Adaptive & Reflective Middleware

Andreas Rasche

Roadmap

e Quality of Service

e Adaptive Middleware

e Classification of Adaptive Middleware

e Reflective Middleware & Reflection & Metaprogramming Overview

e Adaptive Middleware Implementations
e Patterns (Component Configurator, Virtual Component, Quality Connector)
e BBN Quality Objects, TAO, DynamicTAO, OpenORB

e Adaptation-enabling vs. adaptive middleware

Adaptive & Reflective Middleware | Middleware and Distributed Systems 2 AR 2007

Quality of Service (Q0S)

¢ QoS in field of telephony defined in ITU X.902 as “A set of quality requirements
on the collective behavior of one or more objects”

e At the network level QoS refers to
¢ control mechanisms that can provide different priority to different users
e guarantee a certain level of performance to a data flow

e QoS is used as a general quality measure in the sence of “user perceived
performance”, or “degree of satisfaction to the user”

e Application-level Quality of Service can be ensured by:
e Ressource/QoS-reservations at all underlying levels

e Adaptation of application to cope with changing resource availabilites

Adaptive & Reflective Middleware | Middleware and Distributed Systems 3 AR 2007

Adaptive Middleware

e Adapt: To alter or modify so as to fit for a new use

e Adaptive middleware is software whose functional behavior can be modified

dynamically to optimize for a change in environmental conditions or
requirements

e Adaptations can be triggered by:
e changes to a configuration file by an administrator
e instructions from another program

® user requests

¢ Requirements of runtime adaptive system: measurement, reporting, control,
feedback and stability

e Adaptive middleware concerned with adapting non-functional aspects of
distributed appplications including QoS

Adaptive & Reflective Middleware | Middleware and Distributed Systems 4 AR 2007

Classification of Adaptive Middleware by Domain[Sadjadi]

Adaptive Middleware

Dependable Middleware
Qo0S-Oriented Middleware Embedded Middleware

Real-time Middleware

Aspect-Oriented Middleware
Stream-Oriented Middleware

Reflection-Oriented Middleware

Adaptive & Reflective Middleware | Middleware and Distributed Systems 5 AR 2007

Reflective Middleware

¢ Reflection on programming languages started by Brian Smith at MIT

¢ “Reflection is the integral ability for a program to observe or change its own
code as well as all aspects of its programming language - even at runtime”

¢ Reflective middleware moves reflection to the middleware level
e Often implemented as a number of components that can be configured
e System and application code can use meta-interfaces to:

e inspect internal configuration of the middleware

e reconfigure it to adapt to changes in the environment

¢ Reflection is a technique to enable adaptation

Adaptive & Reflective Middleware | Middleware and Distributed Systems 6 AR 2007

Common Terms

¢ Reification: Process of providing an external representation of the internals of
a system. Representation allows for manipulation of system internals

e Structural Reflection: Provides the ability to alter the statically fixed internal
data/funtional structures. Structural Reflection changes the internal makeup of
a program.

e Behavioral Reflection: The ability to intercept an operation such as a method
invokation and alter the behavior of that operation. Behavioral Reflection alters
the actions of a program.

* Introspection: Read access to meta data (type information, classes, methods,
members, inheritance)

* Intercession: Manipulation of meta data

Adaptive & Reflective Middleware | Middleware and Distributed Systems AR 2007

Classification (Il) of Adaptive Middleware

Adaptive Middleware

/\

Dynamic Middleware

PN PN

Static Middleware

Customizable Configurable Tunable Mutable
e compile / link time * startup time " after startup : S\L/ngr;?ionrjwrlzr?;expected
e static aspect weaving e command line parameter ° before usage. o reflection
e compiler flags e configuration files * AOP + reflection e late composition
e pre-compiler directives * Eternal, IRL, Rocks * DynamicTAQ e dynamic weaving

e TAO
¢ QuO, EmbeddedJava e OpenORB
Adaptation Type)

, , , : Application Lifetime

Compile Time | Startup Time Run Time "

Adaptive & Reflective Middleware | Middleware and Distributed Systems 8

AR 2007

BBN Quality Objects (QuO)

e Contracts summarize possible states of QoS
and behavior to trigger when QoS changes

¢ Defined as regions in form of predicates
over system condition objects

¢ System Condition Objects are used to
measure and control QoS

¢ Delegates provide local state for remote objects

(Aclthcjatl(;n set client expectation
or Java
[P
Functional | [QuO Runtime System I
J
Delegate [tae) |
(C++ or Java) 1 1
premethod—Jf| System Contract |
postmethod—§ Conditions |
d

l=.=“\ éf..======

v 1

set obJect expectation

system event

e Upon method call/return, delegates can check current contract state
and choose behavior based on the current state of QoS

¢ Delegates can choose between alternate methods, alternate remote
object bindings, perform local processing of data, or simply pass the

method call or return through

Adaptive & Reflective Middleware | Middleware and Distributed Systems 9

AR 2007

BBN Quality Objects (QuO) - Adaptive Behavior

Client Code

Referenc
®

Delegate

11

Proxy

Connect

Client

ORB

Manager

ORB

I Proxyl I Proxyl

[Dei>
< ObjectZ>

(9 (9

=2 Contract

Adaptive & Reflective Middleware | Middleware and Distributed Systems

1.Client calls delegate

2.Delegate evaluates contract

3.Measurement system conditions are signaled
4.Contract snapshots value of system conditions
5.Contract is re-evaluated

6.Region transitions trigger callbacks

7 .Current region is returned

8.If QoS is acceptable, delegate passes the call to
the remote object

9.Remote object returns value
10.Contract is re-evaluated...

11.Return value given to client
10 AR 2007

BBN - Quality Objects - QDL Example

typedef zequencedlong> Longled; COREA IDL

interface Targeting |
long calculate_distance to_target(in long xcoord, in long ycoord) :
long identify targetiin long xcoord, in long ycoord) ;

e

delegate behavior for Targeting and repl_contract is
ob] : bind Targetihg with name 3ihgleTargetingChject:
group : bind Targeting with characteristics { Replicated = True 1

call calculate distance to_target :
region Available.lNormal
pass Lo group;
region Low_Cost. Normal
pass to abj:
region Available.TooLow :
throw AvailabilityDegraded: Code
return calculate_distance_to_target : zenerators
pass_through:
default : pazs_through
end delegate behavior; SDL

contract Replication(obiject client, obiject serwver)| is ...
negotiated regions are
region Low_Coszt @
region Awvailahle
when client.exXpectations.requested > 1 =>
reality regions are
region Too Low @ wheh measured <= 1 =>
region Normal : when measured > 1 => Delegate Contract
transitions are | |
transition any->Too_Low : client.callbacks.awvailability degraded(): | |
transition any->Normal : client.callbacks.awvailability back to_normal() : | |

transitions are ... i
end Replication; CDL Quo Runtlme

Adaptive & Reflective Middleware | Middleware and Distributed Systems 11 AR 2007

DISTRIBUTED MIDDLEWARE
SERVICES AND JAWS ADAPTIVE APPLICATIONS
COMPONENTS . WEE SERVER

THE ACE ORB

e

U .

\ — |
ACCEPTOR CONNECTOI SERVICE CORBA

FRAMEWORKS HANDLER HANDLER

ADAPTIVE SERVICE EXECUTIVE (ASX)

The ACE ORB (TAOQ)

¢ Implemented at Washington University
St. Louis (D. Schmidt) ¢

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

e ACE: Adaptive Communication Environment e

e Object-oriented framework that implements many core patterns for
concurrent communication software

e TAO - Real-Time CORBA ORB developed on top of the ACE framework
e Uses the strategy design pattern for the encapsulation of ORB internals

e ||OP pluggable protocols, concurrency, request demultiplexing, scheduling,
connection management

e Strategies defined in configuration files, which are evaluation at start-up
(dynamic configuration possible in DynamicTAO and later versions of TAO)

Adaptive & Reflective Middleware | Middleware and Distributed Systems 12 AR 2007

3: POPULATE OFF-LINE

RT_INFO SCHEDULER
REPOSITORY

.
»

struct RT_Info {
Time worstcase_exec_time_;
Period period_;
Criticality criticality_;

Importance importance_;

TAO - QoS Specification

RT_INFO
3 REPOSITORY
1: CONSTRUCT CALL 4: ASSESS
CHAINS OF RT_OPERATIONS SCHEDULABILITY

DEPENDS UPON =
EXECUTES AFTER

e Application specifies QoS using 2 IDENTIRY THREADS s
an RT_Info interface optaio] | open | opemen| & PPY [oROERING
(" OBJECT ADAPTER) roors | SCHEDULER SUBPRIORITIES
e For every RT_OPERATION the o RBCORE — oy *yty o
application specifies Mode el e

SELECTOR

I/O SUBSYSTEM

e WCET, period, importance
e During a configuration run the off-line scheduler extracts QoS specification

e During the configuration run a RT_OPERATION dependency graph is created,
which can be used for configuration of the middleware

e Scheduler calculates threads, priority dispatch tables, thread priorities for the
application including feasibility analysis

e Approach also allows for performance optimization for non-real-time task, by
recording task runtimes during configuration runs and calculate optimal prio’s

Adaptive & Reflective Middleware | Middleware and Distributed Systems 13 AR 2007

Quality Connector Architectural Pattern - Problem

e Decouples application components from the QoS configuration mechanisms
provided by the infrastructure

e Mediates between application and non-standard middleware configuration and
control interfaces

applications specify

¢ Implementation of service available through required QoS
standardized functional interfaces
provide only non-standard mechanisms
for controlling quality of the service

e

¢ A quality sensitive application should DRE
be able to monitor and control middleware

layer

the quality of its supporting services

-

quality connector sets the

e [J. Cross and D. Schmidt ‘02]

Operating System attributes of the middleware
L] components to provide
Network the required QoS

Adaptive & Reflective Middleware | Middleware and Distributed Systems 14 AR 2007

Quality Connector - Solution

¢ Implemenation of a Quality Connector object for each infrastructure
component

¢ Platform independend interface between application and infrastructure

e Concerned only with: quality of service provided, modes of the system, load
that will be imposed on the service

¢ Implementation strategy:

e Define a small language (definition of acceptable values, depending on
system mode, use XML ..))

e Provide configuration tools (to check feasibility and consistency of
requested quality values, to set properties of runtime components)

¢ Implement the dynamic connector (runtime allocation of resources)

Adaptive & Reflective Middleware | Middleware and Distributed Systems 15 AR 2007

Quality Connector - Structure & Dynamics

¢ Static application connector -
integrates hooks for dynamic connector
configuration (request of quality values)

¢ applied at source code level e.g.
using AOP

e Static Infrastructure Connector - acts
on underlying middleware before linking
(selection of implementations,
recompilation of middleware using
chosen values for configuration
parameters)

¢ Dynamic Connector - linked with the
application - allocates infrastructure
resources to data flows

Adaptive & Reflective Middleware | Middleware and Distributed Systems 16

Static Application Connector

Static Infrastructure Connector

requireQoS() requireQoS()
[. !
| instruments configures !
|
|
} |
Application | ______ Runtime | | Build-time
uses Infrastructure | jerives | Infrastructure
A AN
| |
I | I
requests | |strategizes rconfigures
I | I

|
4

Dynamic Connector

requireQoS()

modify()

AR 2007

Quality Connector - QoS Language

<proposal> o .
<mode> Proposal applies in this
<or> mode

<ci name="radioVHF" state="onLine"/>
<ci name="radioUHF" state="onLine"/>

</or>

</mode> There are QoS types other

<QoS type="latency" - B
<upperPoint secs="1.0"ﬂgggézﬁz¥gbnf;gv]nnﬁ'
<upperPoint secs="4.0" prob="0.9999"/>

</QoSs>

<load type="interMessageTime"> «FhﬂViSperunﬁc

<upperPoint secs="1.0" prob="0.0001?¢>
<lowerPoint secs="1.0" prob="0.9999"/>
</load>
<load type="messageSize">
<upperPoint bytes="256" prob="1.0"/>
<upperPoint bytes="32" prob="0.5"/>
</load> <load type="priority">

<urgency val="10"/> “‘\\
. /1:;250r tance val="2"/> Priority determines how
this request will compete
</proposal> with others for resources

Adaptive & Reflective Middleware | Middleware and Distributed Systems 17 AR 2007

DynamicTAO - Real-Time CORBA

e Developed at University of lllinois (Campbell, F. Kon)

e Adds dynamic reconfiguration features to the TAO ORB implementation

e ORB strategies can be changed/adapted during runtime

e Uses the Service Configurator pattern for strategy configuration

[ServanthonfiguratorJ [ServantZConfiguratorJ

A A

%E TAOConfigurator

2

DomainConfigurator

Adaptive & Reflective Middleware | Middleware and Distributed Systems

18

Administration
Panel

_—

data/command

flow

Network Broker

Persistent Repository

Reconfiguration
Agents

[Servanthonfigurator]

)
: oot TAOConfigurator

[DomainConfigurator]

T

Dynamic Service Conﬁgurator]

ACE_Service_Repository ACE_Service_Config

AR 2007

DynamicTAO

e Component implementations are
organized in categories
representing different aspects of
the TAO ORB

e Components are packaged as
dynamically loadable libraries that
can be linked to the ORB at runtime

® For example the category
“Concurrency” contains:

e Reactive_Strategy
e Thread_Strategy

e Thread_Pool_Strategy

Adaptive & Reflective Middleware | Middleware and Distributed Systems

interface DynamicConfigurator

{

stringList list_categories ();
stringList list_implementations
stringList list_loaded_implementations ()

stringList list_hooks (in
string get_hooked_comp(in
in
string get_comp_info in
long load_implementation(in
in
in

void

void
void
void
void

void

void

void

19 }i

string
string
string
string
string
string
string

(in string categoryName);

componentName) ;
componentName,
hookName) ;
componentName) ;
categoryName,
impName,
params, ...);

hook_implementation (in string loadedImpName,
in string componentName,
in string hookName) ;

suspend_implementation
resume_implementation
remove_implementation

(in
(in
(in

configure_implementation (in

upload_implementation

in
(in
in
in

download_implementation (in
inout string impName,

delete_implementation

out

(in
in

string loadedImpName) ;
string loadedImpName) ;
string loadedImpName);
string loadedImpName,
string message);

string categoryName,
string impName,
implCode binCode);
string categoryName,
implCode binCode);
string categoryName,

string impName);
AR 2007

DynamicTAQO - Configuration Example

CORBA::0Object_var dcObj;
DynamicConfigurator_var dynConf ;
CORBA: :0RB_var orb;

orb = CORBA::0RB_init(argc, argv);

dcObj orb->resolve_initial_references
("DynamicConfigurator");

dynConf = DynamicConfigurator::_narrow(dcObj.in());

stringlist *list
= dynConf->list_implementations ("Concurrency");

printf ("Available concurrency strategies:");
printStringlist (list);

char *ret
= dynConf->get_hooked_comp ("TAO",
"Concurrency_Strategy") ;

printf ("Now, using the <Ys> concurrency strategy.", ret);

myRemoteOrb->upload_implementation(“Security”, “superSAFE”,superSAFE_impl);

newSecurityStrategy

myRemoteOrb->load_implementation (“Security”,”superSAFE”);

oldSecurityStrategy = myRemoteOrb->get hooked comp (“dynamicTAO”,“Security_ Strategy”);

myRemoteOrb->hook_implementation (newSecurityStrategy, “dynamicTAO”,”Security_ Strategy”);

myRemoteOrb->remove_implementation (oldSecurityStrategy);

Adaptive & Reflective Middleware | Middleware and Distributed Systems 20

AR 2007

Service Configurator Pattern [P.Jain, D. Schmidt ‘96]

¢ Also known as Component Configurator pattern
¢ Decouples the implementation of services from the time when they are configured
¢ The service configurator pattern should be applied when:

® a service needs to be initiated, suspended, resumed, and terminated
dynamically

¢ a service configuration decision must be deferred until runtime

e depending service implementation must be configured independently at

ru nt| me CONFIGURE/
RECONFIGURE/

- init()
RUNNING D

suspend()

¢ Already used in device drivers architecture in
Windows NT and Solaris, inetd, Java applets
im WWW-Browsers, Linux modules

resume()

SUSPENDED

Adaptive & Reflective Middleware | Middleware and Distributed Systems 21 AR 2007

Service Configurator Pattern

. . . Service
* Service - Specifies the interface that init()
. Service services ﬁHIO
contains the abstract hook methods Repository < ® o
resume()
e Concrete service - Implements hook info()
methods and other service specific
functionality (event processing, | | |
. . ith client Concrete Concrete Concrete
communication with clien S) Service A Service B Service C
¢ Service repository - maintains a repository dnemon | Soice Service Rg;;sviitc;y
of all services offered by a Service N i) | | |
Configurator-based application S § cormach ——{insertQ) | .
g8 SERVICE DO init) > I
@ % : insert() : =|
Q 1 | :
o 3 | sve) | |
Q Z | Isve() |
2% Toor | . —
T E I | | |
% fini I I
5 S FOR EACH = :remove() : =:
£ servicepo 0 | > '
é g | remove() | L
g | [| ™

Adaptive & Reflective Middleware | Middleware and Distributed Systems 22 AR 2007

Virtual Component Pattern [Corsaro ‘02]

¢ Provides an application transparent way of loading and unloading components
¢ Reduction of static and dynamic memory footprint for embedded applications

¢ Ensures that middleware provides a rich and configurable set of functionality,
yet occupies main memory only for components that are actually used

e One example are compliant implementations of CORBA having many features
not needed by all applications

e A server application may not use all versions of the CORBA IIOP protocol

¢ A client application may not use all collocation optimizations, interceptors,
or smart proxy mechanisms

e “Pure client” applications do not require a POA

e Applications may not use all common middleware services (naming,
security, transactions ...)

Adaptive & Reflective Middleware | Middleware and Distributed Systems 23 AR 2007

Virtual Component Pattern - Solution

¢ |dentify components whose interfaces represent the building blocks of the
middleware

¢ Define concrete components that implement the middleware capabilities

e Define factories that create concrete components using a set of loading/
unloading strategies

¢ | azy loading: e.g. when memory gets low

e Eagerly loading: e.g. as soon as the instance reference count goes to 0

«interfacen»
Component
ComponentFactory 7oy
+Cr eat eConponent
i ¢ UnloadingStrategy |
1
! :
I 1
<<create>> |
ConcreteComponentFactory — ConcreteComponent
I

+CreateComponent ()

LoadingStrategy

Adaptive & Reflective Middleware | Middleware and Distributed Systems 24 AR 2007

Open ORB - Metaspace Models

¢ Interface metamodel provides access to the external representation of a
component (provided and required interfaces) (introspection)

¢ Architectural metamodel provides access to the implementation in form of a
software architecture (component graph and architectural constraints)

* Interception metamodel allows for dynamic insertion of interceptors (insertion

of pre- and post-behavior)

* Resource metamodel provides
access to underlying resource
management (memory usage, OS

threads, buffers...)

Adaptive & Reflective Middleware | Middleware and Distributed Systems

Architecture Interface Interception

meta-object meta—object meta—object

Meta-level -

Resources meta—object

{per address space)

Basa-laval

Base—level
compeonent

Base—level
component

Address Space)

.
25

AR 2007

Context

set_value()
get value()
consume_service()

<oy

A
1<<create>>

Interceptor Pattern [POSA l]

Concrete
Framework

service()

ot

access_internals()

Application

<<register>>
<<remove>>

do_work()

|

¢ Allows services to be added transparently to a framework

!

Dispatcher

e Problem: Late integration of new services

List of
Interceptors

Concrete
Interceptor

<<use>>

eventl_callback()

event2_callback()

v

dispatch()
register()

e Solution:

e For a set of framework events (outgoing call,

remove()
iterate_list()

.| Interceptor

incoming request ...) processed by a framework specify and expose an

interceptor callback interface

e Applications can derive concrete interceptors from this interface to

implement out-of-band services

e Applications can register concrete interceptors at dispatchers

e Context objects allow concrete interceptors to introspect and control

certain aspects of the framework’s internal state and behavior

' eventl callback()

event?2_callback()

¢ Also a mechanism to change behavior and application-level QoS parameters

Adaptive & Reflective Middleware | Middleware and Distributed Systems 26

AR 2007

The Interceptor Pattern - Dynamics

- Concrete

Adaptive & Reflective Middleware | Middleware and Distributed Systems

Framework
— Dispatch ‘
<<create>g | Il’lIQI‘QQpIQI‘ - LISpatcner g Create>>]
Concrete
! Interceptor | attach() .
D L
\
| : ntext event()
| Ob]ect < | <<create>> [——
| |
\
| ‘ | Context
[| Object
‘ callback()
‘ Context
| .
| g ovent callback()| Obiect T—'
get value(i. _____________________________________ >
e <-
T
consume_service
——P>
P
e <C
----------------- R P
| |
<_ ______
| ‘ — =
| ‘
27 AR 2007

Further Readings

e J.Malenfant et. al. “A Tutorial on Behavioral Reflection and its Implemtation”

e P. Pal. et. al. “Using QDL to Specify QoS Aware Distributed (QuO) Application
Configuration”

e S.M.Sadjadi “A Survey of Adaptive Middleware”

e J. Cross and D. Schmidt “Quality Connector - An Architectural Pattern to
Enhance QoS and Alleviate Dependencies in Distributed Real-time and
Embedded Middleware”, 2007

e D. Schmidt, M. Stal, H. Rohnert, F. Buschmann “Pattern-Oriented Software
Architecture Volume 2, Pattern for Concurrent and Networked Objects”, Wiley
2001 (Interceptor, Component Configurator, Leader/Follower, Half-Asynch/Half-
Synch Pattern)

Adaptive & Reflective Middleware | Middleware and Distributed Systems 28 AR 2007

