Real-Time Middleware

Andreas Rasche

Roadmap

¢ Real-time Systems, Tasks, Scheduling, Priority Inversion
¢ Real-time CORBA Specification

e Distributed Real-time Specification for Java (D-RTSJ)

e Composite Objects

e Time-triggered Message-triggered Objects (TMO)

e OSA+

Real-time Middleware | Middleware and Distributed Systems AR 2007

What is Real-Time 7

e “A system is a real-time system if the correctness of an operation depends not
only upon the logical correctness but also upon the time at which it is
performed.”

¢ Hard real-time: Missing a deadline could result in catastrophe

¢ Flight control systems, drive-by-wire, avionics, nuclear power plants
e Soft real-time: Result arrival after deadline has still value

e multi-media, airline reservation systems

e Typically strongly coupled to the real world (embedded devices)

value value
A A

[l) [l
deadline t deadline t

Real-time Middleware | Middleware and Distributed Systems AR 2007

Structure of a real-time system

Sensors

Computer

System

T

Actuators

|

Environment

¢ Deadlines are given by the environment

¢ A sensor must be read every 10 seconds

¢ or the landing gear of a airplane must be released before landing

Real-time Middleware | Middleware and Distributed Systems

AR 2007

Tasks & Scheduling

task execution time le slack time

T

arrival time start time deadline

e Scheduling: Find order for task execution so that every tasks meets its deadline
¢ Periodic vs. aperiodic vs. sporadic tasks

® Preemptive vs. non-preemptive execution

e Static (priority-based) scheduling (RMS) vs. dynamic scheduling (EDF, LSF)

e Task synchronization & unbounded priority inversion / avoidance

Real-time Middleware | Middleware and Distributed Systems AR 2007

Static Scheduling & Schedulability

¢ Rate Monotonic Scheduling (RMS)
¢ Periodic, preemptable, independent tasks
e Deadlines are equal to task period

e A set of n tasks is schedulable if total processor utilization is no greater than
n2"-1)

e Task priorities are static; inversely related to periods
e Optimal static-priority uniprocessor algorithm

e All tasks, deadlines and execution times must be known before runtime

Real-time Middleware | Middleware and Distributed Systems AR 2007

RMS - Scheduling Example

Task Ti

Period/Deadling D

Exection Time C;

1

4

2

2

3

1

Real-time Middleware | Middleware and Distributed Systems

AR 2007

RMS - Scheduling Example

Task Ti

Period/Deadling D

Exection Time C;

Priority

1

4

2

1

2

3

1

O(Highest)

2

Real-time Middleware | Middleware and Distributed Systems

AR 2007

RMS - Scheduling Example

Task Ti

Period/Deadling D

Exection Time C;

Priority

Utilization (Uj)

1

4

2

1

50%

2

3

1

O(Highest)

33%

2

20%

Real-time Middleware | Middleware and Distributed Systems

AR 2007

RMS - Scheduling Example

Task Ti

Period/Deadling D

Exection Time C;

Priority

Utilization (Uj)

1

4

2

1

50%

2

3

1

O(Highest)

33%

3

5

1

2

20%

|

0 1

2 3 4

5

Real-time Middleware | Middleware and Distributed Systems

AR 2007

RMS - Scheduling Example

Task Ti

Period/Deadling D

Exection Time C;

Priority

Utilization (Uj)

4

2

1

50%

3

1

O(Highest)

33%

5

1

2

20%

|

Utilization: U = SU; = SC/Di = 103 %

v

0

2 3 4

5

Real-time Middleware | Middleware and Distributed Systems

AR 2007

Priority Inversion - Priority Inversion Avoidance

¢ Priority Inversion Avoidance Protocols:

¢ Priority Inheritance (low-priority task’s priority raised when high-priority task
tries to aquire resource)

e Priority Ceiling (priority of task aquiring a resource raised to highest priority
of task’s using the resource)

Priority Inversion
High blocked by Low and Medium

High Priority

Medium Priority

Low Priority

L(R)
Critical Section 0 1

Real-time Middleware | Middleware and Distributed Systems AR 2007

Distributed Real-Time Embedded Systems (DRE)

¢ Real-time computing is about predictability of timeliness

e Distributed real-time computing is about predictability of timeliness of multi-
node (trans-node) behaviors

¢ Embedded systems must often deal with limited resources

¢ Non-functionional properties of distributed real-time systems not covered in
this lecture:

¢ Fault-tolerance, reliability, availability
e Security, Quality of Service (QoS)

e Examples of DRE systems: telecommunication networks, tele-medicine,
transportation systems, process automation, military appliciations

Real-time Middleware | Middleware and Distributed Systems AR 2007

Real-Time CORBA Overview and Design Goals

e History: Version 1.0 Sept. 2000 - Version 2.0 Nov. 2003

e Extensions to OMG CORBA specifications

e Support of end-to-end predictability

e Definition of “Schedulable Entity” (threads) and priority control

e Avoid or bound priority inversions

e Bounding of method invocation blocking

e Extended resource management (process, storage, communication)
e Management of resource allocations (Mutex)

e Explicit set-up and configuration of bindings (connections)

e Configuration via CORBA:Policy mechnism

Real-time Middleware | Middleware and Distributed Systems 10 AR 2007

Real-time ORB & Real-time POA

¢ Real-time CORBA defines extentions to
CORBA::ORB interface: RTCORBA:RTORB

e Getting RTORB: call
ORB::resolve_initial_reference with Objectld
“RTORB”

e Extentions to POA defined in
RTPortableServer::POA

e ORB::resolve_initial_references(“RootPOA”)
returns RTPortableServer::POA

Real-time Middleware | Middleware and Distributed Systems

Scheduling

-

client Service

RTCORBA::
Current

server \

Servant

CORBA::
Current

POA

RT POA

N

RT
Th

CORBA::
readpool

/

IIOP

(GIOP/TCP) (BHE)

[

RTCORBA::
PriorityMapping

Real-time CORBA entity

existing CORBA entity

[OMG “Real-Time CORBA Specification v2.0”]

AR

2007

CORBA and Threads and Priorities

Thread 1 Thread 1
Object A Object A

|
Object B :

[Douglas E. Jensen “Distributed Threads - "An End-to-End Abstraction for Distributed Real-time”]

Real-time Middleware | Middleware and Distributed Systems 12

Object B

AR 2007

RT-CORBA Priorities & Priority Mappings

e RT-CORBA priorities are unique values ranging from 0 to 32767 (short)
¢ Priorities are set via RTCORBA::Current interface - resolve_i_r(*RTCurrent”)
e Mapping of CORBA priorities to native operating systems host priorities

e Upon setting the RT-CORBA priority attribute(RTCurrent) the value is mapped to
a native priority and the native priority of the current thread immediately set to

that value

//IDL
module RT CORBA {
// Locality Constrained interface
interface PriorityMapping{
boolean to native (in Priority corba priority,
out NativePriority native priority);
boolean to CORBA (in NativePriority native priority,
out Priority corba priority);

}i

} "Real-time Middleware | Middleware and Distributed Systems AR 2007

RT-CORBA Priority Mappings - Example

class MyPriorityMapping : public RTCORBA: :PriorityMapping{
CORBA: :Boolean to_native (RTCORBA::Priority corba prio,
RTCORBA: :NativePriority &native prio)

{
native prio = 128 + (corba_prio/ 256);

// In the [128,256) range...
return true;

[D.Schmidt et.al “Using Real-time CORBA Effectively”]
¢ Installation via void install priority mapping(in PriorityMapping pm)
e Only one priority mapping active at a time
e Used by the ORB for priority manipulation -> no exceptions in prio. mapping

¢ Mapping function implementation must be re-entrant

Real-time Middleware | Middleware and Distributed Systems AR 2007

Client Priority Propagation

e Configured in PriorityModelPolicy (CLIENT_PROPAGATED)

e CORBA priority is propagated in a CORBA priority service context

¢ During request dispatch thread priorities are adjusted

e |f server code changes priority all subsequent invokations use this priority

¢ Important mechanism to bind execution times of method invocations

module IOP {
const ServicelId RTCorbaPriority = 10;

}i

Real-time Middleware | Middleware and Distributed Systems AR 2007

Server-Set Priority Model

e Configuration via SERVER_SET_PRIORITY in PriorityModelPolicy

e Server-side thread executed with configured priority
CORBA: :PolicyList policies (1);
policies.length (1);

policies[0] = rtorb->create_priority model policy
(RTCORBA: : SERVER DECLARED, LOW_ PRIORITY);

// Get the ORB’s policy manager Priority coded in IOR

Used by client-side ORB to exploit
) e.q. priority banded conections
PortableServer::POA var base_ station poa =
- - Client-side code in ORB should be

root poa->create_ POA executed with server declared
(“Base_Station POA”, priority

PortableServer: :POAManager:: _nil (), Example: all requests will be
.. - handled with specified priority
policies);

7

// Activate the <Base Station> servant in <base station_poa>
base station poa->activate_object (base station);

[D.Schmidt et.al “Using Real-time CORBA Effectively”]
Real-time Middleware | Middleware and Distributed Systems 16 AR 2007

Real-time CORBA Priority Policies

(2) Priority is exported (1) Server
N in interoperable - priority

ORB i ORB .
bject referen t
end system |« RIS roTerorngg end system L L=

4

(3) Client's priority
is not propagated
by invocation

Global CORBA priority = 100

Service Service
context context
=100 =100

Y

ORB ORB ORB

Lynx0S end system Windows NT end system Solaris end system
priority priority priority

=100 = 26 =135

Current::priority(100) Current::priority(100) Current::priority(100)
to_native() => 100 to_native() => 5 to_native() => 135

Real-time Middleware | Middleware and Distributed Systems AR 2007

Priorities - RT-CORBA 2.0 Additions

e Setting of server priority per object reference

e Overrides server declared priority

PortableServer: :POA: :0bjectId activate object with priority (
in PortableServer::Servant p servant,
in RTCORBA: :Priority priority)

raises (PortableServer::POA::ServantAlreadyActive,
PortableServer: :POA: :WrongPolicy);

void activate object with _id_and priority (
in PortableServer::0bjectId oid,
in PortableServer::Servant p servant,
in RTCORBA: :Priority priority)

raises (ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy);

Real-time Middleware | Middleware and Distributed Systems AR 2007

Priorities - RT-CORBA 2.0 Additions

¢ Priority Transforms: implementation of user-defined invokation policies

e Implementation of different priority models than server declared or client
propagated

e Mapping of RTCORBA::Priority to other RTCORBA::Priority
e Can be installed:

e During invocation upcall (after an invocation has been received at the server
but before the servant code is invoked) - inbound Priority Transforms

¢ \When making an ‘onward’ CORBA invocation, from servant application
code - outbound Priority Transforms

Real-time Middleware | Middleware and Distributed Systems AR 2007

Thread Pool with Lanes Thread Pool

>23%(52272)(2 || |[,2%272

Threadpools & Threadpoollanes [J[J[J

¢ | anes define different priority levels within a threadpool
e Thread borrowing: high prio. lane may borrow threads from low prio. lanes
e Preallocation of threads (static threads)
e Reduction of priority inversion (low priority request don’t block high prior ones)

¢ Reduction of latency and increase of predictability by avoiding recreation and
destruction of threads

¢ Partitioning of threads
e |solation of system parts by association of POAs to different thread pools
e Bound thread usage (memory usage together with queues size)

¢ [imitation of threads a number of POAs may use
(max. threads = static threads + dynamic threads)

Real-time Middleware | Middleware and Distributed Systems 20 AR 2007

Threadpools: POAs & ORB

>=

DEFAULT
PRIORITY

e R
Default
Thread Pool

/

Thread Pool A

\

Sy

_—

POA C

/

POA A [

5

960606

\

N\

\
N

POA B

(©)e)e)

4)
Thread Pool B

RIORITY PRIORITY
50 20
RN J

[ERER]

S3
DEFAULT

Root POA

.

s

<
m
oC
Q
@)
(O]
£
H
©
O
o
-
O
o«
99}
Q0
(@)]
9
©
=
0p]
©
O
a
©
®
O
P
_C
I_
()]
£
N
£
=
o
@)
©
C
®©
()]
£
©
=)
®
>
L
IS
4
(0]
=
_
®
>
a

Real-time Middleware | Middleware and Distributed Systems

¢ Threadpools can be
associated to POA
and ORB level

e Max. one
threadpool per POA

AR 2007

Creation and Destruction of Threadpools

typedef sequence <ThreadpoolLane> ThreadpoolLanes;
//IDL
// Threadpool Policy module RTCORBA {
const CORBA::PolicyType THREADPOOL POLICY_ TYPE = 41; // Threadpool types
local interface ThreadpoolPolicy : CORBA::Policy typedef unsigned long Threadpoolld;

readonly attribute ThreadpoolId threadpool;
struct ThreadpoolLane {

Priority lane_priority;
local interface RTORB { unsigned long static_threads;
unsigned long dynamic_threads;

ThreadpoolPolicy create_threadpool policy (in Threadpoolld threadpool);
exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_ priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

ThreadpoolId create_threadpool_with lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);
void destroy_threadpool (in ThreadpoollId threadpool)
raises (InvalidThreadpool);

Real-time Middleware | Middleware and Distributed Systems AR 2007

Request Buffering in RT-CORBA Threadpools

e Provides control over
storage resources

Thead Pool A (" Thead Pool B

e No separate thread for

‘)2-)2 _)2 "2_)2 _)2 *2_)2 every request neccessary

PRIORITY 10 PRIORITY 35 PRIORITY 20
E 4 e Used if no static or

dynamic thread is available

[Il.Pyarali et. al. “Evaluating and Optimizing Thread Pool Strategies for Real-Time CORBA”]

Real-time Middleware | Middleware and Distributed Systems 23 AR 2007

Implementing Threadpools
Half-Synch/Half-Asynch Pattern

e Buffering of requests in a queue by I/O-threads
e \Worker threads within the pool process requests from queue

e Easy implementation of thread borrowing, but less efficient because of queueing

POA A] (POAB][POAC |

SynC
SyNnc TASK 3 — POA THREAD POA THREAD
—»
\
\

TASK | POOL POOL

/
/ LANE 1 LANE 2 LANE 3 LANE 1 LANE 2 LANE 3\
SynC % / 5 10 15 10 15 20
—>
|
|

TASK LAYER

TASK 9

\ ’ &gl | s el|ess|| |esg] s & ess
1, 4: read(data) \\ I /

N Il I J
| MESSAGE QUEUES |
7
// / 3: enqueue(data) E E E E E E
V\\Z: interrupt éMAX ééé > ééé 10 éééw ééé20
. RE' T0 [REACTOR] [REACTOR] [REACTOR] [REACTOR]

EVENT SOURCES NETWORK

Real-time Middleware | Middleware and Distributed Systems AR 2007

[D.C.Schmidt, C. O’Ryan “Leader/Followers”]

TASK LAYER

S
S
S
<
%)
<)
<
K
2
~
Ql
S
S
T
=
o~
2
~

PROCESSING

Implementing Threadpools
Leader/Followers Pattern

LEADING W LEADE FOLLOWING

e A number of threads (in a threadpool) is synchronized to get process external
requests

¢ At one time one thread - the leader - waits for an event on a set of I/O-
handles

e Other threads - the followers - can queue up and wait to become new leader

e Current leader determines follower, after demultiplexing an event from |/O-
handles

e Underlying I/0O-system queues events if no thread is available
e No additional thread for request dispatch + better performance

e Request buffering & borrowing harder to implement (no explicit queue)

Real-time Middleware | Middleware and Distributed Systems AR 2007

Leader/Followers Pattern - Example Sequence

« CONCRETE

- THREAD»
EVENT HANDLER

join() ' s

BECOME NEW LEADER THREAD
|

handle events() >

L join) . — 1 select()

BECOME
FOLLOWER
1 THREAD

i

EVENT ARRIVES

N

promote new leader())IJ_l |

(BECOME NEW LEADER THREAD |

handle event() I'I'| BECOME PROCESSING THREAD

handle events() | 1

> <« select()

join() BECOME

[D.C.Schmidt, C. O’Ryan “Leader/Followers”]

Real-time Middleware | Middleware and Distributed Systems AR 2007

Real-Time CORBA Mutex

e Standardized mutex implementation for all applications

¢ Two states: locked and unlocked

e Born in unlocked State

¢ Implementation of priority inheritance required

e ORB must use same mutex implementation as delivered to applications

e Consistent priority inversion avoidance /bL
module RT_CORBA {

// locality constrained interface
interface Mutex {
void lock();
void unlock();
boolean try_lock(in TimeBase::TimeT max_wait);
// if max_wait = 0 then return immediately
b
interface ORB : CORBA::ORB {

Mutex create_mutex();

};...
b

Real-time Middleware | Middleware and Distributed Systems AR 2007

Client-side configuration - Banded Connections

e Configured via PriorityBandedConnectionsPolicy
¢ Reduction of priority inversion caused by using non-priority transport protocols
¢ Facility for clients to communicate with a server via multiple connections

e Each connections handles separate invokation priority level (range)

e Connection selection transparent to the application

e Applied at client-side during object binding or server-side and propagated
via IOR

//IDL
module RT_CORBA {
struct PriorityBand
Priority low;
Priority high;
}
typedef sequence <PriorityBand> PriorityBands;
// PriorityBandedConnectionPolicy
const CORBA::PolicyType
PRIORITY_BANDED_ CONNECTIONS_ POLICY_TYPE = 45;
interface PriorityBandedConnectionPolicy : CORBA::Policy {
readonly attribute PriorityBands priority bands;

}i
Real-time Middleware | Middleware and Distributed Systems }i 28 AR 2007

Priority Bands - Example

// Create the priority bands

RTCORBA: :PriorityBands bands (2); bands.length (2);
bands[0] .low = LOW_ PRIO; // We can have bands with
bands[0] .high = MEDIUM PRIO; // a range of priorities or
bands[1l].low = HIGH PRIO; // just a “range” of 1!
bands[1].high = HIGH PRIO;

// Now create the policy...

CORBA: :PolicyList policies (1); policies.length (1);
policies[0] =
rtorb->create priority banded connection policy (bands);
// Use just like any other policies...

* Priority Bands can also be used on client-side to pre-allocate connections

e |f priority bands are installed and an invokation with a priority triggered without
a configured (range): a “no resource” system exception is thrown

Real-time Middleware | Middleware and Distributed Systems AR 2007

More Connection Policies

¢ Client-side configuration - private connections
e Configured via PrivateConnectionPolicy
¢ Private for connection for one object binding
e Not multiplexed with other invocations
¢ Invokation Timeouts
e Configured via RelativeRoundtripTimeoutPolicy
e Allows for definition of timeout for invocations
e Server is not informed about expiration of a timeout

e Defined in original CORBA specification

Real-time Middleware | Middleware and Distributed Systems

AR 2007

Protocol Configuration - ProtocolPolicy

e Configuration and selection of communication protocols

¢ ClientProtocolPolicy & ServerProtocolPolicy

¢ Definition of multiple protocols and order configuration possible

e Protocol defined as pair of ORB protocol (GIOP) and transport protocol (TCP)

e ProtocolProperties for protocol specific configuration (message length, buffer

S|Ze) / IDL module RT_CORBA {
// Locality Constrained interface
interface ProtocolProperties {};
struct Protocol {
IOP: :ProfileId protocol_type;
ProtocolProperties orb_ protocol properties;
ProtocolProperties transport_protocol_properties;
}i
typedef sequence <Protocol> ProtocolList;
// Protocol Policy
const CORBA::PolicyType PROTOCOL_ POLICY TYPE = ??;
// Locality Constrained interface
interface ProtocolPolicy : CORBA::Policy {
readonly attribute ProtocollList protocols;

}i
Real-time Middleware | Middleware and Distributed Systems }i 31 AR 2007

ProtocolPolicy Example

[D.Schmidt et.al “Using Real-time CORBA Effectively”]

e Creation of protocol properties

RTCORBA: : ProtocolProperties var tcp properties =
rtorb->create_tcp protocol properties (
64 * 1024, /* send buffer */
64 * 1024, /* recv buffer */
false, /* keep alive */
true, /* dont_ route */
true /* no _delay */);

e Configuration of protocol list

RTCORBA: :ProtocolList plist; plist.length (2);

plist[0] .protocol type = MY PROTOCOL TAG; // Custom protocol
plist[0] .trans protocol props =

/* Use ORB proprietary interface */

plist[1l].protocol type = IOP::TAG_ INTERNET IOP; // IIOP
plist[1l] .trans protocol props = tcp properties;

RTCORBA: :ClientProtocolPolicy ptr policy =
rtorb->create_client protocol policy (plist);

Real-time Middleware | Middleware and Distributed Systems 32 AR 2007

Real-Time CORBA Protocol Configuration

-—O

(2) Pass object []

reference

Object
(servant)

Client

(4) Invoke operation
T i (1) Create object

Standard reference
(3) Select synchronizers

protocol \\
Y

VME ATM TCP << VME ATM TCP
core

@ortable object adapteD

OS kernel \\ OS kernel

Network

Real-time Middleware | Middleware and Distributed Systems AR 2007

RT-CORBA v2.0 Dynamic Scheduling

e Static priority scheduling not sufficient for dynamic workloads

¢ Integration of other (dynamic) scheduling algorithms (EDF,LSFLLF,...)

] Control Flow
¢ Plugin schedulers

e Distributable Thread (DT) replaces activity definition

‘.I__I

e Fach DT has system-wide unique identifier Object
A

B

e DT has one or more execution scheduling parameter elements (priority, time
constraints (deadlines, utility functions, importance)

e Semantics of acceptability of end-to-end timeliness defined by the
application in context of used scheduling discipline

e Execution of DTs governed by scheduling parameter elements at each
visited node

Real-time Middleware | Middleware and Distributed Systems AR 2007

Distributable Thread Abstraction

Thread 1 Thread 1 DThread 1
Object A Object A ObjectA |
|

Thread
2

Object B Object B Object B

[Douglas E. Jensen “Distributed Threads - "An End-to-End Abstraction for Distributed Real-time”]

Real-time Middleware | Middleware and Distributed Systems 35 AR 2007

Distributed System Scheduling

e Scheduling in distributed systems can be divided into 4 classes

e Scheduling independently on each node and there is no trans-node end-to-
end timeliness requirement (non-realtime systems)

e Scheduling independently on each node but there is a mechanism such as
priority propagation (RT-CORBA specification 1.%)

e Scheduling on each node is global: there is a logical singular system-wide
scheduling algorithm instantiated on each node (implementable in RT-
CORBA 2.0)

e Multi-level scheduling: at least one level of meta-scheduling - global
optimization by adaptive adjustment of local policies

Real-time Middleware | Middleware and Distributed Systems AR 2007

Distributable Threads - Scheduling Segments

¢ Distributable threads consist of one or more (potentially nested) scheduling
segments (nesting creates scheduling scopes)

e Fach segment represents a sequence of control flow with associated
scheduling parameter elements

¢ Declaration of segments within code through: begin_scheduling_segment and
en d—SC h ed u I In g_Seg me nt Distributable Thread Traversing CORBA Objects

Segment
scopes

» Update of scheduling parameters within vy —
segment using update_scheduling_segment "o Z]

e Segments may span processor boundaries o Df
EE;EEZI
ESSZ

Object A Object B Object C

@® Application call
BSS - begin_scheduling_segment [Portable Interceptor
USS - update_scheduling segment — Distributable Thread
ESS - end_scheduling_segment Normal Thread

Real-time Middleware | Middleware and Distributed Systems AR 2007

Dynamic Scheduling Interfaces

e DT entry points defined by overriding ThreadAction::do method

module RTScheduling {

e DT creation: RTCORBA::Current::spawn

local interface Current : RTCORBA::Current {

e segment specific functions (begin,end,update) D s o e (e,
in unsigned lon stack size,
// zerog means ugse the tO/S “default

e Distributable thread id specific functions in RICORBA::Priority base priority);

e |[dType get_current_id();

e DistributableThread lookup(in IdType id);
e DT cancelation (RTCORBA::Current::cancel(id))
¢ Readonly access to scheduling parameters

e Getting current segment names (list)

Real-time Middleware | Middleware and Distributed Systems AR 2007

(Distributed) Real-Time Specification for Java

¢ Extended thread & synchronization model
¢ RealtimeThread and NoHeapRealtimeThread
e Static priority scheduler with > 28 priorities
e Support for user-defined schedulers
¢ Extended Memory Model - GC-free memory regions
e Scoped Memory
¢ Immortal Memory
¢ Asynchronous Transfer of Control

¢ Direct memory access and interrupt handling

Real-time Middleware | Middleware and Distributed Systems AR 2007

Distributed Real-Time Specification for Java (JSR-50)

e Extension of RTSJ in a natural and familiar way
¢ Real-time RMI (Modification of JSR-78 RMI - Custom Remote Interfaces)
e Support for propagating resource management specific data
e Configuration of underlying transport infrastructure
¢ | exically scoped timing constraints (BeginTimeContraint{}, BeginTimeContraint{})
¢ Distributable Thread Integrity Framework

¢ |[ntegration of application-specific policies for maintaining the health and
integrity of Distributable Threads in presence of failures

e Scheduling Framework

¢ Plug-in architecture for integration of appropriate user space policies for
scheduling Distributable Threads

Real-time Middleware | Middleware and Distributed Systems 40 AR 2007

Composite Objects - Real-Time with CORBA
[Polze98]

¢ |[ntegration of real-time into non-realtime CORBA

e Decoupling of real-time and non-real-time part via shared buffer and
consistency protocol (weak consistency for shared variables)

m RT-Message Queues

R POSIX 1003.21 Class
Composite Object >

priorities
timers

hublic dat: T-dat:
pt blic data RT-data RT-threads

crs s o sy ot memary management
pure non-RT shadow non-R1 shared R pure RT (“‘Om;‘(':?‘iiili‘ Object \'n: “.“f\{] lo *]'Tn
A LS b SUJC | <), locking

variables variables variables variables overloaded new/malloc

CORBA stubs RT-threads

public

Jati RT-data

sEgsEpavE
RTimegsage

mirroring i iquees

consistency protocol
communication

without QoS QoS guarantees

cuarantees

<
m
oC
@)
@)
=
=
o
£
&
S
©
>
o
o
®
IS
=
©
D
o
e
O
D
Q
O
2
‘D
Q
o)
&
S
&
©
c
n
i
)
N
O
a
<

Problems: Scheduling of RT-threads
Firewall/mirroring between RT & public data

Real-time Middleware | Middleware and Distributed Systems AR 2007

Composite Objects - Timing Firewalls

¢ Non-real-time parts must not violate real-time scheduling rules

e Usage of scheduling server approach for CPU patrtitioning

|'.-|'iu‘dIIIIL Pri“f’\
,{— Scheduling Server thread

£ RT-priority levels — '—{‘_
P i S RT-slot

T ; — non-RT sfot
non-RT priority levels : : ,-' :

horizontal firewall vertical firewall

[A. Polze, L. Sha “Composite Objects: Real-Time Programming with CORBA”]

Real-time Middleware | Middleware and Distributed Systems AR 2007

Composite Objects in Action - Unstoppable Robots

gateway 72
+ Composite Object

MNeXTSTEP

Y

15t World Display

simulation
environment

NeXTSTEP

w

gateway 71

Composite Object

NeXTSTEP

2nd World
Java-based Display

Solaris

Y

gateway #4
Composite Object

rtLinx

controller

NeXTSTEP

v

robot
control

khepera
robot

controller

MNeXTSTEP

controller
MNeXTSTEF

]

CoNnsensLUs

gateway &2
Composite Object
controller

MNeXTSTEP

(CORBA)
NoP

A

algorithm

Real-time Middleware | Middleware and Distributed Systems

A Window-based
controller

Solaris

AR 2007

[A. Polze, L. Sha “Composite Objects: Real-Time Programming with CORBA”]

Time-Triggered Message-Triggered Object (TMO)

e Early ’90s by Kane Kim at Dreamlabs University of California Irvine
e Component structuring scheme supporting real-time and non-real-time objects
e A TMOs are distributed computing components interacting via remote method calls
e TMOs can contain two types of methods
¢ Time-triggered methods (also called spontaneous methods or SpMs)
e Conventional service methods (SvMs)

e Basic concurrency constraint: activation of an SvM triggered by a message from an
external client is allowed only when conflicting SpM executions are not in place

* Triggering times for SpMs must be specified "Tor t= from 10am to 10:50am

as constants during design time every 30min
start-during (t, t+5min)
finish-by t+10min"

Real-time Middleware | Middleware and Distributed Systems AR 2007

TMO structure

e Object data store: lockable segments
containing data members Name of TMO

e Service methods: triggered by messages Segment, | segment, ><}
to provide services requested by client PEI
objects (TMO designer guarantees
deadlines for output production) K

and 1/0 devices

Capabilities for
[K.H.(Kane) Kim “Object Structures for Real-Time Systems and Simulators”]

accessing other TMOs,
communication channels,

Deadline

* SpMs are invoked when the real-time 2
clock reaches the specified time it

1 Deadline
Reservation
queue

methods

Time- triggered
spontaneous

e Candidate times: set of times actual Service

I 1 : : request
triggering time will be chosen from queue 3905 Jp s

W svm, [--€5
e TMO designer guarantees timely service $po Deadline

to all potential clients by indicating the — 6 v, |- (53
deadline for every output produced in Uy Concurrency Deadline
response to a service method request i

Message-triggered
service methods

Real-time Middleware | Middleware and Distributed Systems AR 2007

TMO - Guaranteed Deadlines

¢ Client’s deadline for result arrival is set by the programmer with knowledge of
the server’s GCT and the transmission times consumed by the communication

infrastructure

¢ Client’s execution engine ensures that client’s deadline is kept under a GCT

advertised by a server

e Maximum invokation rates (MIR)
are specified during SvM
creation

e |[f a client can’t hold its deadline
It can trigger an alternative
action or choose another TMO
with better timings (comm.
infrastructure, GCT, MIR (load
situation)

Real-time Middleware | Middleware and Distributed Systems

Client object Server object

<0bject data store> <0bject data store>

Method 2

". Metr-lod 7

Deadline for Domain of Guaranteed completion
result arrival communication time (GCT) (server's
(client's deadline) infrastructure self-imposed deadline)

[K.H. (Kane) Kim “APls for Real-Time Distributed Object Programming”]

46 AR 2007

TMO-based Video Conferencing System

Participant site - computer
system

Access Capability (to other TMO’s) Another
participant site computer system

Object Data Store

Audio server, video server, audio
ré¢ceiver-player, video receiver-

player, camera: msg receiver "Send image
to\the camera (pl, p2, ..)",

microphone: msg_receiver "Speak 1nto the
microphone (pl, p2, ..)"

speaker (pl, p2, ..), display unit (pl, p2,

..

SpM “ Update the state descriptors in ODS”
Update the state of audio server (microphone)
Update the state of video server (camera)
Update the state of audio receiver-player &
speaker

Update the state of video receiver-player &

ek e Object Execution ——
Site .o D Engine

-~-RF<

Peripheral drivers

Video Conferencing System

Access Capability (to other TMO’s)
None

Object Data Store

(0-n) Participant site computer :}
SYSTEms, €achn Withh & USer Seact

SpM (driven by an infinite-precision
clock)

Update the states of participant site
computer systems

SvM
Enter a seat

Real-time Middleware | Middleware and Distributed Systems

Participant site A

Partficipant site B

»: Audio signal > . Video signal
LMC: logical multicast > Sync. Signal

channel

AR 2007

%D
c
0
prur]
[av)
9
[e3
Q
<
c
ke
©
RS}
c
>
£
&
@)
[®]
o©
O
|_
-
O
e
o
=
C
O
—
o
o
()
=
©
C
®©
e
@]
®
(@)
=
o
o
<
()}
£
=
)
=
[©]
-}
st
=
w
©)
=
|_
(0]
-
e
£
X
©
C
Q]
<
T
X

Open Systems Architecture - OSA+

¢ Developed at University of Karlsruhe (Prof.
Brinkschulte)

¢ Real-time middleware using microkernel
concepts targeting small low power devices

¢ Active entities in OSA+ are services - they
communicate via jobs

¢ A job consist of order and result
e Services can be plugged into a platform

e Multiple platforms in a distributed environment
form a virtual platform hiding heterogenous
infrastructure of underlying systems

Real-time Middleware | Middleware and Distributed Systems

User
Service

User
Service

OSA+ Core Platform

Basic
Services

v

Adaptation to hardware,
operating system and
communication system

Extension
Services

\4

Functional extensions

AR 2007

[F. Picioroaga et. al “OSA+ Real-Time Middleware, Results and Perspectives”]

OSA+ Jobs

¢ Jobs are used for:
e Communication - by exchaning order and result
e Synchronisation - by creating a specific order of orders
¢ Parallel execution - by parallel creation or orders

¢ Real-time execution - using time contraints within orders

Server
Service

Await | iExists it| i Exists Return
Result | iResult Result

Middleware/OSA+ platform

Real-time Middleware | Middleware and Distributed Systems AR 2007

k%)
()
=
5
O
()
Q
n
p -,
(O]
o
©
c
@©
%)
=
>
%)
(O]
o
)
-
©
=
QD
o
o
=
()
S
i
©
(O]
oC
+
<
wn
o
©
=
()
©
(@)
©
o
i)
O
ol
L

OSA+ Base Services

e Task Service - Connection between micro kernel and underlying operting
system. Implements scheduling, synchronization, parallel execution

e Memory Service - Connection between micro kernel and memory management
of underlying operating system. Implements dynamic allocation and
management of memory

e Event Service - Time-triggered execution of jobs and coupling of job delivery to
internal and external events

e Communication Service - Connection to communication sub-system. Delivery
of jobs to distributed services

e Addressing Service - Localization of services. Clients can query locations of
distributed services

e Reconfiguration Service - dynamic reconfiguration of services during runtime

Real-time Middleware | Middleware and Distributed Systems AR 2007

Further Reading

¢ J. Lui. “Real-Time Systems”, Prentice Hall
e RealTime-CORBA Specification 2.0, OMG, November 2003

e Carlos O. Rain, D. Schmidt, “Using Real-time CORBA effectivly”,
www.cs.wustl.edu/~schmidt/tutorials-corba.html/

e J. Anderson, D. Jensen, “Distributed Real-time Specification for Java - A
Status Report”

e K.H. (Kane) Kim, “Object Structures for Real-time Systems and Simulators”,
IEEE Computer 1997

¢ |. Picioroaga et. al. “OSA+ Real-Time Middleware, Results and Perspectives”,
ISORC ‘04

Real-time Middleware | Middleware and Distributed Systems AR 2007

