
Middleware and Distributed Systems

Cluster and Grid Computing

Peter Tröger

Cluster & Grid | Middleware and Distributed Systems MvL & PT 20072

Architectural Classes

• Taxonomy of Flynn:

• SISD - Uniprocessor machine, old mainframes

• SIMD - Vector processor, GPU, Cell processor, SSE, AltiVec

• Same instruction on different data, usually 1024-16384 processing units

• MISD - For redundant parallelism, no mass market

• MIMD

• SPMD - Parallel programming

• MPMD - Distributed systems, e.g. master-worker application

Cluster & Grid | Middleware and Distributed Systems MvL & PT 20073

Shared Memory vs. Distributed Memory System

• Shared memory (SM) systems

• SM-SIMD: Single CPU vector processors

• SM-MIMD: Multi-CPU vector processors, OpenMP

• Tendency to cluster shared-memory systems (NEC SX-6, CraySV1ex)

• Distributed memory (DM) systems

• DM-SIMD: processor-array machines; lock-step approach; front processor
and control processor

• DM-MIMD: large variety in interconnection networks

• Virtual shared-memory systems (High-Performance Fortran, TreadMarks)

Cluster & Grid | Middleware and Distributed Systems MvL & PT 20074

Cluster Systems

• Collection of stand-alone workstations/PC‘s connected by a local network

• Cost-effective technique to connect small-scale computers to a large-
scale parallel computer

• Low cost of both hardware and software

• Users are builders, have control over their own system (hardware
infrastructure and software)

• Distributed processing as extension of DM-MIMD

• Communication between processors is orders of magnitude slower

• PVM, MPI as widely accepted programming standards

• Used with cheap LAN hardware

Cluster & Grid | Middleware and Distributed Systems MvL & PT 20075

MPP SMP Cluster Distributed

Number of nodes O(100)-O(1000) O(10)-O(100) O(100) or less O(10)-O(1000)

Node Complexity Fine grain
Medium or coarse

grained Medium grain Wide range

Internode
communication

Message passing /
shared variables

(SM)

Centralized and
distributed shared

memory
Message Passing

Shared files, RPC,
Message Passing,

IPC

Job scheduling Single run queue
on host

Single run queue
mostly

Multiple queues
but coordinated

Independent
queues

SSI support Partially Always in SMP Desired No

Address Space Multiple Single Multiple or single Multiple

Internode Security Irrelevant Irrelevant Required if
exposed

Required

Ownership One organization One organization
One or many
organizations

Many
organizations

K. Hwang and Z. Xu, Scalable Parallel Computing: Technology, Architecture, Programming; WCB/McGraw-Hill, 1998

Comparison

Time | Middleware and Distributed Systems MvL & PT 20076

Cluster & Grid | Middleware and Distributed Systems MvL & PT 20077

Cluster System Classes

• High-availability (HA) clusters - Improvement of cluster availability

• Linux-HA project (multi-protocol heartbeat, resource grouping)

• Load-balancing clusters - Server farm for increased performance / availability

• Linux Virtual Server (IP load balancing, application-level balancing)

• High-performance computing (HPC) clusters - Increased performance by splitting
tasks among different nodes

• Speed up the computation of one distributed job (FLOPS)

• Beowulf architecture as popular open source example

• High-throughput computing (HTC) clusters - Maximize the number of finished jobs

• All kinds of simulations, especially parameter sweep applications

• Special case: Idle Time Computing for cycle harvesting

Cluster & Grid | Middleware and Distributed Systems MvL & PT 20078

Simple Queuing Management System

Utility
Program

User Scheduler Dispatcher
Load

Balancer

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

• Utility Program - Command line tool for the user

• Scheduler - Subsystem that services users requests

• After user submits a job, scheduler queues job in its queue

• Makes decision based on scheduling policy

• Queue - Collection of jobs, order based on attributes/policy

• Dispatcher - Performs the submission of jobs in queue

• Load Balancer - Selects appropriate set of compute nodes, based on monitoring

Cluster & Grid | Middleware and Distributed Systems MvL & PT 20079

Batch Queuing System

• “Batch processing” : Run a number of jobs without human interaction

• Queuing system ensures that jobs only get scheduled when resources are
available to run job

• Ensures that user's jobs are scheduled according to a predefined policy
(e.g. fair share scheduling)

• Advanced queuing systems

• Job priorities, suspension, runtime limits

• Multiple queues with resource properties, matched against the user
requirements (e.g. minimum amount of RAM, parallel jobs)

• Support for interactive jobs, file staging, job migration or job monitoring

• Checkpointing - save the current job state for fault tolerance or migration

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200710

Scheduling

• Queuing approach

• Jobs are submitted to the scheduler, put into a batch queue

• Jobs waits in a queue for execution (wait time), different queue priorities

• Resources are assigned to waiting jobs, which are taken out of the queue
and executed on the particular node (execution time)

• Turnaround time: Time between job submission and completion
(wait time + execution time)

• Scheduling has to consider different job types - Number of requested
processors (job width), job size, estimated runtime, priority

• Conflicting optimization goals: system job throughput vs. average job
turnaround time vs. resource utilization

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200711

Space-Sharing Scheduling
• Matching resource is assigned to a job until it terminates

• First come first served (FCFS) / First in first out (FIFO)

• Run jobs in the order they arrive, good for low job load

• Worst case: Long job arrives first

• Round robin (RR) - Current job is suspended when quantum is exhausted

• Favours short process demands, depending on quantum

• Shortest job first (SJF) - Optimizes throughput and turnaround time

• Longest job first (LJF) - Maximize utilization at the costs of turnaround time

• Shortest remaining time first (SRTF) - Preemptive version of SJF,
re-scheduling on each process arrival

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200712

Example: Shortest-Job-First

• Though FCFS is fair, it may not optimize the average waiting time

• job1 (10 minutes), job2 (1 min), job3 (1 min)

• job1 waits 0 minutes, job2 waits 10 minutes, job3 waits 11 minutes

• Average waiting time is (0+10+11)/3 = 21/3 = 7 minutes

• If we do job2, job3, job1

• job2 waits 0 minutes, job3 waits 1 minute, job1 waits 2 minutes

• Average waiting time is (0+1+2)/3 = 3/3 = 1 minute

• Periodical sorting of the queue

• Good turnaround time for short jobs

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200713

Backfilling / Advanced Reservation

• Backfilling

• Optimize schedule by filling the scheduling gaps with small jobs

• Demands priority scheduling

• Does not alter the schedule sequence

• Can either increase utilization or decrease response time

• Need execution time prediction by the user

• Advanced reservation

• Build a schedule based on wall clock time assumption

Time | Middleware and Distributed Systems MvL & PT 200714

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200715

Cluster Benchmarking

• TOP500.org

• Collection started in 1993, updated every 6 months

• 500 most powerful computers / clusters in the world

• Comparison through Linpack benchmark results

• Linpack

• Measures floating point rate of execution

• Solving of a dense system of linear equations, grown since 1979

• Compiler optimization is allowed, no changes to the code

• 3 tests: Linpack Fortran n=100, Linpack n=1000, Linpack Highly Parallel
Computing Benchmark (used for TOP500 ranking)

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200716

History

• 1977: ARCnet (Datapoint)

• LAN protocol, such as Ethernet

• DATABUS programming language, single computer with terminals

• Transparent addition of ‚compute resource‘ and ‚data resource‘ computers

• No commercial success

• May 1983: VAXCluster (DEC)

• Cluster of VAX computers („Closely-Coupled Distributed System“)

• No single-point-of-failure, every component that could fail was duplicated

• High-speed message-oriented interconnect, distributed VMS

• Distributed lock manager for shared resources

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200717

VAXCluster Architecture

 Maximum node separation
of 90 meters

 CI: dual path, serial
interconnect, 70MBit/s

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200718

NOW

• Berkeley Network Of Workstations (NOW) - 1995

• Building large-scale parallel computing system with COTS hardware

• GLUnix operating system

• OS layer, transparent remote execution, load balancing

• Network PID‘s and virtual node numbers for communication

• Network RAM - idle machines as paging device

• Collection of low-latency, parallel communication primitives - ‘active messages’

• Berkeley sockets, shared address space in C, MPI

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200719

Beowulf

• Software package, first prototype in 1994 (DX/4, 10MB Ethernet)

• Commodity hardware, Linux operating system, MPI and PVM, Ethernet
channel-bonding, global PID space

• DIPC - cluster-wide System V shared memory, semaphores and message
queues

• Donald Becker and Thomas Sterling (watch your Linux boot screen !)

• Class 1 cluster: standard hardware (SCSI, Ethernet)

• Class 2 cluster: specialized hardware

• Large community, supported by NASA

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200720

Condor

• University of Wisconsin-Madison, available for more than 15 years

• Loosely coupled cluster of workstations

• Idle-Time- and High-Throughput-Computing

• ClassAd‘s: mechanism for job requirements

• No strict FIFO queues, implements priority scheduling, fair-share
consideration for users

• Popular grid frontend (Condor-G)

• Submit Condor job as usual, runs in a (Globus) grid

• Interconnection of Condor pools (flocking)	

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200721

Condor Job Submission File

Executable = foo

Requirements = Memory >= 32 &&

 OpSys == "IRIX65“ &&

 Arch == "SGI“

Rank = Memory >= 64

Image_Size = 28 Meg

Error = err.$(Process)

Input = in.$(Process)

Output = out.$(Process)

Log = foo.log

Queue 150

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200722

Codine

• (CO)mputing in (DI)stributed (N)etworked (E)nvironments,
GENIAS Software GmbH

• Large support for heterogeneous systems (CRAY, ULTRIX, HP-UX, AIX, IRIX,
Solaris)

• Merger of DQS queuing framework and Condor checkpointing

• File staging through RCP or FTP

• First-in-first-out or fair-share scheduling

• Fault tolerance through scheduler take-over

• Resource limitation even with missing operating system functionality

• Company taken over by SUN, successor Sun Grid Engine

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200723

LoadLeveler

• Proprietary scheduler from IBM (modified Condor version)

• Support for IBM hardware (started with S/6000, still support for modern
systems)

• GUI as single point of access

• Job accounting

• IP striping, hardware-supported checkpointing and shared-memory
communication

• llsubmit, llq, llcancel, bstat

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200724

#!/bin/sh
#@ job_type = parallel
#@ output = loadl_ex3.llout
#@ error = loadl_ex3.llerr
#@ node_usage = not_shared
#@ resources = ConsumableCpus(1) \
#@ ConsumableMemory(1968 mb)
#@ wall_clock_limit = 1:10:0,1:0:0
#@ node = 2
#@ tasks_per_node = 32
#@ network.mpi = sn_all,,us
#@ environment = MEMORY_AFFINITY=MCM; \
MP_SHARED_MEMORY=yes; \
MP_WAIT_MODE=poll; \
MP_SINGLE_THREAD=yes; \
MP_TASK_AFFINITY=MCM
#@ queue
./a.out

LoadLeveler Example

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200725

MAUI

• Open source scheduler, plugs into PBS, LoadLeveler, LSF or GridEngine

• Provides backfilling and advanced reservation

• First-fit, best-fit and balanced-fit backfilling

• Consideration of job properties (number of processors, working set, …)

• No queue policy approach, all jobs are considered to be the next

• Multiple factors: job resource requirements, queue time, expansion, historical
data (fair share), QoS (boosting)

• Expansion factor = (Queue_Time + Job_Time_Limit) / Job_Time_Limit

• Relates the requested job time to the total queuing and expected runtime

• Job with low time limit will increase it’s priority more quickly

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200726

Load Sharing Facility (LSF)

• Commercial product from Platform Inc.

• Support for several scheduling technologies

• Fairshare, preemption

• Advance reservation, resource reservation

• SLA scheduling

• Tight coupling to grid infrastructures

• Smooth Windows integration

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200727

OpenPBS / PBSPro

• Portable Batch System, open source and commercial version

• Based on Network Queuing System (NQS) - Cray 1986

• Developed by NASA and NERSC

• PBSPro offers advanced reservation and multiple scheduling strategies

• Directives as script comments or qsub arguments

• qstat, qsub, qdel, qalter, qhold, qrerun

• Open source successor Torque

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200728

PBS Sample Script (qsub)

#/bin/sh

Request 8 nodes
#PBS -l nodes=8
Request 8 hour 10 minutes of wall-clock time
#PBS -l walltime=8:10:00
Request that regular output (stdout) and
terminal output (stderr) go to the same file
#PBS -j oe
Send mail when the job aborts or terminate
#PBS -m ae
Mail address
#PBS -M user@some.where
#Goto the directory from which you submitted the job
cd $PBS_O_WORKDIR
mpirun -np 8 ./foo

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200729

Cluster File Systems

• Key features in comparison to NFS:

• Fault-tolerant behaviour (fail-over for distributed data)

• Load levelling, utilization of high-performance interconnections

• ‚Single system data‘ view

• RedHat Global File System - up to 256 nodes, POSIX-compliant, SAN as
backbone, no single-point-of-failure, Quotas, multi-path routing

• IBM General Parallel File System - support for thousands of disks, terabyte of
data, up to 4096 nodes

• Files are not localized (striped between nodes), multiple network path
access, automatic logging and replication, fault-tolerant operation mode

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200730

Cluster Network Technology

• 100 MBit / Gigabit Ethernet

• Cheap solution

• High latency (around 100 µs)

• SCI

• IEEE/ANSI standard since 1992

• Ring structure, network as 1-D, 2-D or 3-D torus

• Bandwidth of 400 MB/s

• Latency under 3 µs

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200731

Cluster Network Technologies (contd.)

• Myrinet ANSI standard (1998)

• Upstream and downstream fiber optic channel

• New Myri-10G is compatible to Gigabit Ethernet physical layer

• Entirely operated in user space, firmware interacts with host process

• Maximum bandwidth of 10 GBit/s, latency around 2 µs

• Infiniband standard (2002)

• Copper and glas fiber connections

• Remote memory direct access (R-DMA) between host channel adapters

• Maximum bandwidth of 96 GBit/s, latency around 1.3 - 2.6 µs

• More expensive than Myrinet

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200732

Single System Image

• Each cluster node has exclusive set of resources, only usable from this node

• Resources should be transparently available regardless of their physical
attachment

• SSI middleware offers unified access to operating system resources

• Examples: Mosix (Hebrew University of Jerusalem), OpenMosix, OpenSSI,
Tornado (University of Toronto), Sprite (University of California, Berkeley),
SCO UnixWare, Solaris MC, IBM cJVM

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200733

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200734

Cluster Programming

• Distributed shared memory (Linda, Tuplespaces)

• Threads

• POSIX PThreads

• Distributed processing with Single System Image cluster

• Message Passing

• Parallel programming for distributed memory systems

• Parallel Virtual Machine (PVM) from Oak Ridge National Laboratory

• Message Passing Interface (MPI) defined by MPI Forum

• Libraries for sequential programming languages
(Fortran 77, Fortran 90, ANSI C, C++, Java)

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200735

Amdahl‘s Law

• Gene Amdahl, "Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities", AFIPS Conference Proceedings, 1967

• Speedup =

• s: Time spent on serial parts of a program

• p: Time spent on parts that can run in parallel

• N: Number of processors

• Re-evaluations from practice

• Run time, not problem size, should be constant

• Speedup should be measured by scaling the problem to the number of
processors, not fixing problem size

€

s+ p
(s+ p) /N

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200736

The Parallel Virtual Machine (PVM)

• Intended for heterogeneous environments, integrated set of software tools
and libraries

• User-configured host pool

• Translucent access to hardware, collection of virtual processing elements

• Unit of parallelism in PVM is a task, no process-to-processor mapping is
implied

• Support for heterogeneous environments

• Explicit message-passing mode, multiprocessor support

• C, C++ and Fortran language

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200737

PVM (contd.)

• PVM tasks are identified by an integer task identifier (TID)

• User named groups

• Programming paradigm

• User writes one or more sequential programs

• Contains embedded calls to the PVM library

• User typically starts one copy of one task by hand

• Process subsequently starts other PVM tasks

• Tasks interact through explicit message passing

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200738

PVM Example

main() {
 int cc, tid, msgtag;
 char buf[100];
 printf("i'm t%x\n", pvm_mytid()); //print id
 cc = pvm_spawn("hello_other",
 (char**)0, 0, "", 1, &tid);
 if (cc == 1) {
 msgtag = 1;
 pvm_recv(tid, msgtag); // blocking
 pvm_upkstr(buf); // read msg content
 printf("from t%x: %s\n", tid, buf);
 } else
 printf("can't start it\n");
 pvm_exit();
}

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200739

PVM Example (contd.)

main() {

 int ptid, msgtag;

 char buf[100];

 ptid = pvm_parent(); // get master id

 strcpy(buf, "hello from ");

 gethostname(buf+strlen(buf), 64); msgtag = 1;

 // initialize send buffer

 pvm_initsend(PvmDataDefault);

 // place a string

 pvm_pkstr(buf);

 // send with msgtag to ptid

 pvm_send(ptid, msgtag); pvm_exit();

}

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200740

Message Passing Interface (MPI)

• Communication library for sequential programs, over 130 functions

• Based on MPI 1.0 (1994) and 2.0 (1997) standard

• Developed by MPI Forum (IBM, Intel, NSF, ...)

• Definition of syntax and semantics for portability and vendor support

• Fixed number of processes, determined on startup

• Point-to-point o collective communication

• Instances of the same program in different processes can communicate

• Optimized implementation for underlying communication infrastructure

• Fortran / C - Binding, also external bindings for other languages

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

MPI C Example

#include "mpi.h"
#include <stdio.h>
#include <math.h>

int main(int argc, char* argv) {
 int myid, numprocs;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 if (myid == 0) {
 /* I am the root process */
 printf("I am the root process\n");
 }else {
 /* I am only a worker */
 printf("I am worker %d out of %d\n", myid, (numprocs-1));
 }
 MPI_Finalize();}

41

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200742

Basic MPI
• MPI_INIT, MPI_FINALIZE

• Communicators as process group handle, sequential process ID‘s

• Nodes identified by 3-tupel: Tag, source and comm

• MPI_COMM_SIZE (IN comm, OUT size)

• MPI_COMM_RANK (IN comm, OUT pid)

• MPI_SEND (IN buf, IN count, IN datatype, IN destPid, IN
msgTag, IN comm)

• MPI_RECV (IN buf, IN count, IN datatype, IN srcPid, IN
msgTag, IN comm, OUT status) (blocking)

• Contants: MPI_COMM_WORLD, MPI_ANY_SOURCE, MPI_ANY_DEST

• Data types: MPI_CHAR, MPI_INT, ..., MPI_BYTE, MPI_PACKED

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

PVM vs. MPI

• PVM for interoperability, MPI for portability

• PVM communicates across different architectures for the cost of some
performance

• PVM determines whether the destination machine supports the native
communication functions of it‘s platform

• Programs written in different languages are not required to be interoperable
with MPI

• Custom MPI implementation for each communication infrastructure

• TCP, Myrinet, IPC, ...

• Intel, SGI, Sun, ...

43

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200744

MPI Data Conversion

• No cross-language interoperability on same platform

• „MPI does not require support for inter-language communication.“

• No standardized wire format

• „The type matching rules imply that MPI communication never entails type
conversion.“

• „On the other hand, MPI requires that a representation conversion is
performed when a typed value is transferred across environments that use
different representations for the datatype of this value.“

• Type matching through name similarity (without MPI_BYTE and
MPI_PACKED)

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200745

MPI Communication Modes

• Blocking: do not return until the message data and envelope have been
stored away

• Standard: MPI decides whether outgoing messages are buffered

• Buffered: MPI_BSEND returns always immediately; might be a problem
when the internal send buffer is already filled

• Synchronous: MPI_SSEND completes if the receiver started to receive the
message

• Ready: MPI_RSEND should be started only if the matching MPI_RECV is
already available; can omit a handshake-operation on some systems

• Blocking communication ensures that the data buffer can be re-used

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200746

Non-Overtaking Message Order

• „If a sender sends two messages in succession to the same destination, and
both match the same receive, then this operation cannot receive the second
message if the first one is still pending.“

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
 CALL MPI_BSEND (buf1, count, MPI_REAL, 1,
 tag, comm, ierr)
 CALL MPI_BSEND (buf2, count, MPI_REAL, 1,
 tag, comm, ierr)
ELSE ! rank.EQ.1
 CALL MPI_RECV (buf1, count, MPI_REAL, 0,
 MPI_ANY_TAG, comm, status, ierr)
 CALL MPI_RECV (buf2, count, MPI_REAL, 0,
 tag, comm, status, ierr)
END IF

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200747

Interwoven Messages

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
 CALL MPI_BSEND(buf1, count, MPI_REAL, 1,
 tag1, comm, ierr)
 CALL MPI_SSEND(buf2, count, MPI_REAL, 1,
 tag2, comm, ierr)
ELSE ! rank.EQ.1
 CALL MPI_RECV(buf1, count, MPI_REAL, 0,
 tag2, comm, status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0,
 tag1, comm, status, ierr)
END IF

• First message must wait in the send buffer (BSEND), since there is no
matching receive

• Messages arrive in reverse order

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200748

Non-Blocking Communication

• Send/receive start and send/receive completion call, request handle

• Communication mode influences the behaviour of the completion call

• Buffered non-blocking send operation leads to an immediate return of the
completion call

• ‚Immediate send‘ calls: MPI_ISEND, MPI_IBSEND, MPI_ISSEND,
MPI_IRSEND

• Completion calls: MPI_WAIT, MPI_TEST, MPI_WAITANY, MPI_TESTANY,
MPI_WAITSOME, ...

• Sending side: MPI_REQUEST_FREE

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200749

Collective Communication

• Global operations for a distributed application, could also be implemented
manually

• MPI_BARRIER (IN comm)

• Returns only if the call is entered by all group members

• MPI_BCAST (INOUT buffer, IN count, IN datatype, IN
rootPid, IN comm)

• Root process broadcasts to all group members, itself included

• All group members use the same comm & root parameter

• On return, all group processes have a copy of root‘s send buffer

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200750

Collective Move Functions

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200751

Gather

• MPI_GATHER (IN sendbuf, IN sendcount, IN sendtype, OUT
recvbuf, IN recvcount, IN recvtype, IN root, IN comm)

• Each process sends its buffer to the root process
(including the root process itself)

• Incoming messages are stored in rank order

• Receive buffer is ignored for all non-root processes

• MPI_GATHERV allows varying count of data to be received from each
process, no promise for synchronous behavior

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200752

MPI Gather Example

MPI_Comm comm;

int gsize,sendarray[100];

int root, myrank, *rbuf;

... [compute sendarray]

MPI_Comm_rank(comm, myrank);

if (myrank == root) {

 MPI_Comm_size(comm, &gsize);

 rbuf = (int *)malloc(gsize*100*sizeof(int));

}

MPI_Gather (sendarray, 100, MPI_INT, rbuf, 100,

 MPI_INT, root, comm);

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200753

Scatter

• MPI_SCATTER (IN sendbuf, IN sendcount, IN sendtype, OUT
recvbuf, IN recvcount, IN recvtype, IN root, IN comm)

• Sliced buffer of root process is send to all other processes
(including the root process itself)

• Send buffer is ignored for all non-root processes

• MPI_SCATTERV allows varying count of data to be send to each process

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200754

Other Collective Functions

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200755

What Else

• MPI_SENDRCV (useful for RPC semantic)

• Global reduction operators

• All processes perform a computation on their own buffer, which leads to a
result transmitted to the root node (e.g. MAX; MIN, PROD, XOR, ...)

• Complex data types

• Packing / Unpacking (sprintf / sscanf)

• Group / Communicator Management

• Virtual Topology Description

• Error Handling, profiling Interface

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200756

MPICH library

• Development of the MPICH group at Argonne National Laboratory (Globus)

• Portable, free reference implementation

• Drivers for shared memory systems (ch_shmem), Workstation networks
(ch_p4) , NT networks (ch_nt) and Globus 2 (ch_globus2)

• Driver implements MPIRUN (fork, SSH, MPD, GRAM)

• Supports multiprotocol communication (with vendor MPI and TCP) for intra-/
intermachine messaging

• MPICH2 (MPI 2.0) is available, GT4-enabled version in development

• MPICH-G2 is based on Globus NEXUS / XIO library

• Debugging and tracing support

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200757

Conclusion

• 20 years of research in cluster computing

• Focus on scheduling algorithms

• Hardware improvements bring DM-MIMD and cluster systems closer together

• Multiple frameworks available

• Programming with C, C++, Fortran, PVM and MPI

• Some domain-specific programming environments for parallel programs

• TOP500 Benchmark List (http://www.top500.org), Cluster Computing Info
Centre (http://www.buyya.com/cluster/), http://www.linuxhpc.org

http://www.top500.org
http://www.top500.org
http://www.buyya.com/cluster/
http://www.buyya.com/cluster/

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200758

Grid Computing
„... coordinated resource sharing and problem solving in dynamic,

multi-institutional virtual organizations.“
 Foster, Kesselman, Tueke „The Anatomy of the Grid“, 2001

• Analogy to the power grid

• Demand-driven usage of standardized services with high reliability, high
availability and low-cost access

• Innovation was not the power itself, but the coordinated distribution

• Goals

• Coordination of resources which are not under a centralized control
(„virtual organization“)

• Application of open standards (Open Grid Forum, OASIS)

• Consideration of non-trivial quality requests (like reliability, throughput)

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200759

Classification

• Computational Grid

• Distributed Supercomputing: co-scheduling of expensive resources,
scalability of infrastructures, interconnection of heterogeneous HPC
systems

• High-Throughput Computing: Varying availability of unused resources,
loosely - coupled single tasks

• On-Demand Computing: Dynamic allocation of resources with billing

• Data Grid

• Management of large data sets

• Resource Grid

• Collaborative Work

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200760

Why Grid ?
• Computation intensive

• Interactive simulation (climate modeling)

• Very large-scale simulation and analysis (galaxy formation, gravity waves, battlefield
simulation)

• Engineering (parameter studies, linked component models)

• Data intensive

• Experimental data analysis (high-energy physics)

• Image and sensor analysis (astronomy, climate study, ecology)

• Distributed collaboration

• Online instrumentation (microscopes, x-ray devices, etc.)

• Remote visualization (climate studies, biology)

• Engineering (large-scale structural testing, chemical engineering)

• Problems where big enough to require people in several organization to collaborate and
share computing resources, data, and instruments

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200761

History

• 1990: US Gigabit Testbed program

• 1995: Fafner (Bellcore Labs, Syracuse University)

• Factorizing of big numbers for cryptography

• Web-based job distribution, anonymous registration, hierarchical servers

• TeraFlop competition price at SC95

• I-WAY (Ian Foster, Carl Kesselman)

• Information Wide Area Year, started at SC95

• Interconnection of 17 supercomputing centres of 10 networks,
I-POP server on every node

• I-Soft software: Kerberos, central meta resource scheduler, node schedulers,
Andrew File System (AFS)

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200762

Grid Infrastructures

• Authentication and authorization

• Resource discovery and meta-scheduling

• “List all of the Solaris machines with at least 16 processors and 2 Gig’s of
memory available for me”

• Data access and movement

• “Locate / create replica of this data, move it from host A to host B”

• Resource monitoring

• Intra-/Inter-Node communication

• Goal: Simplify development of distributed applications for existing
heterogeneous execution environments

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200763

The Globus Toolkit

• Globus Project (Argonne National Laboratory)

• Open source, integrates several third-party projects
(OpenSSL, RSA, Axis, OpenLDAP, wuFTP)

• De-facto standard for grid infrastructures, reference implementation for grid-
related OGF / OASIS / W3C standards

• Offers building blocks and tools for developers and integrators

• All major Unix platforms, Windows as client; C, Perl, Java, Python API‘s

• Version 2 (1997) : Proprietary grid architecture

• Version 3 (2003) : OGSI-based architecture

• Version 4 (fall 2004) : WSRF-based architecture

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200764

Globus Toolkit Version 2 (GT2)

• Globus Resource Allocation Management (GRAM, RSL)

• Metacomputing Directory Service (MDS)

• Globus Security Infrastructure (GSI)

• Heartbeat Monitor (HBM)

• Globus Access to Secondary Storage (GASS, GridFTP)

• Communication (Nexus, MPICH-G2)

IP

TLS / GSI

HTTP FTP LDAP

GRAM GridFTP MDS

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200765

GRAM

• Translates generic resource request (RSL) into explicit commands for a set of
resources (cluster, single machine)

• Gatekeeper

• Frontend for all GT2 machines, performs security check and proxy validation

• Job Manager

• Monitors and controls jobs on the resource (single machine, cluster)

• Interacts with multiple local schedulers (Condor, LSF)

• GRAM reporter

• Collects and manages system-specific resource information

• Local GIS database is synchronized with LDIF to global GIIS

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200766

GRAM

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200767

Other GT2 Services

• Metadata Directory Service (MDS)

• Hierarchical directory information tree, based on LDAP

• Globus Resource Information Service (GRIS) installed on a grid node,
supplies information about a specific resource

• Globus Institution Indexing Server (GIIS) queries with RSL over HTTP

• GridFTP

• Based on standard FTP protocol (RFC 2228)

• Striped, partial, restartable and parallel file transfer, replica management

• Security protocols on connectivity layer (GSI)

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Resource Specification Language

& (rsl_substitution = (TOPDIR "/home/nobody")
 (DATADIR $(TOPDIR)"/data")
 (EXECDIR $(TOPDIR)/bin))
 (executable = $(EXECDIR)/a.out
 (* ^-- implicit concatenation *))
 (directory = $(TOPDIR))
 (arguments = $(DATADIR)/file1
 (* ^-- implicit concatenation *)
 $(DATADIR) # /file2
 (* ^-- explicit concatenation *)
 '$(FOO)' (* <-- a quoted literal *))
 (environment = (DATADIR $(DATADIR)))
 (count = 1)

68

arguments
count
directory
executable
environment
jobType
maxTime

maxWallTime
maxCpuTime
gramMyjob
stdin
stdout
stderr
queue

project
dryRun
maxMemory
minMemory
hostCount

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007
69

Globus 2 Architectur

G
at

ek
ee

pe
r

GIIS

Local Scheduler

LD
IF

R
S

L

Proxy
certificate

GridFTP

RSL
GridFTP Daemon

GRIS

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200770

Globus Security Infrastructure (GSI)

• Based on X.509 PKI

• Security across organizational boundaries

• Single sign-on and credential delegation

• RFC 3820 - Generation of proxy certificate credentials

• Generation of short-lived proxy certificate, based on user credentials

• New public / private key pair; subject field is the issuer field with additional
single CN component

• Special extension for policies, most X.509 implementations still work

CA User Proxy Proxy

Time | Middleware and Distributed Systems MvL & PT 200771

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200772

OGSA Service Model

• Representing stateful grid resources over stateless SOAP

• Grid node provides services, each job is modelled as service

• System comprises (a typical few) persistent services & (potentially many)
transient services

• All services adhere to specific interfaces and behavior

• Reliable invocation, lifetime management, discovery, authorization,
notification

• Interfaces for managing Grid service instances

• Factory, registry, discovery, lifetime

• Globus 3: Open Grid Services Infrastructure (OGSI)

• proprietary WSDL portType extensions

 Head Node Compute Resource

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200773

Managed Job Submission in GT3

33

Process

Process

Process

Master Host Env
(MHE)
MMJFSClient

User Host Env
(UHE)

MJFS/MJS

Scheduler

 Job Req

RSL

RSL

Local Resource
Manager

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200774

Web Services Resource Framework

• Refactoring of OGSI

• Based on set of industrial standards (WS-Addressing, WS-
ResourceNotification, WS-ResourceLifetime, WS-ServiceGroup)

• Initiative from major grid companies (IBM, Fujitsu, Sun, HP)

• No paradigm shift, implementation in Globus 4.X

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200775

Other Grid Middleware

• UNICORE: (Uni)form interface to (co)mputer (re)sources

• BMBF project, FZ Jülich, 5 german universities, first version in 2000

• Abstract job concept, job submission GUI

• GridLab

• Funded by the EU (5+ M€), January 2002 – March 2005

• Application and Testbed oriented (e.g. Cactus code, Triana Workflow)

Time | Middleware and Distributed Systems MvL & PT 200776

Batch Subsystem

AJO/UPL

User Certificate

Job preparation/control Plugins

Unsafe Internet (SSL)

User authentication

UNICORE
Site List

UNICOREPro
Client

Target System Interface
(TSI)

Incarnated job

Commands

User mapping,
job incarnation,
job scheduling

TSI TSI

Any cluster
management system

UNICORE Site
FZJ

...

Preparation and
Control of jobs

Network Job Supervisor
(NJS)

Safe Intranet
 (TCP)

ID

Jobs and data
transfer to other
UNICORE sites

Status request

SV1 Blade files

UUDB IDID

NJS

UNICORE Gateway

optional firewall

optional firewall

AJO/UPL

Runtime Interface

Arcon
Client Toolkit User Certificate

UNICORE
Site List

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200777

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200778

Building a Grid Application

High-Level Grid Abstractions

Remote
Procedure Call

Control-Parallel
Programming

Message
Passing

Grid Application

Grid Infrastructure (Resource Discovery, Job Execution,

Intra/Inter-Node Communication)

Execution
Portal

OGSA
MPICH-G2

Globus

CoG

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200779

AMWAT

• AppLeS Master/Worker Application Template

• Library covers remote process spawning, work assignment, load balancing,
failure handling and result gathering

• Multi-layered master-worker schema

• Distribution of application-defined work units

• One work cycle computes multiple work units

• Application adapter implements the functions expected by the scheduler

• IPC through sockets, shared memory, MPICH, PVM and Globus

Cluster & Grid | Middleware and Distributed Systems MvL & PT 200780

AMWAT Application Interface

typedef int AMWATApp_Cycle

typedef int AMWATApp_WorkUnit

int AMWATApp_InitializeCycle(AMWATApp_Cycle cycle,

int generateWork, unsigned *workUnitsCount)

AMWATApp_ComputeOutcome AMWATApp_Compute(

AMWATApp_WorkUnit unit)

Int AMWATApp_ReceiveWorkUnits(AMPIC_PeerId whoFrom,

AMWATApp_WorkUnit *workUnits,

unsigned workUnitsCount,

AMPIC_MessageKind messageKind)

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Grid-Occam

• Bring parallelism as first-level language construct to modern distributed
environments

• Consistent programming model for different granularities of distribution
(threads, cluster nodes, grid nodes)

• Support for heterogeneous execution platforms

• Rely on virtual execution environments (Java, .NET / Mono)

• Focus on coordination aspect (no HPC here)

• Clear distinction of Occam compiler from infrastructure-dependent runtime
library - multithreaded runtime library / MPI runtime library

• Support nested nature of granularity levels

81

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Occam History

• Parallel processing language

• Abstraction from underlying hardware, software and network environment

• Based on Sir T. Hoare’s ideas of Communicating Sequential Processes (CSP)

• Developed by INMOS for transputer systems

• Distributed memory system

• 4 high-speed hardware links

• Routing of messages for unconnected processors
(virtual channel router)

82

PROC hello()
 INT x,y:

CHAN OF INT c,d:
PAR
 SEQ

c ! 117
d ? x

 SEQ
c ? y
d ! 118

:

ALT

 keyboard ? var1

 to.computer ! var1

 from.computer ? var1

 display ! var1

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Occam Language

• Primitive actions

• Variable assignment

• Channel output

• Channel input

• SKIP

• STOP

• Sequential process
combination (SEQ)

• Parallel process
combination (PAR)

83

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Occam Rules

• Rendezvous behavior of channels

• Receiver blocks until the sender wrote the value

• Sender continues after the receiver read the value

• Variables can only be written by one process in parallel

84

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

DRMAA - Problem Statement

• Product-specific APIs for job submission to distributed
resource management (DRM) systems

• Condor (Perl, WS, GAHP), Torque (C, Python, Perl),
SGE 5 (GDI), XGrid (Cocoa), Globus (CoG), ...

• Adapter concept in each grid middleware and grid portal kit

• Usually focus on command-line tools

• Demand for standardized interface

• Job submission, control, and monitoring

• Application should work with any DRMS without change
(or even recompilation)

85

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

DRMAA

• Distributed Resource Management Application API

• Open Grid Forum (OGF) working group

• Numerous contributors from academia and industry

• Started in 2002

• Language-independent specification

• Proposed recommendation spec in 2004

• Full recommendation submitted in 2007

• Stable language binding specifications for C, Java and Perl

• Mappings for C#, Python, and Ruby

86

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Design Principles

• Keep it simple

• Balancing act between feature demands,
DRM compatibility, and simple API design

• Lower entrance barrier for adopters

• Maximum compatibility (list user jobs, workflows)

• Language independence

• Procedures with input and output parameters, returning
error code

• Support for multiple DRM systems in one application

87

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Design Principles

• No security

• DRM systems all have there own platform-specific solutions
(uid/gid, SID, Kerberos token, X.509 certificate)

• Thread safety

• Put the burden on the DRMAA library developer (==vendor)

• Site-specific policies

• Cross-site behaviors not covered by the specification
(e.g. MPI jobs)

• Mark jobs as member of a class of applications, site
administrator regulates according rules (e.g. queues)

88

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

API Basics

• Init and exit routine

• Session concept for collective monitoring and control

• Ensure that DRMS jobs are no longer influenced by library

• Unusual for garbage collection languages, but still problem of
unpredictable finalizers

• Practical demand for persistent sessions
(unreliable software, long-running job workflows)

• Job template routines, job submission and monitoring routines,
job control routines, auxiliary routines

89

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Job Templates
• Set of key-value pairs, describing job requirements and parameters

• Mandatory, optional, and implementation-specific attributes

• Least common denominator for mandatory attributes
(executable, input / output stream, ...)

• Optional attributes, e.g. job termination time, wall-clock limit

• From (very) early analysis and N1GE feature set

• Most implementations ignore the optional attributes

• Evaluated at submission time

• Might be rejected because of errors or policies

• Only consistency errors for setter routines

90

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

Job Control / Monitoring
• Single job or bulk job

submission with index

• Job status query

• Considers temporary
non-availability of
status information

• Control routine
(suspend, resume, hold, release, terminate)

• Synchronization with job(s) ending

• With / without timeout, single / all jobs from session

• POSIX-like calls with job termination information

91

2.2 Job Template Routines

The description of a job to be submitted to the
DRMS is encapsulated in a job template. The job
template is defined as set of key-value pairs, contain-
ing mandatory, optional and implementation-specific
attributes. Examples for mandatory attributes are
the executable name, the working directory or the
output stream file. Examples for optional attributes
are the absolute job termination time or a maximum
wall clock time limit. Most of these parameters arose
from an early comparison of DRM submission param-
eters, and from the initial DRMAA implementation in
Sun N1GE. The working group constantly re-evaluates
mandatory and optional attributes in the specification.
So far, most existing implementations for cluster and
grid systems ignore the set of optional DRMAA at-
tributes and provide full support only for the manda-
tory attributes.

DRMAA supports the identification of all supported
attributes during runtime. Job templates are not
bound to a particular job execution, and therefore can
be reused for multiple submissions. The specification
defines the template to be evaluated at submission
time; therefore all setter functions only consider errors
like incorrect attribute name, invalid value format, or
conflicting setting.

2.3 Job Submission and Monitoring Rou-
tines

A job can be submitted with DRMAA either as
single job (drmaa_run_job()) or set of bulk jobs
(drmaa_run_bulk_jobs()). For bulk jobs, a beginning
index, ending index and loop increment can be spec-
ified. Template attributes can contain a placeholder
string for the current parametric job index during sub-
mission.

The drmaa_job_ps() function allows to query for
the status of a job (see figure 1). A queued job can ei-
ther be ready for execution or in a hold state. A job on
hold can be triggered by an explicit drmaa_control()
call, or by a submission as hold job, which is speci-
fied with one of the mandatory job template attributes.
Both cases are represented with the ’user on hold’ job
state. A held job can also be triggered by the DRM
system itself or by a combination of both. Held jobs
are explicitly released with another drmaa_control()
call.

A job in the status class ’running’ can either
be actively executed or in a suspend state. The
suspend state might be explicitely triggered by
the user through drmaa_control(), which leads to

DRMAA_PS_USER_SUSPENDED, or by the system itself,
which leads to (DRMAA_PS_SYSTEM_SUSPENDED).

For finished jobs, drmaa_job_ps() returns
DRMAA_PS_DONE in case of a successful execution,
or DRMAA_PS_FAILED when the job ended unex-
pectedly. A monitoring call might also lead to
DRMAA_PS_UNDETERMINED, which reflects a problem
with the status determination in the underlying
DRMS. In this situation, DRMAA applications are
free to perform additional calls to drmaa_job_ps().
The implementation experiences showed that this is
desperately needed for temporally effects in idle-time
or wide-area grid environments.

Figure 1. DRMAA Job State Transition [2]

2.4 Job Control Routines

The state of a submitted job can be changed through
the drmaa_control() function. Different control com-
mand constants allow suspending, resuming, holding,
releasing and terminating a job. The routine also sup-
ports control actions on all submitted jobs in the cur-
rent DRMAA session (DRMAA_JOB_IDS_SESSION_ALL).

An application can synchronize the finishing of a
set of jobs with drmaa_synchronize(). Input ar-
guments are the list of job identifiers, a timeout
specification, and a dispose flag. This routine also
can act on all jobs in the current session by using
DRMAA_JOB_IDS_SESSION_ALL as job ID parameter.
The timeout parameter restricts the blocking time of
the operation, from zero to indefinite.

The dispose parameter specifies how to treat reaping
of the remote job’s system resources consumption and
other statistics. If dispose is set to false, the job’s infor-
mation remains available and can be retrieved through
drmaa_wait(). If dispose is set to true, the job’s in-
formation is not retained.

Time | Middleware and Distributed Systems MvL & PT 2007

#include "drmaa.h"
...
int main(int argc, char *argv[]) {

...
if (drmaa_init(NULL, diag, dsize) != DRMAA_ERRNO_SUCCESS) {...}
/* create job template */
if (drmaa_allocate_job_template(&jt, NULL, 0) != DRMAA_ERRNO_SUCCESS) {...}
drmaa_set_attribute(jt, DRMAA_REMOTE_COMMAND, '/bin/foo', NULL, 0);
drmaa_set_attribute(jt, DRMAA_OUTPUT_PATH,DRMAA_PLACEHOLDER_INCR, NULL, 0);
drmaa_set_attribute(jt, DRMAA_JOIN_FILES, "y", NULL, 0);

/* submit 5 bulk jobs, with index increment by 1 */
if (drmaa_run_bulk_jobs(&ids, jt, 1, 5, 1, diag, dsize)) != DRMAA_ERRNO_SUCCESS) {...}

/* synchronize with job ending of all jobs */
if (drmaa_synchronize(DRMAA_JOB_IDS_SESSION_ALL, DRMAA_TIMEOUT_WAIT_FOREVER, 0, diag,
dsize) != DRMAA_ERRNO_SUCCESS) {...}

/* Analyze exit information */
for(int pos=0;pos<5;pos++) {

if (drmaa_wait(JOB_IDS_SESSION_ANY, jobid, sizeof(jobid)-1, &stat,
DRMAA_TIMEOUT_WAIT_FOREVER, NULL, diag, dsize) != DRMAA_ERRNO_SUCCESS)
{...}

drmaa_wifaborted(&aborted, stat, NULL, 0);
if (aborted) {printf("job \"%s\" never ran\n", jobid);}
else {

drmaa_wifexited(&exited, stat, NULL, 0);
if (exited) {

drmaa_wexitstatus(&exit_status, stat, NULL, 0);
...

} else {
drmaa_wifsignaled(&signaled, stat, NULL, 0);
...

}}}
/* cleanup ... */

 92

Cluster & Grid | Middleware and Distributed Systems MvL & PT 2007

IDL Specification

• Original specification with procedural C-language slant

• Independent Java / C# bindings, collapsed to one OO-like IDL
specification

• ‚n-version standardization‘

• Variable and method naming, job template mapping

• Language-binding author maps to IDL constructs
-> one-page binding specification

• Parallel document to official DRMAA 1.0 spec

• OGF document process must be considered

• Language bindings already started to rely on IDL description

93

