resources 

• Non-functionional properties of distributed real-time systems not covered in 
this lecture:

• Fault-tolerance, reliability, availability

• Security, Quality of Service (QoS) 

• Examples of DRE systems: telecommunication networks, tele-medicine, 
transportation systems, process automation, military appliciations
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Real-Time CORBA Overview and Design Goals

• History: Version 1.0 Sept. 2000 - Version 2.0 Nov. 2003

• Extensions to OMG CORBA specifications 

• Support of end-to-end predictability

• Definition of “Schedulable Entity” (threads) and priority control

• Avoid or bound priority inversions

• Bounding of method invocation blocking 

• Extended resource management (process, storage, communication)

• Management of resource allocations (Mutex)

• Explicit set-up and configuration of bindings (connections)

• Configuration via CORBA:Policy mechnism
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Real-time ORB & Real-time POA

• Real-time CORBA defines extentions to 
CORBA::ORB interface: RTCORBA:RTORB

• Getting RTORB: call 
ORB::resolve_initial_reference with ObjectId 
“RTORB”

• Extentions to POA defined in 
RTPortableServer::POA

• ORB::resolve_initial_references(“RootPOA”) 
returns RTPortableServer::POA
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CORBA and Threads and Priorities
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Jensen/Wells QoS-TF- 29
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[Douglas E. Jensen “Distributed Threads - ”An End-to-End Abstraction for Distributed Real-time”]
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RT-CORBA Priorities & Priority Mappings

• RT-CORBA priorities are unique values ranging from 0 to 32767 (short)

• Priorities are set via RTCORBA::Current interface - resolve_i_r(“RTCurrent”)

• Mapping of CORBA priorities to native operating systems host priorities

• Upon setting the RT-CORBA priority attribute(RTCurrent) the value is mapped to 
a native priority and the native priority of the current thread immediately set to 
that value
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//IDL 
module RT_CORBA { 
    // Locality Constrained interface 
     interface PriorityMapping{ 
         boolean to_native (in Priority corba_priority, 
                            out NativePriority native_priority); 
         boolean to_CORBA  (in NativePriority native_priority, 
                            out Priority corba_priority); 
    }; 
}; 
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RT-CORBA Priority Mappings - Example

• Installation via void install_priority_mapping(in PriorityMapping pm)

• Only one priority mapping active at a time

• Used by the ORB for priority manipulation -> no exceptions in prio. mapping

• Mapping function implementation must be re-entrant
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class MyPriorityMapping : public RTCORBA::PriorityMapping{ 
CORBA::Boolean to_native (RTCORBA::Priority corba_prio, 
RTCORBA::NativePriority &native_prio) 
{ 
native_prio = 128 + (corba_prio/ 256); 
// In the [128,256) range... 
return true; 

} 
}; [D.Schmidt et.al “Using Real-time CORBA Effectively”]
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Client Priority Propagation

• Configured in PriorityModelPolicy (CLIENT_PROPAGATED)

• CORBA priority is propagated in a CORBA priority service context

• During request dispatch thread priorities are adjusted

• If server code changes priority all subsequent invokations use this priority

• Important mechanism to bind execution times of method invocations

15

module IOP { 
   const ServiceId RTCorbaPriority = 10; 
};
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Server-Set Priority Model

• Configuration via SERVER_SET_PRIORITY in PriorityModelPolicy

• Server-side thread executed with configured priority
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CORBA::PolicyList policies (1); 
policies.length (1); 

policies[0] = rtorb->create_priority_model_policy 
(RTCORBA::SERVER_DECLARED, LOW_PRIORITY); 
// Get the ORB’s policy manager 

PortableServer::POA_var base_station_poa = 
root_poa->create_POA 
(“Base_Station_POA”, 
PortableServer::POAManager::_nil (), 
policies); 

// Activate the <Base_Station> servant in <base_station_poa> 
base_station_poa->activate_object (base_station); 

[D.Schmidt et.al “Using Real-time CORBA Effectively”]

Priority coded in IOR

Used by client-side ORB to exploit 
e.g. priority banded conections

Client-side code in ORB should be 
executed with server declared 
priority

Example: all requests will be 
handled with specified priority
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specification lets client and server applications

• determine the priority at which CORBA invoca-
tions will be processed,

• bound the priority of ORB threads, and
• ensure that intraprocess thread synchronizers

have consistent semantics to minimize priority
inversion.7

In addition, RT-CORBA lets servers predefine thread
pools.

RT-CORBA’s priority mechanisms cannot work mir-
acles. ORB middleware cannot magically imbue a non-
real-time OS or communication infrastructure with
completely deterministic behavior. But in the appro-
priate environment certain RT-CORBA features can
help application developers and integrators configure
heterogeneous systems to preserve priorities end to end.

Priority mechanisms
Conventional CORBA ORBs provide no standard

way for clients to indicate the relative priorities of
their requests to ORB end systems. However, this fea-
ture is necessary to minimize end-to-end priority
inversion and to bound latency and jitter for applica-
tions with deterministic real-time QoS requirements.
Therefore, the RT-CORBA specification defines plat-

form-independent mechanisms to control the priority
of operation invocations.

Priority type system. The RT-CORBA specification
defines two priority types—CORBA and native—to
handle OS heterogeneity. Each one- or two-way
CORBA operation gets a CORBA priority from 0 to
32,767. Each ORB end system along an activity path
can map CORBA priorities to native priorities—pri-
orities unique to a particular end system.

Priority models. The RT-CORBA specification
defines a PriorityModel policy, shown in Figure 2,
with two values: server declared and client propa-
gated. 

With server-declared priorities, a server dictates the
priority at which an invocation on a particular object
will execute. A server based on the PriorityModel pol-
icy’s value in the POA where the object was activated
designates the priority a priori. A single priority is
encoded as a tagged component in the object reference,
then published to the client as shown in Figure 2a.

Although the server declares the priority, the client
ORB is aware of the selected priority model policy and
can use this information internally. For example, the
ORB may optionally use matching invocation priori-
ties and priority bands with priorities advertised by a
server to implement priority-banded connections.
Thus, the ORB can guarantee that client invocations

ORB
end system

A

(2) Priority is exported 
     in interoperable
     object reference 

(1) Server
     priority
     is preset 

(3) Client's priority
     is not propagated
     by invocation

Global CORBA priority = 100

Current::priority(100)
to_native() => 100

Current::priority(100)
to_native() => 5

Current::priority(100)
to_native() => 135

(a)

(b)

ORB
end system

B

ORB
end system

A

ORB
end system

B

ORB 
end system

C
Windows NT

priority
= 26

Solaris
priority

= 135

LynxOS
priority

= 100

Service
context

= 100

Service
context

= 100

Figure 2. Real-Time
CORBA priority mod-
els: (a) server
declared, and (b)
client propagated.
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Real-time CORBA Priority Policies

17
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Priorities - RT-CORBA 2.0 Additions

• Setting of server priority per object reference

• Overrides server declared priority

18

PortableServer::POA::ObjectId activate_object_with_priority ( 
in PortableServer::Servant p_servant, 
in RTCORBA::Priority priority ) 

raises (PortableServer::POA::ServantAlreadyActive, 
PortableServer::POA::WrongPolicy ); 

void activate_object_with_id_and_priority ( 
in PortableServer::ObjectId oid, 
in PortableServer::Servant p_servant, 
in RTCORBA::Priority priority ) 

raises (ServantAlreadyActive,   
ObjectAlreadyActive, WrongPolicy );
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Priorities - RT-CORBA 2.0 Additions

• Priority Transforms: implementation of user-defined invokation policies

• Implementation of different priority models than server declared or client 
propagated 

• Mapping of RTCORBA::Priority to other RTCORBA::Priority

• Can be installed:

• During invocation upcall (after an invocation has been received at the server 
but before the servant code is invoked) - inbound Priority Transforms

• When making an ‘onward’ CORBA invocation, from servant application 
code - outbound Priority Transforms

19
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Threadpools & Threadpoollanes

• Lanes define different priority levels within a threadpool

• Thread borrowing: high prio. lane may borrow threads from low prio. lanes

• Preallocation of threads (static threads)

• Reduction of priority inversion (low priority request don’t block high prior ones)

• Reduction of latency and increase of predictability by avoiding recreation and 
destruction of threads

• Partitioning of threads

• Isolation of system parts by association of POAs to different thread pools

• Bound thread usage (memory usage together with queues size)

• Limitation of threads a number of POAs may use 
(max. threads = static threads + dynamic threads)

20

The remainder of this paper is organized as follows: Section 2 describes

the key features in RT-CORBA thread pools; Section 3 illustrates how

patterns can be applied to implement different RT-CORBA thread pool

strategies; Section 4 provides empirical results that compare different

thread pool implementation strategies; Section 5 compares our work on

TAO’s thread pools with related work; and Section 6 presents concluding

remarks.

2. AN OVERVIEW OF RT-CORBA THREAD

POOLS
Many real-time systems use multi-threading to

1. Distinguish between different types of service, such as high-priority

vs. low-priority tasks [7]

2. Support thread preemption to prevent unbounded priority inver-

sion and deadlock and

3. Support complex object implementations that run for variable and/or

long durations.

To allow real-time ORB endsystems and applications to leverage these

benefits of multi-threading, while controlling the amount of memory and

processor resources they consume, the RT-CORBA specification defines

a server thread pool model [8]. There are two types of thread pools in

RT-CORBA:

Thread pool without lanes – In this basic thread pool model all

threads have the same assigned priority. This model is illustrated

in Figure 2.
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Thread pool with lanes – In this more advanced model a pool con-

sists of subsets of threads (called lanes) that are assigned different

priorities. This model is illustrated in Figure 3.
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To create thread pools without and with lanes, developers of real-time

applications can configure thread pools in an RT-CORBA server by us-

ing either the create threadpool or create threadpool with lanes

methods, respectively, which are defined in the standard RTORB inter-

face. Each thread pool is then associated with one or more POA via

the RTCORBA::ThreadPoolPolicy. The threads in a pool perform

processing of client requests targeted at its associated POA(s). While a

thread pool can be associated with more than one POA, a POA can be

associated with only one thread pool. Figure 4 illustrates the creation

and association of thread pools in a server.

When created via the create threadpool*methods outlined above,

thread pools can be configured with the following properties:
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Figure 4: POA Thread Pools in Real-time CORBA

Static threads, which defines the number of pool threads pre-allocated

at thread pool creation time.

Dynamic threads, which defines the maximum number of threads

that can be created on-demand. If a request arrives when all exist-

ing threads are busy, a new thread is created to handle the request

if the number of dynamic threads in the pool have not exceeded

the dynamic value specified by the user.

The ability to configure the number of threads allows developers

to bound the processing resources. Also, developers can choose

between dynamic and static threads to trade off (1) the jitter intro-

duced by dynamic thread creation/destruction with (2) the waste-

fulness of underutilized static threads.

Priority, which defines the CORBA priority with which threads

are created. There are two thread priority schemes used in RT-

CORBA: native priority and CORBA priority. Native priority is

the Real-Time Operating System (RTOS) specific thread priority

representation. CORBA Priority, on the other hand, is a uniform

representation used to overcome different RTOS specific thread

priority representations. A priority mapping scheme is used to

map between native and CORBA priorities and vice versa. The

valid CORBA priority range is 0 to 32767.

Depending on the policies configured in the ORB, this priority

can be changed subsequently. Priority of threads in thread pools

with lanes do not changes except when thread borrowing is used

as described below. The priority of a thread in a thread pool with-

out lanes is changed to match the priority of a client making the

request. POA B serviced by Thread Pool B in Figure 4 illustrates

this scenario. The priority of a thread in a thread pool without

lanes is also changed to match the priority of the servant that uses

this thread. POA C serviced by Thread Pool B in Figure 4 illus-

trates this scenario. The priority of the thread is restored after the

client request has been processed.

Stack size, which defines the bytes of stack size allocated for each

thread.

Request buffering, which bounds the maximum client request buffer-

ing resources used when all threads are busy, specified in num-

ber of bytes or requests. If a request arrives when all threads are

busy and the buffering space is exhausted, the ORB should raise

a TRANSIENT exception, which indicates a temporary resource

shortage. When a client receives this exception it can reissue the

request at a later time. Figure 5 illustrates the thread pool request

buffering feature.

Thread borrowing, which controls whether a lane with higher pri-

ority is allowed to “borrow” threads from a lane with lower prior-

ity when it exhausts its maximum number of threads (both static

and dynamic) and requires an additional thread to service a new
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Dynamic threads, which defines the maximum number of threads

that can be created on-demand. If a request arrives when all exist-
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Threadpools: POAs & ORB

• Threadpools can be 
associated to POA 
and ORB level

• Max. one 
threadpool per POA

21

The remainder of this paper is organized as follows: Section 2 describes

the key features in RT-CORBA thread pools; Section 3 illustrates how

patterns can be applied to implement different RT-CORBA thread pool

strategies; Section 4 provides empirical results that compare different

thread pool implementation strategies; Section 5 compares our work on

TAO’s thread pools with related work; and Section 6 presents concluding

remarks.

2. AN OVERVIEW OF RT-CORBA THREAD

POOLS
Many real-time systems use multi-threading to

1. Distinguish between different types of service, such as high-priority

vs. low-priority tasks [7]

2. Support thread preemption to prevent unbounded priority inver-

sion and deadlock and

3. Support complex object implementations that run for variable and/or

long durations.

To allow real-time ORB endsystems and applications to leverage these

benefits of multi-threading, while controlling the amount of memory and

processor resources they consume, the RT-CORBA specification defines

a server thread pool model [8]. There are two types of thread pools in

RT-CORBA:

Thread pool without lanes – In this basic thread pool model all

threads have the same assigned priority. This model is illustrated

in Figure 2.

!"#$"#%&

'(

%)*+,-.!//0

Figure 2: Thread Pool without Lanes

Thread pool with lanes – In this more advanced model a pool con-

sists of subsets of threads (called lanes) that are assigned different

priorities. This model is illustrated in Figure 3.
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Figure 3: Thread Pool with Lanes

To create thread pools without and with lanes, developers of real-time

applications can configure thread pools in an RT-CORBA server by us-

ing either the create threadpool or create threadpool with lanes

methods, respectively, which are defined in the standard RTORB inter-

face. Each thread pool is then associated with one or more POA via

the RTCORBA::ThreadPoolPolicy. The threads in a pool perform

processing of client requests targeted at its associated POA(s). While a

thread pool can be associated with more than one POA, a POA can be

associated with only one thread pool. Figure 4 illustrates the creation

and association of thread pools in a server.

When created via the create threadpool*methods outlined above,

thread pools can be configured with the following properties:
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Figure 4: POA Thread Pools in Real-time CORBA

Static threads, which defines the number of pool threads pre-allocated

at thread pool creation time.

Dynamic threads, which defines the maximum number of threads

that can be created on-demand. If a request arrives when all exist-

ing threads are busy, a new thread is created to handle the request

if the number of dynamic threads in the pool have not exceeded

the dynamic value specified by the user.

The ability to configure the number of threads allows developers

to bound the processing resources. Also, developers can choose

between dynamic and static threads to trade off (1) the jitter intro-

duced by dynamic thread creation/destruction with (2) the waste-

fulness of underutilized static threads.

Priority, which defines the CORBA priority with which threads

are created. There are two thread priority schemes used in RT-

CORBA: native priority and CORBA priority. Native priority is

the Real-Time Operating System (RTOS) specific thread priority

representation. CORBA Priority, on the other hand, is a uniform

representation used to overcome different RTOS specific thread

priority representations. A priority mapping scheme is used to

map between native and CORBA priorities and vice versa. The

valid CORBA priority range is 0 to 32767.

Depending on the policies configured in the ORB, this priority

can be changed subsequently. Priority of threads in thread pools

with lanes do not changes except when thread borrowing is used

as described below. The priority of a thread in a thread pool with-

out lanes is changed to match the priority of a client making the

request. POA B serviced by Thread Pool B in Figure 4 illustrates

this scenario. The priority of a thread in a thread pool without

lanes is also changed to match the priority of the servant that uses

this thread. POA C serviced by Thread Pool B in Figure 4 illus-

trates this scenario. The priority of the thread is restored after the

client request has been processed.

Stack size, which defines the bytes of stack size allocated for each

thread.

Request buffering, which bounds the maximum client request buffer-

ing resources used when all threads are busy, specified in num-

ber of bytes or requests. If a request arrives when all threads are

busy and the buffering space is exhausted, the ORB should raise

a TRANSIENT exception, which indicates a temporary resource

shortage. When a client receives this exception it can reissue the

request at a later time. Figure 5 illustrates the thread pool request

buffering feature.

Thread borrowing, which controls whether a lane with higher pri-

ority is allowed to “borrow” threads from a lane with lower prior-

ity when it exhausts its maximum number of threads (both static

and dynamic) and requires an additional thread to service a new
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typedef sequence <ThreadpoolLane> ThreadpoolLanes; 

// Threadpool Policy 
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41; 
local interface ThreadpoolPolicy : CORBA::Policy     { 

readonly attribute ThreadpoolId threadpool; 
}; 

local interface RTORB { 
... 
ThreadpoolPolicy create_threadpool_policy (in ThreadpoolId threadpool); 
exception InvalidThreadpool {}; 

ThreadpoolId create_threadpool ( 
in unsigned long stacksize, 
in unsigned long static_threads, 
in unsigned long dynamic_threads, 
in Priority default_priority, 
in boolean allow_request_buffering, 
in unsigned long max_buffered_requests, 
in unsigned long max_request_buffer_size ); 

ThreadpoolId create_threadpool_with_lanes ( 
in unsigned long stacksize, 
in ThreadpoolLanes lanes, 
in boolean allow_borrowing 
in boolean allow_request_buffering, 
in unsigned long max_buffered_requests, 
in unsigned long max_request_buffer_size ); 
void destroy_threadpool ( in ThreadpoolId threadpool ) 
raises (InvalidThreadpool); 

};

//IDL 
module RTCORBA { 
// Threadpool types 
typedef unsigned long ThreadpoolId; 

struct ThreadpoolLane { 
Priority lane_priority; 
unsigned long  static_threads; 
unsigned long  dynamic_threads; 

}; 
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Figure 5: Buffering Requests in RT-CORBA Thread Pools

invocation. The borrowed thread has its priority raised to that of

the lane that requires it. When the thread is no longer required, its

priority is lowered once again to its previous value, and it is re-

turned to the lower priority lane. Naturally, this property applies

only to thread pools with lanes.

Static threads, dynamic threads, and priority are per-lane properties in

thread pool with lanes model.

3. ALTERNATIVE PATTERNS FOR DESIGN-

INGOPTIMALRT-CORBATHREAD POOL

STRATEGIES
Although RT-CORBA defines a standard set of interfaces and policy

types, it intentionally “underspecifies” many quality of implementation

details, such as the ORB’s memory management and connection man-

agement strategies. Though this approach maximizes the freedom of

RT-CORBAORB developers, it requires that application developers and

end-users understand how that an ORB is designed and how its design

affects the schedulability, scalability, and predictability of their applica-

tion.

The thread pool architecture is an essential dimension of an RT-CORBA

ORB that also falls into the category of quality of implementation detail.

There are two general strategies for implementing RT-CORBA thread

pools: Half-Sync/Half-Async and Leader/Followers. In this section, we

use patterns to describe these two strategies in detail, outlining their

structure, dynamics, implementation, and consequences for selecting

optimal RT-CORBA thread pools for particular types of applications.2

We focus on patterns in this paper to generalize the applicability of our

work. Pattern descriptions help application developers and end-users un-

derstand the schedulability, scalability, and predictability consequences

of a particular thread pool implementation used by their RT-CORBA

ORB.

3.1 Half-Sync/Half-Async
The Half-Sync/Half-Async architectural pattern decouples asynchronous

and synchronous service processing in concurrent systems, to simplify

programming without unduly reducing performance. The pattern intro-

duces two intercommunicating layers, one for asynchronous and one for

synchronous service processing.

3.1.1 Problem
Concurrent systems often contain a mixture of asynchronous and syn-

chronous processing. For example, asynchronous events that an RT-

CORBA server must react to include network messages and software

signals. However, there are several components of an RT-CORBA server

For completeness, this paper contains abbreviated descriptions of the
Half-Sync/Half-Async and Leader/Followers patterns, focusing on the
implementation of thread pools in RT-CORBA. A thorough discussion
of these patterns appears in [6].

that require synchronous processing, such as execution of application-

specific servant code.

Synchronous programming is usually less complex compared to asyn-

chronous programming because the thread of control can block awaiting

the completion of operations. Blocking operations allow programs to

maintain state information and execution history in their run-time acti-

vation record stack. If all tasks are processed synchronously within sep-

arate threads of control, however, thread management overhead can be

excessive. Each thread contains resources that must be created, stored,

retrieved, synchronized, and destroyed by a thread manager.

Conversely, asynchronous programming is generally more efficient. In

particular, interrupt-driven asynchronous systems may incur less context

switching overhead [9] than synchronous threaded systems because the

amount of information necessary to maintain program state can be re-

duced. In addition, asynchronous services can be mapped directly onto

OS asynchrony mechanisms, such as WinNT I/O completion ports [10,

6]. However, asynchronous programs are harder to develop, debug, and

maintain. Asynchronous programs must manage additional data struc-

tures that contain state information and execution history, which must be

saved and restored when a thread of control is preempted by an interrupt

handler.

Two forces must therefore be resolved when specifying an RT-CORBA

threading architecture that executes services both synchronously and

asynchronously:

The architecture should be designed so parts of the ORB that can

benefit from the simplicity of synchronous processing need not

address the complexities of asynchrony. Similarly, ORB services

that must maximize performance should not need to address the

inefficiencies of synchronous processing.

The architecture should enable the synchronous and asynchronous

processing services to communicate without complicating their

programming model or unduly degrading their performance.

Although the need for both programming simplicity and high perfor-

mance may seem contradictory, it is essential that both these forces be

resolved in scalable RT-CORBA implementations.

3.1.2 Solution
An RT-CORBAORB endsystem can be decomposed into two layers [11],

synchronous and asynchronous; a queueing layer is introduced to medi-

ate the communication between services in the asynchronous and syn-

chronous layers.

3.1.3 Structure and Collaboration
The structure of the Half-Sync/Half-Async pattern is illustrated in Fig-

ure 6. This design follows the Layers pattern [11] and includes the fol-

lowing participants:

3.1.3.1 Synchronous service layer:
This layer performs high-level processing services. Services in the syn-

chronous layer run in separate threads that can block while performing

operations. In an RT-CORBA server, this layer

1. Dequeues a request from the queueing layer

2. Finds the target servant for the request

3. Demarshal the request

4. Perform upcalls into application-specific code by calling into the

target servant registered in the POA by the application

5. Marshals the reply (if any) to the client and

6. Enqueues the reply (if any) in the queueing layer.
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Request Buffering in RT-CORBA Threadpools

• Provides control over 
storage resources

• No separate thread for 
every request neccessary

• Used if no static or 
dynamic thread is available
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[I.Pyarali et. al. “Evaluating and Optimizing Thread Pool Strategies for Real-Time CORBA”]
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Figure 6: The Structure of Participants in theHalf-Sync/Half-Async

Pattern
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Figure 7: Collaboration between Layers in the Half-Sync/Half-

Async Pattern

3.1.3.2 Asynchronous service layer:
This layer performs lower-level processing services, which typically em-

anate from one or more external event sources. Services in the asyn-

chronous layer cannot block while performing operations without un-

duly degrading the performance of other services. In an RT-CORBA

server, this layer

1. Reads the incoming request from the network

2. Find the target thread pool that will handle this request and

3. Adds the request to the thread pool’s queue that has the appropri-

ate priority.

3.1.3.3 Queueing layer:
This layer provides the mechanism for communicating between services

in the synchronous and asynchronous layers. For example, messages

containing data and control information are produced by asynchronous

services, then buffered at the queueing layer for subsequent retrieval by

synchronous services, and vice versa. The queueing layer is responsible

for notifying services in one layer when messages are passed to them

from the other layer. The queueing layer therefore enables the asyn-

chronous and synchronous layers to interact in a “producer/consumer”

manner, similar to the structure defined by the Pipes and Filters pat-

tern [11]. For an RT-CORBA server, this layer queues incoming requests

from and outgoing replies to clients.

3.1.3.4 External event sources:
These sources generate events that are received and processed by the

asynchronous service layer. For an RT-CORBA server, common sources

of external events include sensors, network interfaces, disk controllers,

and end-user terminals.

Figure 7 illustrates these collaborations in the Half-Sync/Half-Async

pattern.

3.1.4 Implementation Synopsis
Figure 8 illustrates the architecture of a RT-CORBA ORB where thread

pools are designed using the Half-Sync/Half-Async pattern. The asyn-
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Figure 8: Implementing an RT-CORBA Thread Pool Using the

Half-Sync/Half-Async Pattern

chronous layer performs I/O processing, demultiplexing of incoming re-

quests, and multiplexing of outgoing replies. It consists of the following

components:

Acceptor – An Acceptor [6] is used to service connection requests

from clients. The client establishes multiple connections to the

server, one for every range of priorities that will be used by the

client when making requests. After a connection has been estab-

lished, it is moved to the Reactor with the corresponding priority

during the first request.

Reactors – Each priority supported by the server has a correspond-

ing Reactor [6], which is used to demultiplex and dispatch incom-

ing client requests.

Threads – The Acceptor is serviced by a thread running at an

ORB-defined priority. Each Reactor is serviced by thread(s) at

the appropriate priority.

To avoid priority inversion, the queueing layer consists of multiple queues,

one for every thread pool lane. I/O threads read the incoming request,

determine their target thread pool, and deposit the request into the right

queue for processing. The synchronous layer consists of the threads in

thread pool lanes. These threads block on a condition variable, waiting

for requests to show up in their queue. After dequeueing the request, the

target servant is found in the target POA, the request is demarshaled and

application-level servant code is then executed.

3.1.5 Consequences
The Half-Sync/Half-Async implementation of RT-CORBA thread pools

has the following benefits:

3.1.5.1 Simplified programming.
The programming of the synchronous phase is simplified without de-

grading the performance of the asynchronous phase. Distributed sys-

tems based on RT-CORBA often have a larger quantity and variety of

high-level processing services than lower-level services. Decoupling

higher-level synchronous services from lower-level asynchronous pro-

cessing services can therefore simplify ORB development because com-

plex concurrency control, interrupt handling, and timing services can

be localized within the asynchronous service layer. The asynchronous

layer can also handle low-level details that are difficult to program ro-

bustly and can manage the interaction with hardware-specific compo-

nents, such as DMA, memory management, and network I/O.
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• Buffering of requests in a queue by I/O-threads 

• Worker threads within the pool process requests from queue

• Easy implementation of thread borrowing, but less efficient because of queueing
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Async Pattern

3.1.3.2 Asynchronous service layer:
This layer performs lower-level processing services, which typically em-

anate from one or more external event sources. Services in the asyn-

chronous layer cannot block while performing operations without un-

duly degrading the performance of other services. In an RT-CORBA

server, this layer

1. Reads the incoming request from the network

2. Find the target thread pool that will handle this request and

3. Adds the request to the thread pool’s queue that has the appropri-

ate priority.

3.1.3.3 Queueing layer:
This layer provides the mechanism for communicating between services

in the synchronous and asynchronous layers. For example, messages

containing data and control information are produced by asynchronous

services, then buffered at the queueing layer for subsequent retrieval by

synchronous services, and vice versa. The queueing layer is responsible

for notifying services in one layer when messages are passed to them

from the other layer. The queueing layer therefore enables the asyn-

chronous and synchronous layers to interact in a “producer/consumer”

manner, similar to the structure defined by the Pipes and Filters pat-

tern [11]. For an RT-CORBA server, this layer queues incoming requests

from and outgoing replies to clients.

3.1.3.4 External event sources:
These sources generate events that are received and processed by the

asynchronous service layer. For an RT-CORBA server, common sources

of external events include sensors, network interfaces, disk controllers,

and end-user terminals.

Figure 7 illustrates these collaborations in the Half-Sync/Half-Async

pattern.

3.1.4 Implementation Synopsis
Figure 8 illustrates the architecture of a RT-CORBA ORB where thread

pools are designed using the Half-Sync/Half-Async pattern. The asyn-
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Half-Sync/Half-Async Pattern

chronous layer performs I/O processing, demultiplexing of incoming re-

quests, and multiplexing of outgoing replies. It consists of the following

components:

Acceptor – An Acceptor [6] is used to service connection requests

from clients. The client establishes multiple connections to the

server, one for every range of priorities that will be used by the

client when making requests. After a connection has been estab-

lished, it is moved to the Reactor with the corresponding priority

during the first request.

Reactors – Each priority supported by the server has a correspond-

ing Reactor [6], which is used to demultiplex and dispatch incom-

ing client requests.

Threads – The Acceptor is serviced by a thread running at an

ORB-defined priority. Each Reactor is serviced by thread(s) at

the appropriate priority.

To avoid priority inversion, the queueing layer consists of multiple queues,

one for every thread pool lane. I/O threads read the incoming request,

determine their target thread pool, and deposit the request into the right

queue for processing. The synchronous layer consists of the threads in

thread pool lanes. These threads block on a condition variable, waiting

for requests to show up in their queue. After dequeueing the request, the

target servant is found in the target POA, the request is demarshaled and

application-level servant code is then executed.

3.1.5 Consequences
The Half-Sync/Half-Async implementation of RT-CORBA thread pools

has the following benefits:

3.1.5.1 Simplified programming.
The programming of the synchronous phase is simplified without de-

grading the performance of the asynchronous phase. Distributed sys-

tems based on RT-CORBA often have a larger quantity and variety of

high-level processing services than lower-level services. Decoupling

higher-level synchronous services from lower-level asynchronous pro-

cessing services can therefore simplify ORB development because com-

plex concurrency control, interrupt handling, and timing services can

be localized within the asynchronous service layer. The asynchronous

layer can also handle low-level details that are difficult to program ro-

bustly and can manage the interaction with hardware-specific compo-

nents, such as DMA, memory management, and network I/O.
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Implementing Threadpools  
Leader/Followers Pattern

• A number of threads (in a threadpool) is synchronized to get process external 
requests

• At one time one thread - the leader - waits for an event on a set of I/O-
handles

• Other threads - the followers - can queue up and wait to become new leader

• Current leader determines follower, after demultiplexing an event from I/O-
handles

• Underlying I/O-system queues events if no thread is available

• No additional thread for request dispatch + better performance

• Request buffering & borrowing harder to implement (no explicit queue)
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3.2.4 Implementation Synopsis
In this design, each RT-CORBA thread pool lane has an integrated I/O

layer, i.e., there is one acceptor and one reactor for every lane. Clients

connect to the acceptor endpoint with the desired priority and as shown
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in Figure 12, all client request processing (as described in Section 3.2.3)

is performed by the thread of desired priority from very beginning. Thus,

there are no context switches and priority inversions are minimized.

In addition, the ORB does not create any internal I/O threads. This al-

lows application programmers full control over the number and proper-

ties of all the threads with the RT-CORBA thread pool APIs. In contrast,

the Half-Sync/Half-Async implementation has I/O layer threads, so ei-

ther a proprietary API must be added or application programmer will not

have full control over all the thread resources.

3.2.5 Consequences

The Leader/Followers pattern provides several benefits:

3.2.5.1 Performance enhancements.
Compared with the Half-Sync/Half-Async thread pool strategy described

in Section 3.1, the Leader/Followers pattern can improve performance as

follows:

It enhances CPU cache affinity and eliminates the need for dy-

namic memory allocation and data buffer sharing between threads.

For example, a processing thread can read the request into buffer

space allocated on its run-time stack or by using the thread-specific

storage (TSS) [6] to allocate memory.

It minimizes locking overhead by not exchanging data between

threads, thereby reducing thread synchronization.

It can minimize priority inversion because no extra queueing is

introduced in the server. When combined with real-time I/O sub-

systems [12], the Leader/Followers thread pool implementation

can reduce sources of non-determinism in server request process-

ing significantly.

It does not require a context switch to handle each request, re-

ducing the request dispatching latency. Note that promoting a fol-

lower thread to fulfill the leader role does require a context switch.

If two events arrive simultaneously this increases the dispatching

latency for the second event, but the performance is no worse than

Half-Sync/Half-Async thread pool implementations.

However, the Leader/Followers pattern has the following liabilities:

3.2.5.2 Implementation complexity.
The advanced variants of the Leader/Followers pattern are harder to im-

plement than Half-Sync/Half-Async thread pools. A thorough discus-

sion of these variants appears in [6].

3.2.5.3 Lack of flexibility.
The queueing layer in the Half-Sync/Half-Async thread pool imple-

mentation makes it easy to support features like request buffering and

thread borrowing. In the Leader/Followers implementation, however, it

is harder to implement these features because there is no explicit queue.

Table 2 summaries the evaluation for Leader/Followers implementation

of RT-CORBA thread pools.

Criteria Evaluation

Feature Support Poor: not easy to support request
buffering or thread borrowing

Scalibility Poor: I/O layer resources not shared

Efficiency Good: little or no overhead for data
movement, memory allocations, or
synchronizations

Optimizations Good: stack and TSS memory supported

Priority Inversion Good: little or no priority inversion

Table 2: Evaluation of Leader/Followers thread pools

4. EMPIRICAL RESULTS
Figure 13 compares the performance of the Half-Sync/Half-Async vs.

the Leader/Followers thread pool implementations. These benchmarks

were conducted using TAO version 1.0 on a quad-CPU 400 MHz Pen-

tium II Xeon, with 1 GByte RAM, 512 Kb cache on each CPU, running

Debian Linux release 2.2.5, and g++ version egcs-2.91.66. Our bench-

marks measure the total time required by each concurrency strategy to

process 100,000 CORBA request messages. We varied the number of

threads and the amount of application-level processing performed for

each request. The results in Figure 13 illustrate the percentage improve-

ment in performance for the Leader/Followers thread pool strategy com-

pared with the Half-Sync/Half-Async thread pool strategy.

As shown in the figure, the Leader/Followers strategy outperformed the

Half-Sync/Half-Async approach for all combinations of threads and ap-

plication workload. The largest improvement, 2,800%, occurred for

34

219



Real-time Middleware | Middleware and Distributed Systems AR 2007

Leader/Followers Pattern - Example Sequence
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in Figure 12, all client request processing (as described in Section 3.2.3)

is performed by the thread of desired priority from very beginning. Thus,

there are no context switches and priority inversions are minimized.

In addition, the ORB does not create any internal I/O threads. This al-

lows application programmers full control over the number and proper-

ties of all the threads with the RT-CORBA thread pool APIs. In contrast,

the Half-Sync/Half-Async implementation has I/O layer threads, so ei-

ther a proprietary API must be added or application programmer will not

have full control over all the thread resources.

3.2.5 Consequences

The Leader/Followers pattern provides several benefits:

3.2.5.1 Performance enhancements.
Compared with the Half-Sync/Half-Async thread pool strategy described

in Section 3.1, the Leader/Followers pattern can improve performance as

follows:

It enhances CPU cache affinity and eliminates the need for dy-

namic memory allocation and data buffer sharing between threads.

For example, a processing thread can read the request into buffer

space allocated on its run-time stack or by using the thread-specific

storage (TSS) [6] to allocate memory.

It minimizes locking overhead by not exchanging data between

threads, thereby reducing thread synchronization.

It can minimize priority inversion because no extra queueing is

introduced in the server. When combined with real-time I/O sub-

systems [12], the Leader/Followers thread pool implementation

can reduce sources of non-determinism in server request process-

ing significantly.

It does not require a context switch to handle each request, re-

ducing the request dispatching latency. Note that promoting a fol-

lower thread to fulfill the leader role does require a context switch.

If two events arrive simultaneously this increases the dispatching

latency for the second event, but the performance is no worse than

Half-Sync/Half-Async thread pool implementations.

However, the Leader/Followers pattern has the following liabilities:

3.2.5.2 Implementation complexity.
The advanced variants of the Leader/Followers pattern are harder to im-

plement than Half-Sync/Half-Async thread pools. A thorough discus-

sion of these variants appears in [6].

3.2.5.3 Lack of flexibility.
The queueing layer in the Half-Sync/Half-Async thread pool imple-

mentation makes it easy to support features like request buffering and

thread borrowing. In the Leader/Followers implementation, however, it

is harder to implement these features because there is no explicit queue.

Table 2 summaries the evaluation for Leader/Followers implementation

of RT-CORBA thread pools.

Criteria Evaluation

Feature Support Poor: not easy to support request
buffering or thread borrowing

Scalibility Poor: I/O layer resources not shared

Efficiency Good: little or no overhead for data
movement, memory allocations, or
synchronizations

Optimizations Good: stack and TSS memory supported

Priority Inversion Good: little or no priority inversion

Table 2: Evaluation of Leader/Followers thread pools

4. EMPIRICAL RESULTS
Figure 13 compares the performance of the Half-Sync/Half-Async vs.

the Leader/Followers thread pool implementations. These benchmarks

were conducted using TAO version 1.0 on a quad-CPU 400 MHz Pen-

tium II Xeon, with 1 GByte RAM, 512 Kb cache on each CPU, running

Debian Linux release 2.2.5, and g++ version egcs-2.91.66. Our bench-

marks measure the total time required by each concurrency strategy to

process 100,000 CORBA request messages. We varied the number of

threads and the amount of application-level processing performed for

each request. The results in Figure 13 illustrate the percentage improve-

ment in performance for the Leader/Followers thread pool strategy com-

pared with the Half-Sync/Half-Async thread pool strategy.

As shown in the figure, the Leader/Followers strategy outperformed the

Half-Sync/Half-Async approach for all combinations of threads and ap-

plication workload. The largest improvement, 2,800%, occurred for
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Real-Time CORBA Mutex

• Standardized mutex implementation for all applications

• Two states: locked and unlocked

• Born in unlocked State 

• Implementation of priority inheritance required

• ORB must use same mutex implementation as delivered to applications

• Consistent priority inversion avoidance

27

//IDL 
module RT_CORBA { 
    // locality constrained interface 
     interface Mutex     { 
         void lock(); 
         void unlock(); 
         boolean try_lock(in TimeBase::TimeT max_wait); 
             // if max_wait = 0 then return immediately 
     }; 
    interface ORB : CORBA::ORB     { 
      ... 
        Mutex create_mutex(); 
      ... 
    }; 
}; 
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Client-side configuration - Banded Connections

• Configured via PriorityBandedConnectionsPolicy

• Reduction of priority inversion caused by using non-priority transport protocols

• Facility for clients to communicate with a server via multiple connections

• Each connections handles separate invokation priority level (range)

• Connection selection transparent to the application

• Applied at client-side during object binding or server-side and propagated 
via IOR

28

//IDL 
module RT_CORBA { 
     struct PriorityBand     { 
          Priority low; 
          Priority high; 
    } 
    typedef sequence <PriorityBand> PriorityBands; 
    // PriorityBandedConnectionPolicy 
    const CORBA::PolicyType 
                      PRIORITY_BANDED_CONNECTIONS_POLICY_TYPE = 45; 
    interface PriorityBandedConnectionPolicy : CORBA::Policy     { 
          readonly attribute PriorityBands priority_bands; 
     }; 
}; 
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Priority Bands - Example

• Priority Bands can also be used on client-side to pre-allocate connections

• If priority bands are installed and an invokation with a priority triggered without 
a configured  (range): a “no resource” system exception is thrown

29

// Create the priority bands 
RTCORBA::PriorityBands bands (2); bands.length (2); 
bands[0].low = LOW_PRIO;      // We can have bands with 
bands[0].high = MEDIUM_PRIO;  // a range of priorities or 
bands[1].low = HIGH_PRIO;     // just a “range” of 1! 
bands[1].high = HIGH_PRIO; 
// Now create the policy... 
CORBA::PolicyList policies (1); policies.length (1); 
policies[0] = 
rtorb->create_priority_banded_connection_policy (bands); 
// Use just like any other policies... 
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More Connection Policies

• Client-side configuration - private connections

• Configured via PrivateConnectionPolicy

• Private for connection for one object binding

• Not multiplexed with other invocations

• Invokation Timeouts

• Configured via RelativeRoundtripTimeoutPolicy

• Allows for definition of timeout for invocations

• Server is not informed about expiration of a timeout

• Defined in original CORBA specification

30
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Protocol Configuration - ProtocolPolicy

• Configuration and selection of communication protocols

• ClientProtocolPolicy & ServerProtocolPolicy

• Definition of multiple protocols and order configuration possible

• Protocol defined as pair of ORB protocol (GIOP) and transport protocol (TCP)

• ProtocolProperties for protocol specific configuration (message length, buffer 
size)

31

/ IDL module RT_CORBA { 
    // Locality Constrained interface 
    interface ProtocolProperties {}; 
    struct Protocol { 
          IOP::ProfileId     protocol_type; 
          ProtocolProperties orb_protocol_properties; 
          ProtocolProperties transport_protocol_properties; 
      }; 
    typedef sequence <Protocol> ProtocolList; 
    // Protocol Policy 
     const CORBA::PolicyType PROTOCOL_POLICY_TYPE = ??; 
     // Locality Constrained interface 
     interface ProtocolPolicy : CORBA::Policy     { 
          readonly attribute ProtocolList protocols; 
      }; 
  }; 
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ProtocolPolicy Example

32

RTCORBA::ProtocolProperties_var tcp_properties = 
rtorb->create_tcp_protocol_properties ( 

64 * 1024, /* send buffer */ 
64 * 1024, /* recv buffer */ 
false, /* keep alive */ 
true, /* dont_route */ 
true  /* no_delay */);

RTCORBA::ProtocolList plist; plist.length (2); 
plist[0].protocol_type = MY_PROTOCOL_TAG;  // Custom protocol 
plist[0].trans_protocol_props = 
/* Use ORB proprietary interface */ 
plist[1].protocol_type = IOP::TAG_INTERNET_IOP; // IIOP 
plist[1].trans_protocol_props = tcp_properties; 
RTCORBA::ClientProtocolPolicy_ptr policy = 
rtorb->create_client_protocol_policy (plist); 

[D.Schmidt et.al “Using Real-time CORBA Effectively”]

• Creation of protocol properties

• Configuration of protocol list



both an ORB protocol and a mapping to a specific
underlying transport protocol. For example, IIOP is a
mapping of GIOP onto the transfer control proto-
col/Internet protocol (TCP/IP). Thus, an IOP contains
two protocol layers—ORB and transport—each hav-
ing its own protocol properties set.

RT-CORBA defines an interface so that applications
can specify ORB- and transport-specific protocol
properties that control various communication pro-
tocol features, such as ATM virtual circuits or Internet
resource reservation protocol (RSVP) traffic specifi-
cation. A Protocol struct defines each ORB or trans-
port protocol properties tuple, as defined in this
CORBA Interface Definition Language (IDL) defini-
tion:

interface ProtocolProperties {};

typedef struct {
IOP::ProfileId protocol_type;
ProtocolProperties

orb_protocol_properties;
ProtocolProperties

transport_protocol_properties;
} Protocol;
typedef sequence <Protocol> 
ProtocolList;

The order in which protocol properties appear in
the ProtocolList indicates the order of an application’s
protocol preferences. For example, a client may spec-
ify that IIOP is more preferable than other protocol
combinations. To let applications select and configure
their desired ORB or transport protocol properties,
RT-CORBA defines the ClientProtocol and Server-
Protocol QoS policies.

Server-side protocol properties. CORBA servers can
use the ServerProtocol policy to decide which proto-
cols to configure into an object reference. This policy
can be passed with other POA policies when the 
create_POA() operation is invoked on the Portable-
Server: :POA interface. The ServerProtocol policy has
two purposes:

• publish a list of available protocols to clients, and
• define protocol configuration attributes for server
connections.

The POA ensures that the ordering of profiles in
object references conforms to the ordering of proto-
cols specified in the ServerProtocol policy. Thus, a
server can export its protocol preferences to clients by
passing them in object references whose profiles are
arranged in a particular order. When a client receives
the object reference, it can either accept the server’s
preference or use different selection criteria.

Client-side protocol properties. Client applications can
use the ClientProtocol policy to decide which proto-
cols to use when they connect to objects. This policy
takes effect when a client obtains a binding to an
object. The ClientProtocol policy indicates the pro-
tocol properties a client is interested in, as well as the
ordering of its preferences.
Either a client or a server, but not both for the same

object reference, can set the ClientProtocol policy.
Servers can publish particular protocol requirements
and preferences on a per-object basis; clients can
change protocol policies on a per-invocation basis. If
the server sets the ClientProtocol policy, it propagates
this policy to the client in the object reference. Figure
3 shows how a server can designate the protocols
available to the client. This feature lets a server enforce
specific inter-ORB protocol requirements on clients.

Interface inheritance can define the particular prop-
erties for specific protocols. For example, the stan-
dard TCP properties are

interface TCPProtocolProperties
: ProtocolProperties

{
attribute long send_buffer_size;
attribute long recv_buffer_size;
attribute boolean keep_alive;
attribute boolean dont_route;
attribute boolean no_delay;

};
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Figure 3. Configuring and selecting protocol properties. A server designates the protocols
available to the client (the stacks indicate one object reference with multiple protocol- 
specific addresses). The server publishes the virtual machine environment (VME), ATM, or
TCP protocols, in that order, in a tagged component in the object reference. The client then
must abide by the ClientProtocol policy propagated by the server, and select from one of
these three protocols. (The white zigzag line indicates one or more hosts.)
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Real-Time CORBA Protocol Configuration
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RT-CORBA v2.0 Dynamic Scheduling

• Static priority scheduling not sufficient for dynamic workloads

• Integration of other (dynamic) scheduling algorithms (EDF,LSF,LLF,...)

• Plugin schedulers

• Distributable Thread (DT) replaces activity definition

• Each DT has system-wide unique identifier

• DT has one or more execution scheduling parameter elements (priority, time 
constraints (deadlines, utility functions, importance)

• Semantics of acceptability of end-to-end timeliness defined by the 
application in context of used scheduling discipline

• Execution of DTs governed by scheduling parameter elements at each 
visited node 
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Distributable Thread Abstraction
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[Douglas E. Jensen “Distributed Threads - ”An End-to-End Abstraction for Distributed Real-time”]
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Distributed System Scheduling

• Scheduling in distributed systems can be divided into 4 classes

• Scheduling independently on each node and there is no trans-node end-to-
end timeliness requirement (non-realtime systems)

• Scheduling independently on each node but there is a mechanism such as 
priority propagation (RT-CORBA specification 1.*)

• Scheduling on each node is global: there is a logical singular system-wide 
scheduling algorithm instantiated on each node (implementable in RT-
CORBA 2.0)

• Multi-level scheduling: at least one level of meta-scheduling - global 
optimization by adaptive adjustment of local policies

36
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Distributable Threads - Scheduling Segments

• Distributable threads consist of one or more (potentially nested) scheduling 
segments (nesting creates scheduling scopes)

• Each segment represents a sequence of control flow with associated 
scheduling parameter elements

• Declaration of segments within code through: begin_scheduling_segment and 
end_scheduling_segment

• Update of scheduling parameters within 
segment using update_scheduling_segment

• Segments may span processor boundaries
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Dynamic Scheduling Interfaces

• DT entry points defined by overriding ThreadAction::do method

• DT creation: RTCORBA::Current::spawn

• segment specific functions (begin,end,update)

• Distributable thread id specific functions

• IdType get_current_id(); 

• DistributableThread lookup(in IdType id); 

• DT cancelation (RTCORBA::Current::cancel(id))

• Readonly access to scheduling parameters

• Getting current segment names (list)
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module RTScheduling { 
... 
local interface Current : RTCORBA::Current { 

... 
DistributableThread spawn (

in ThreadAction      start, 
in unsigned long     stack_size, 

    // zero means use the O/S default 
    in RTCORBA::Priority base_priority); 
... 

}; 
... 

}; 



Real-time Middleware | Middleware and Distributed Systems AR 2007

(Distributed) Real-Time Specification for Java

• Extended thread & synchronization model 

• RealtimeThread and NoHeapRealtimeThread

• Static priority scheduler with > 28 priorities

• Support for user-defined schedulers

• Extended Memory Model - GC-free memory regions

• Scoped Memory 

• Immortal Memory

• Asynchronous Transfer of Control

• Direct memory access and interrupt handling

39
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Distributed Real-Time Specification for Java (JSR-50)

• Extension of RTSJ in a natural and familiar way

• Real-time RMI (Modification of JSR-78 RMI - Custom Remote Interfaces)

• Support for propagating resource management specific data

• Configuration of underlying transport infrastructure

• Lexically scoped timing constraints (BeginTimeContraint{}, BeginTimeContraint{})

• Distributable Thread Integrity Framework

• Integration of application-specific policies for maintaining the health and 
integrity of Distributable Threads in presence of failures

• Scheduling Framework

• Plug-in architecture for integration of appropriate user space policies for 
scheduling Distributable Threads
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Composite Objects - Real-Time with CORBA 
[Polze98]

• Integration of real-time into non-realtime CORBA

• Decoupling of real-time and non-real-time part via shared buffer and 
consistency protocol (weak consistency for shared variables)
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Composite Objects - Timing Firewalls

• Non-real-time parts must not violate real-time scheduling rules

• Usage of scheduling server approach for CPU partitioning
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Composite Objects in Action - Unstoppable Robots
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Time-Triggered Message-Triggered Object (TMO)

• Early ’90s by Kane Kim at Dreamlabs University of California Irvine

• Component structuring scheme supporting real-time and non-real-time objects

• A TMOs are distributed computing components interacting via remote method calls

• TMOs can contain two types of methods

• Time-triggered methods (also called spontaneous methods or SpMs)

• Conventional service methods (SvMs)

• Basic concurrency constraint: activation of an SvM triggered by a message from an 
external client is allowed only when conflicting SpM executions are not in place

• Triggering times for SpMs must be specified 
as constants during design time

44

 

11 

BCC does not stand in the way of 
either concurrent SpM executions 
or concurrent SvM executions.   

(d)  Guaranteed completion time 
and deadline:   

As in other RT object models, 
the TMO incorporates deadlines 
and it does in the most general 
form.  Basically, for output actions 
and method completions of a TMO, 
the designer guarantees and 
advertises execution time-windows 
bounded by start times and 
completion times.  

Triggering times for SpMs 
must be fully specified as constants 
during the design time.  Those real-
time constants appear in the first 
clause of an SpM specification 
called the autonomous activation 
condition (AAC) section.  An 
example of an AAC is  

    "for t = from 10am to 10:50am  
every  30min   
start-during (t, t+5min)  
finish-by t+10min" 

which has the same effect as  

    {"start-during (10am, 10:05am) 
  finish-by 10:10am", 

      "start-during (10:30am, 10:35am)  
        finish-by 10:40am" }  

A provision is also made for making the AAC section 
of an SpM contain only candidate triggering times, not 
actual triggering times, so that a subset of the candidate 
triggering times indicated in the AAC section may be 
dynamically chosen for actual triggering.  Such a dynamic 
selection occurs when an SvM within the same TMO 
object requests future executions of a specific SpM.  Each 
AAC specifying candidate triggering times rather than 
actual triggering times has a name.   

An underlying design philosophy of the TMO 
scheme is that an RT computer system will always take 
the form of a network of TMOs.  TMOs interact via calls 
by client objects for service methods in server objects.  
The caller may be an SpM or an SvM in the client object.  
To maximize concurrency in the execution of client and 
server methods, client methods are allowed to make non-
blocking (sometimes called asynchronous) types of 
service requests to SvMs.  

The designer of each TMO provides a guarantee of 
timely service capabilities of the object.  The designer 
does so by indicating the guaranteed execution time-
window for every output produced by each SvM as well as 
by each SpM executed on requests from the SvM and the 

guaranteed completion time for the SvM in the 
specification of the SvM.  Such specification of each SvM 
is advertised to the designers of potential client objects.  
Before determining the time-window specification, the 
server object designer must convince himself/herself that 
with the object execution engine (hardware plus OS) 
available, the server object can be implemented to always 
execute the SvM such that the output action is performed 
within the time-window.  The BCC contributes to major 
reduction of these burdens imposed on the designer.  

A cost-effective way to support TMO-structured 
distributed RT programming is to build a TMO execution 
engine as middleware running on well established 
commercial software/hardware platforms.  An efficient 
middleware model, named TMO Support Middleware 
(TMOSM), was developed and its implementations on the 
Windows NT platforms have been operational along with 
several non-trivial applications structured as TMO 
Networks [Kim99b].  

 

4.  An implementation model  

for deadline handling in TMO networks 

4.1  Multi-transaction structuring of TMO methods 

When a violation of a TMO method completion 
deadline occurs, it could have been caused by any 
combination of possible sources, e.g. hardware, OS, or 

ODSS 
1 

ODSS 
2 

Name of TMO 

Object Data Store (  ODS ) 

Time-triggered (TT) 

Spontaneous Methods 
( SpM's ) 

Message-triggered 

Service Methods 
( SvM's ) 

Service Request 
           Queues 

Client 
TMO's 

Capabilities for accessing 

other  TMO's  and network 

environment  incl . logical 

multicast channels, and 

I/O devices 

EAC 

Reservation Q 

SvM  2 

SpM  2 

SvM  1 

SpM  1 

concurrency 
control 

Deadlines From   SvM's ,  SpM's 

AAC 

AAC 

• 
• 

• 
• 

"Absolute time 

domain" 

"Relative time 

domain" 

• 
• 

•   •   • 

Figure 3.  The basic structure of TMO (Adapted from [Kim97] 



• an object data store, which consists of lockable
segments, each in turn consisting of data mem-
bers that exist as long as the TMO exists; and 

• service methods, which are triggered by messages
to provide services requested by client objects. In
order to facilitate highly concurrent operations
of client and server objects, nonblocking types of
calls (that is, service requests) can be made to ser-
vice methods.

To this conventional object, TMO adds two unique
extensions: spontaneous methods and the basic con-
currency constraint. These additions address our
design ideals: general-form designs and design-time
guaranteeing of timely service capabilities.

The general-form design implies that future real-
time systems will be generalizations of non-real-time
systems, not esoteric specializations. A properly estab-
lished real-time system engineering methodology
would allow developers to realize non-real-time sys-
tems simply by specifying unconstrained defaults in
the time constraint part of a specification.

The design-time guaranteeing of timely service
capabilities is required to meet the demands of the
general public for assurance that real-time, safety-
critical application systems are reliable. It has been
known for a long time that testing alone is not suffi-
cient in reliable real-time system engineering.  The
most promising way to achieve a significant increase
in the reliability of real-time distributed computer sys-
tems is to require the system engineer to produce
design-time guarantees for timely service responses
from various subsystems (structured in the form of
objects that have deadlines). 

Spontaneous methods
Executions of spontaneous methods (also called

time-triggered methods) are invoked when the real-
time clock reaches the times specified during design.
This is in contrast to service methods, which are trig-
gered by messages from clients. Service and sponta-
neous methods also differ in that actions to be taken
at real times that can be determined during design can
appear only in spontaneous methods. Actions of the
type “at constant-clock-value do S” or “sleep-until
constant-clock-value” are examples.

A spontaneous method’s triggering time must be fully
specified as a constant during design. These constants
appear in the first clause of a spontaneous method spec-
ification, the autonomous activation condition section.

An example of an autonomous activation condition
is 

for t = from 10am to 10:50am 
every 30min 

start-during (t, t+5min) 
finish-by t+10min

which has the same effect as 

{start-during (10am, 10:05am)
finish-by 10:10am,

start-during (10:30am, 10:35am)
finish-by 10:40am}

A spontaneous method’s autonomous activation
condition can also contain candidate triggering times
instead of actual triggering times. Candidate times are
a set of times from which actual triggering times will
be chosen dynamically. The choice is made when a
method (either service or spontaneous) within the
same TMO requests future executions of a specific
spontaneous method. These requests are placed in a
reservation queue, as shown in Figure 1.

Spontaneous methods offer new potential for mod-
eling not only the concurrent execution of multiple
spontaneous methods but also the concurrent execu-
tion of spontaneous and service methods.

Basic concurrency constraint and deadlines
The designer of each TMO guarantees timely services

to all potential client objects by indicating the deadline
for every output produced in response to a service
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Figure 1. TMO model.
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TMO structure

• Object data store: lockable segments 
containing data members

• Service methods: triggered by messages 
to provide services requested by client 
objects (TMO designer guarantees 
deadlines for output production)

• SpMs are invoked when the real-time 
clock reaches the specified time

• Candidate times: set of times actual 
triggering time will be chosen from

• TMO designer guarantees timely service 
to all potential clients by indicating the 
deadline for every output produced in 
response to a service method request
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guage translator, then you must group all parameters
into a single structured variable and let the client pass
a pointer to the execution engine along with the infor-
mation on the size of the variable’s memory area. The
client engine then transfers the structured parameter
as a single message across the network.

This restriction can be removed in the CORBA that
uses an IDL translator.6 The programmer of a CORBA
object class produces an IDL specification that contains,
in addition to the class, the method names and method
parameters. An IDL translator then takes the IDL spec-
ification as an input and produces two program mod-
ules—one called the stub, for use by the client objects,
and the other called the skeleton, for use by the server
object. The stub-skeleton pair takes care of parameter
transfer across the network and may perform multiple
message exchanges to handle a large set of parameters.

To facilitate calls to SvMs, you can place various types
of call operations as methods inside the GateClass.
Among several methods for such calls, the most basic is
a blocking service request method, BlockingSR1. For
example, you can use G1.BlockingSR1 (&param1,
sizeof(Param-Struct), 50x1000) to call the
SvM named “SvM7,” with param1 as the parameter
and the deadline for result return set as 50 milliseconds
after the calling time.

Concurrency in SvM executions
Within a real-time object, you can facilitate concur-

rency in executions in several ways. One approach that
offers great flexibility in concurrency control while still
yielding a relatively easy procedure for analyzing
worst-case timing behavior is to explicitly indicate the
needs of SvMs for accessing the set of object data vari-
ables, collectively called the object data store (ODS).

The ODS segment (ODSS) is a basic unit of data stor-
age—a group of variables—that can be reserved for
exclusive access by a real-time object method. If you

explicitly indicate the group of ODSSs that may be
accessed by each SvM, even the object execution engine
can easily check whether two SvM executions may
interfere with each other or not. Recall that when a dis-
tributed real-time object’s SvM is created, its symbolic
name must be registered with the execution engine. The
ODSS-based concurrency control approach suggests
that the set of ODSSs to be accessed by the SvM must
also be registered with the execution engine so that the
latter may use the registered information in effecting
concurrent SvM executions. More specifically, when a
distributed real-time object’s SvM is created and ini-
tialized, the following (at the very least) must be regis-
tered with the object execution engine:

• the symbolic name, such as SvM1 or
Update_Speed, and

• the set of ODSS-name-access-mode-indicator
pairs, such as { (ODSS1, read-write),
(ODSS2, read-only) }.

A desirable API must therefore include a class, say
ODSSBaseClass, that defines basic operations asso-
ciated with an ODSS, including registration of the
ODSS with the execution engine and locking the
ODSS for read-only or read-write access. An applica-
tion-specific ODSS, say ODSS1, can then be defined as
a derived class of ODSSBaseClass. When instantiated,
it is automatically registered with the engine.

Guaranteed completion times
To enable systematic modular construction of reli-

able applications, real-time objects must offer guaran-
teed timely services. By advertising the guaranteed
completion time (GCT) of each SvM, the server object’s
designer guarantees the object’s timely services. As
shown in Figure 2, the GCT of an SvM is the upper
bound on the time duration, from the instant at which
the service request message arrives at the node hosting
the server object to the instant at which both the SvM
execution and the preparation of a message contain-
ing the return parameter become complete. Before
determining GCTs, the server object designer must
make sure that with the available object execution
engine the server object can be implemented such that
its SvMs are always executed within the GCTs.

On the other hand, as shown in Figure 2, the client
imposes a deadline for returning results. The client
execution engine receives this deadline as one of the
parameters associated with the remote method call;
the engine checks whether or not the result comes back
within the client’s deadline. Three sources can create
a fault, causing a client’s deadline to be violated:

• the client object’s resources, which are basically
node facility (hardware plus OS);

Object data store

Deadline for
result arrival

(client's deadline)

Domain of
communication

infrastructure

Guaranteed completion
time (GCT) (server's

self-imposed deadline)

Client object

Method 1

Object data store

Server object

Method 2

Method 7

Figure 2. The client’s
deadline for result
arrival is set by the
programmer with the
understanding of the
server’s GCT and the
transmission times to
be consumed by the
communication infra-
structure.
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TMO - Guaranteed Deadlines

• Client’s deadline for result arrival is set by the programmer with knowledge of 
the server’s GCT and the transmission times consumed by the communication 
infrastructure

• Client’s execution engine ensures that client’s deadline is kept under a GCT 
advertised by a server
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• Maximum invokation rates  (MIR) 
are specified during SvM 
creation

• If a client can’t hold its deadline 
it can trigger an alternative 
action or choose another TMO 
with better timings (comm. 
infrastructure, GCT, MIR (load 
situation)

[K.H. (Kane) Kim “APIs for Real-Time Distributed Object Programming”]
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Video Conferencing System
Access Capability (to other TMO’s)
None
Object Data Store

    (0-n) Participant site computer
systems, each with a user seat

SpM  (driven by an infinite-precision
clock)
Update the states of participant site

computer systems
SvM
Enter a seat
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Video Conferencing System
Access Capability (to other TMO’s)
None
Object Data Store

    (0-n) Participant site computer
systems, each with a user seat

SpM  (driven by an infinite-precision
clock)
Update the states of participant site

computer systems
SvM
Enter a seat

K#C;)%'A=''H#$%&'.&<(%)%<.#<C',4,5%+
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Participant site - computer
system

Access Capability (to other TMO’s)    Another
participant site computer system
Object Data Store

Audio server, video server, audio
receiver-player, video receiver-

player, camera: msg_receiver "Send image
to the camera (p1, p2, ..)",

microphone: msg_receiver "Speak into the
microphone (p1, p2, …)"

speaker (p1, p2, …), display unit (p1, p2,
…)

SpM “ Update the state descriptors in ODS”
Update the state of audio server (microphone)
Update the state of video server (camera)
Update the state of audio receiver-player &
speaker
Update the state of video receiver-player &
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Participant site - computer
system

Access Capability (to other TMO’s)    Another
participant site computer system
Object Data Store

Audio server, video server, audio
receiver-player, video receiver-

player, camera: msg_receiver "Send image
to the camera (p1, p2, ..)",

microphone: msg_receiver "Speak into the
microphone (p1, p2, …)"

speaker (p1, p2, …), display unit (p1, p2,
…)

SpM “ Update the state descriptors in ODS”
Update the state of audio server (microphone)
Update the state of video server (camera)
Update the state of audio receiver-player &
speaker
Update the state of video receiver-player &
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TMO-based Video Conferencing System
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Open Systems Architecture - OSA+ 

• Developed at University of Karlsruhe (Prof. 
Brinkschulte)

• Real-time middleware using microkernel 
concepts targeting small low power devices

• Active entities in OSA+ are services - they 
communicate via jobs

• A job consist of order and result

• Services can be plugged into a platform 

• Multiple platforms in a distributed environment 
form a virtual platform hiding heterogenous 
infrastructure of underlying systems
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OSA+1 Real-Time Middleware, Results and Perspectives. 
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Email: florentin@ira.uka.de

User
Service

User
Service

OSA+ Core Platform

Basic
Services

Extension
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Adaptation to hardware, 
operating system and 
communication system

Functional extensions 

·····

1 OSA+: Open System Architecture Platform for Universal Services

Abstract

The task to design and implement a middleware which
provides real-time features to the user applications and in
the same time is able to work on powerful systems (PC
desktops) and moreover fit on small systems (embedded
systems) represents a big challenge and requires a
considerable effort.
This paper presents concepts and results of OSA+, a
scalable middleware for embedded real-time systems
which facilitates the development of distributed real-time 
applications in a heterogeneous environment. One goal of
the architecture is to reduce as much as possible the 
overhead introduced by the middleware, in terms of
memory footprint and computation time. Furthermore,
the underlying hardware and operating systems should be
used in an optimal manner. 
The first results obtained and presented in the paper show
that we are on the right way to reach our goals. Further
improvements described later can even gain more 
performance for the OSA+ middleware.

1. Introduction of OSA+ concepts 

Distributed real-time systems are state of the art. Real-
time middleware helps to simplify the development,
operation and maintenance of such systems. New
applications introduce restrictions in power consumption,
heat, costs or available space thus leading to very small
microcontrollers becoming more and more important in
the field of distributed real-time computing. Traditional
middleware architectures are not very suited to support
such small devices. This paper presents the OSA+
approach, a real-time middleware using microkernel
concepts to adapt to small low power devices.
The active entities of the OSA+ architecture are services
which can communicate with each other through jobs. A 
job consists of an order and a result. The order is sent
from one service to another to state what this service 
should do and how and when this action should be
performed. The result is sent back after the job has
completed its execution.

Services are plugged into a platform and can 
communicate with each other. Because OSA+ is intended 
to work in a distributed environment, there might be more
than one platform. All physical platforms work together
and provide to the user an overall virtual platform which
hides the heterogeneity of the underlying communication,
and operating systems [1].

Figure 1. OSA+ microkernel architecture 

In order to build a highly scalable architecture which can 
easily be adapted to different hardware and software 
environments, a microkernel architecture well known 
from operating systems is used. The OSA+ platform
consists of a very small core platform, which offers basic
functionality. This core platform contains no hardware
nor operating system dependent parts. The core platform
uses special services to extend its own functionality [1].
These special services are the basic services which are 
used for the adaptation to a specific hardware and 
operating system environment, and, moreover, the
extension services which extend the core functionality of
the platform (Figure 1). It should be mentioned here that
the platform is also able to run without any extension
services. Since the research is focused on
microcontrollers, it is necessary to minimize the average
overhead, because of a lack of power and memory. Thus 
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OSA+ Jobs

• Jobs are used for:

• Communication - by exchaning order and result

• Synchronisation - by creating a specific order of orders

• Parallel execution - by parallel creation or orders

• Real-time execution - using time contraints within orders
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OSA+ Base Services

• Task Service - Connection between micro kernel and underlying operting 
system. Implements scheduling, synchronization, parallel execution

• Memory Service - Connection between micro kernel and memory management 
of underlying operating system. Implements dynamic allocation and 
management of memory

• Event Service - Time-triggered execution of jobs and coupling of job delivery to 
internal and external events

• Communication Service - Connection to communication sub-system. Delivery 
of jobs to distributed services

• Addressing Service - Localization of services. Clients can query locations of 
distributed services

• Reconfiguration Service - dynamic reconfiguration of services during runtime
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