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• Adaptation-enabling vs. adaptive middleware
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Quality of Service (QoS)

• QoS in field of telephony defined in ITU X.902 as “A set of quality requirements 
on the collective behavior of one or more objects”

• At the network level QoS refers to 

• control mechanisms that can provide different priority to different users 

• guarantee a certain level of performance to a data flow

• QoS is used as a general quality measure in the sence of “user perceived 
performance”, or “degree of satisfaction to the user”

• Application-level Quality of Service can be ensured by:

• Ressource/QoS-reservations at all underlying levels

• Adaptation of application to cope with changing resource availabilites
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Adaptive Middleware

• Adapt: To alter or modify so as to fit for a new use

• Adaptive middleware is software whose functional behavior can be modified 
dynamically to optimize for a change in environmental conditions or 
requirements

• Adaptations can be triggered by:

• changes to a configuration file by an administrator

• instructions from another program 

• user requests

• Requirements of runtime adaptive system: measurement, reporting, control, 
feedback and stability

• Adaptive middleware concerned with adapting non-functional aspects of 
distributed appplications including QoS
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Classification of Adaptive Middleware by Domain[Sadjadi]
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Adaptive Middleware

QoS-Oriented Middleware

Dependable Middleware

Embedded Middleware

Real-time Middleware

Stream-Oriented Middleware

Reflection-Oriented Middleware

Aspect-Oriented Middleware
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Reflective Middleware

• Reflection on programming languages started by Brian Smith at MIT

• “Reflection is the integral ability for a program to observe or change its own 
code as well as all aspects of its programming language - even at runtime”

• Reflective middleware moves reflection to the middleware level

• Often implemented as a number of components that can be configured

• System and application code can use meta-interfaces to:

• inspect internal configuration of the middleware

• reconfigure it to adapt to changes in the environment

• Reflection is a technique to enable adaptation
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Common Terms

• Reification: Process of providing an external representation of the internals of 
a system. Representation allows for manipulation of system internals

• Structural Reflection: Provides the ability to alter the statically fixed internal 
data/funtional structures. Structural Reflection changes the internal makeup of 
a program.

• Behavioral Reflection: The ability to intercept an operation such as a method 
invokation and alter the behavior of that operation. Behavioral Reflection alters 
the actions of a program.

• Introspection: Read access to meta data (type information, classes, methods, 
members, inheritance) 

• Intercession: Manipulation of meta data

7
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Classification (II) of Adaptive Middleware
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Adaptive Middleware

Dynamic MiddlewareStatic Middleware

Customizable Configurable Tunable Mutable

Adaptation Type

Compile Time         |         Startup Time            |                Run Time
Application Lifetime

• compile / link time

• static aspect weaving

• compiler flags

• pre-compiler directives

• QuO, EmbeddedJava

• startup time

• command line parameter

• configuration files

• Eternal, IRL, Rocks

• TAO

• after startup

• before usage

• AOP + reflection

• DynamicTAO

• during runtime

• evolution to unexpected

• reflection

• late composition

• dynamic weaving

• OpenORB
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BBN Quality Objects (QuO)

• Delegates provide local state for remote objects

• Upon method call/return, delegates can check current contract state 
and choose behavior based on the current state of QoS

• Delegates can choose between alternate methods, alternate remote 
object bindings, perform local processing of data, or simply pass the 
method call or return through

9

• Contracts summarize possible states of QoS 
and behavior to trigger when QoS changes

• Defined as regions in form of predicates 
over system condition objects

• System Condition Objects are used to 
measure and control QoS
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BBN Quality Objects (QuO) - Adaptive Behavior

1.Client calls delegate

2.Delegate evaluates contract

3.Measurement system conditions are signaled

4.Contract snapshots value of system conditions

5.Contract is re-evaluated

6.Region transitions trigger callbacks

7.Current region is returned

8.If QoS is acceptable, delegate passes the call to 
the remote object

9.Remote object returns value

10.Contract is re-evaluated...

11.Return value given to client
10
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BBN - Quality Objects - QDL Example
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The ACE ORB (TAO)

• Implemented at Washington University 
St. Louis (D. Schmidt) 

• ACE: Adaptive Communication Environment

• Object-oriented framework that implements many core patterns for 
concurrent communication software

• TAO - Real-Time CORBA ORB developed on top of the ACE framework

• Uses the strategy design pattern for the encapsulation of ORB internals

• IIOP pluggable protocols, concurrency, request demultiplexing, scheduling, 
connection management

• Strategies defined in configuration files, which are evaluation at start-up 
(dynamic configuration possible in DynamicTAO and later versions of TAO)

12
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TAO - QoS Specification

• Application specifies QoS using
an RT_Info interface

• For every RT_OPERATION the 
application specifies

• WCET, period, importance

• During a configuration run the off-line scheduler extracts QoS specification

• During the configuration run a RT_OPERATION dependency graph is created, 
which can be used for configuration of the middleware 

• Scheduler calculates threads, priority dispatch tables, thread priorities for the 
application including feasibility analysis

• Approach also allows for performance optimization for non-real-time task, by 
recording task runtimes during configuration runs and calculate optimal prio’s
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Figure 10: Steps Involved with Off-line and On-line Schedul-

ing

configuration process. Finally, the priority tables generated in

step 5 are used at run-time in step 6 by TAO’s ORB endsystem.

TAO’s real-time Scheduling Service guarantees that all

RT Operations in the system are dispatched with suffi-

cient time to meet their deadlines. To accomplish this, the

Scheduling Service can be implemented to perform various

real-time scheduling policies. [23] describes the rate mono-

tonic scheduling implementation used by TAO’s Scheduling

Service.

Below, we outline the information that the service requires

to build and execute a feasible system-wide schedule. A feasi-

ble schedule is one that is schedulable on the available system

resources; in other words, it can be verified that none of the

operations in the critical set will miss their deadlines.

It is desirable to schedule operations that are not part of the

critical set if the dynamic behavior of the system results in

additional available CPU resources, but scheduling of a non-

critical operation should never result in an operation from the

critical set failing to execute before deadline.

To simplify the presentation, we focus on ORB scheduling

for a single CPU. The distributed scheduling problem is not

addressed in this presentation. [47] outlines the approaches

we are investigating with TAO.

3.3 Specifying QoS Requirements in TAO using

Real-time IDL Schemas

Invoking operations on objects is the primary collaboration

mechanism between components in an OO system [15]. How-

ever, QoS research at the network and OS layers has not

addressed key requirements and usage characteristics of OO

middleware. For instance, research on QoS for ATM networks

has focused largely on policies for allocating bandwidth on a

per-connection basis [29]. Likewise, research on real-time op-

erating systems has focused largely on avoiding priority inver-

sion and non-determinism in synchronization and scheduling

mechanisms for multi-threaded applications [13].

Determining how to map the insights and mechanisms pro-

duced by QoS work at the network and OS layers onto an OO

programmingmodel is a key challenge when adding QoS sup-

port to ORB middleware [15, 40]. This subsection describes

the real-time OO programmingmodel used by TAO. TAO sup-

ports the specification of QoS requirements on a per-operation

basis using TAO’s real-time IDL schemas.

3.3.1 Overview of QoS Specification in TAO

Several ORB endsystem resources are involved in satisfying

application QoS requirements, including CPU cycles, mem-

ory, network connections, and storage devices. To support

end-to-end scheduling and performance guarantees, real-time

ORBs must allow applications to specify their QoS require-

ments so that an ORB subsystem can guarantee resource avail-

ability. In non-distributed, deterministic real-time systems,

CPU capacity is typically the scarcest resource. Therefore,

the amount of computing time required to process client re-

quests must be determined a priori so that CPU capacity can

be allocated accordingly. To accomplish this, applications

must specify their CPU capacity requirements to TAO’s off-

line Scheduling Service.

In general, scheduling research on real-time systems that

consider resources other than CPU capacity relies upon on-

line scheduling [61]. Therefore, we focus on the specification

of CPU resource requirements. TAO’s QoS mechanism for ex-

pressing CPU resource requirements can be readily extended

to other shared resources, such as network and bus bandwidth,

once scheduling and analysis capabilities have matured.

The remainder of this subsection explains how TAO sup-

ports QoS specification for the purpose of CPU scheduling

for IDL operations that implement real-time operations. We

outline our Real-time IDL (RIDL) schemas: RT Operation

interface and its RT Info struct. These schemas convey

QoS information, e.g., CPU requirements, to the ORB on a

per-operation basis. We believe that this is an intuitive QoS

specification model for developers since it maps directly onto

the OO programming paradigm.

3.3.2 The RT Operation Interface

The RT Operation interface is the mechanism for convey-

ing CPU requirements from processing tasks performed by ap-

plication operations to TAO’s Scheduling Service, as shown in

the following CORBA IDL interface:6

6The remainder of the RT Schedulermodule IDL description is shown

in Section 3.5.1.
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Quality Connector Architectural Pattern - Problem

• Decouples application components from the QoS configuration mechanisms 
provided by the infrastructure

• Mediates between application and non-standard middleware configuration and 
control interfaces

• Implementation of service available through
standardized functional interfaces
provide only non-standard mechanisms
for controlling quality of the service

• A quality sensitive application should
be able to monitor and control
the quality of its supporting services

• [J. Cross and D. Schmidt ‘02]
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attributes of the middleware 

components to provide
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Known Uses 

Meta-INterface for Real-time Embedded Systems (MINERS). There is an ongoing 

independent research and development project at Lockheed Martin Tactical Systems in 

Eagan, Minnesota, USA, called MINERS. MINERS is investigating the use of meta-

programming techniques to provide DRE applications with an open interface through 

which they can configure and control the underlying middleware as they require.  

QuO. The BBN Quality Objects (QuO) framework [6] uses QoS definition languages [7] 

that are based on the separation of concerns promoted by AOP [4]. In particular, QuO 

includes the notion of a connection between a client and an object, which encapsulates 

QoS requirements and intended usage patterns; this is analogous to MINERS QoS 

requests. QuO provides system condition objects, which are similar to MINERS modes. 

QuO provides a Quality Description Language (QDL) that includes three aspect 

languages:  

1. A contract description language (CDL) that describes contracts as outlined above, 

2. A structure description language (SDL) that describes the internal structure of 

object implementations and the amount of resources they require, and  

3. A resource description language (RDL) that describes the available resources and 

their status.  

These languages perform functions similar to the MINERS QoS language described 

above.  

QuO has in the past emphasized reactive resource allocation [32], which monitors the 

QoS being provided and acting to correct contract violations or anticipated violations.  

There is nothing inherent in the structure of QuO, however, that prohibits implementing 

the proactive resource allocation style described in this paper.  

                                                

 



Adaptive & Reflective Middleware | Middleware and Distributed Systems AR 2007

Quality Connector - Solution

• Implemenation of a Quality Connector object for each infrastructure 
component

• Platform independend interface between application and infrastructure

• Concerned only with: quality of service provided, modes of the system, load 
that will be imposed on the service

• Implementation strategy:

• Define a small language (definition of acceptable values, depending on 
system mode, use XML ...)

• Provide configuration tools (to check feasibility and consistency of 
requested quality values, to set properties of runtime components)

• Implement the dynamic connector (runtime allocation of resources)

15



The class diagram for the Quality Connector pattern is shown in the following figure: 

 

 

 

In addition to the participants of the Quality Connector pattern described above, there are 

several optional participants, including: 

• Configuration tools that assist system builders in selecting compatible sets of 

infrastructure components that implement required services, 

• Simulation tools to determine whether locally specified qualities of service will 

combine to meet system-level requirements, and 

• A Configuration object that provides visibility at run-time of the set of configuration 

items that currently comprise the executing system.  

These optional participants are not addressed further in this paper. 

Dynamics 

The dynamic sof the Quality Connector pattern is illustrated in Figure 2. These 

interactions can be divided into the three phases as described below:  

1. Pre-runtime. When the identities of the services to which QoS requests will be made 

are known, the application source code can be modified automatically to insert the 

code that makes the runtime requests. Infrastructure components are selected and 

constructed using whatever information is known about the QoS requirements and 

load imposed on the service. 

2. Runtime preparation. The runtime dynamics of the Quality Connector are illustrated 

in Figure 2. At runtime, the application requests a QoS in a specified mode, 

including the specification of a load. The code included by the Quality Connector 

determines whether that request could be satisfied using the presently available 

infrastructure, considering any extant QoS agreements. If the request would be 

feasible, the QoS request is granted, and the strategy by which the service would be 
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Quality Connector - Structure & Dynamics

• Static application connector - 
integrates hooks for dynamic connector 
configuration (request of quality values)

• applied at source code level e.g. 
using AOP

• Static Infrastructure Connector - acts 
on underlying middleware before linking 
(selection of implementations, 
recompilation of middleware using 
chosen values for configuration 
parameters)

• Dynamic Connector - linked with the 
application - allocates infrastructure 
resources to data flows

16

provided is recorded. Moreover, listeners are attached to the configuration items 

whose mode changes might signal transition to or from the relevant mode. 

3. Runtime employment. After a QoS agreement has been established and the system 

enters the mode in which that agreement applies, the code included by the Quality 

Connector receives notification of the mode change and reallocates infrastructure 

resources immediately according to its pre-computed strategy.  
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Figure 2. Dynamics of the Quality Connector 

 

Implementation 

After a configurable infrastructure service has been selected, a quality connector for that 

service can be implemented as follows:  

1. Define a small language in which acceptable values (or sets of acceptable values) of 

the service’s qualities can be specified, depending on the system mode. This 

language is the form in which data flows over the “Specifies QoS” arrow in the 

figure below. Consider defining this language using XML so that it can be 

understood readily by humans and parsed easily by COTS tools. This activity can 

take place even in advance of the system design; ideally the language will be defined 

by an open standard, as are, for example, UML and XML. 

2. Provide configuration-time tools to check for feasibility and consistency of the 

requested quality values, and to set the properties of the Runtime Components to 

provide the required qualities, as illustrated below.  



 
Proposal applies in this 

mode 

There are QoS types other 

than latency -- e.g., jitter 

Priority determines how 

this request will compete 

with others for resources 

Flow is periodic 

<proposal> 

   <mode> 
      <or> 

         <ci name="radioVHF" state="onLine"/> 

         <ci name="radioUHF" state="onLine"/> 
      </or> 

   </mode> 

   <QoS type="latency"> 

      <upperPoint secs="1.0" prob="0.99"/> 
      <upperPoint secs="4.0" prob="0.9999"/> 

   </QoS> 
   <load type="interMessageTime"> 

      <upperPoint secs="1.0" prob="0.0001"/> 

      <lowerPoint secs="1.0" prob="0.9999"/> 

   </load> 
   <load type="messageSize"> 

      <upperPoint bytes="256" prob="1.0"/> 
      <upperPoint bytes="32"  prob="0.5"/> 

   </load> <load type="priority"> 

      <urgency val="10"/> 

      <importance val="2"/> 
   </load> 

 
</proposal> 

 

Figure 3. A QoS Request in XML 

The load that will be imposed by the event service is specified in terms of a 

distribution of event sizes, in bytes, and a distribution of the times between event-

push invocations.  

Relative priorities of clients are specified by the following two integral values:  

• The urgency of a request determines which of several eligible requests will get 

access to a shared resource. For example, if either of two packets of data could be 

sent over a communication link, the packet with the higher urgency will be sent.  

• The importance of a request determines which of two requests not both of which 

can be supported will be accepted. For example, if both of two requests for event 

data propagation cannot be supported on the present infrastructure, then the 

request with the higher importance will be accepted and the other will be rejected. 

Moreover, if a new request for service is received, and that request can be 

accommodated only if some currently operating, lower importance service is shut 

down, then that will be done; in this case, we say that the lower importance 

request is abrogated. 

The proposal in Figure 3 applies only when either of a pair of tactical military or 

emergency response team radios is on-line. In that case, the time between a supplier' s 

push() call and all consumers' corresponding push() calls for every event are to 

be less than 1.0 second 99% of the time and less than 4 seconds 99.99% of the time. 

The sizes of the event data are always at most 256 bytes and 50% of the time are less 

than or equal to 32 bytes. The supplier' s push() calls occur periodically, once per 

second. Note that the priority of the request consists of the two integral values defined 

above. 
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Quality Connector - QoS Language

17
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DynamicTAO - Real-Time CORBA

• Developed at University of Illinois (Campbell, F. Kon)

• Adds dynamic reconfiguration features to the TAO ORB implementation

• ORB strategies can be changed/adapted during runtime

• Uses the Service Configurator pattern for strategy configuration

18



Adaptive & Reflective Middleware | Middleware and Distributed Systems AR 2007

DynamicTAO

• Component implementations are 
organized in categories 
representing different aspects of 
the TAO ORB

• Components are packaged as 
dynamically loadable libraries that 
can be linked to the ORB at runtime

• For example the category 
“Concurrency” contains:

• Reactive_Strategy

• Thread_Strategy

• Thread_Pool_Strategy

19

interface DynamicConfigurator
{
 stringList list_categories ();
 stringList list_implementations  (in string categoryName);
 stringList list_loaded_implementations ()

 stringList list_hooks ( in string componentName);        
 string get_hooked_comp( in string componentName, 
                         in string hookName);
 string get_comp_info    in string componentName);
long load_implementation(in string categoryName, 
                         in string impName, 
                         in string params, ...);

 void hook_implementation (in string loadedImpName, 
                           in string componentName, 
                           in string hookName);

 void suspend_implementation   (in string loadedImpName);
 void resume_implementation    (in string loadedImpName);
 void remove_implementation    (in string loadedImpName);
 void configure_implementation (in string loadedImpName, 
                                in string message);

 void upload_implementation   (in string categoryName, 
                               in string impName, 
                               in implCode binCode);

 void download_implementation (in string categoryName, 
                               inout string impName, 
                               out implCode binCode);

 void delete_implementation   (in string categoryName, 
                               in string impName);
};
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DynamicTAO - Configuration Example

20

myRemoteOrb->upload_implementation(“Security”, “superSAFE”,superSAFE_impl);

newSecurityStrategy =  myRemoteOrb->load_implementation (“Security”,“superSAFE”);

oldSecurityStrategy = myRemoteOrb->get_hooked_comp (“dynamicTAO”,“Security_Strategy”);

myRemoteOrb->hook_implementation (newSecurityStrategy, “dynamicTAO”,“Security_Strategy”);

myRemoteOrb->remove_implementation (oldSecurityStrategy);
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Service Configurator Pattern [P.Jain, D. Schmidt ‘96]

• Also known as Component Configurator pattern

• Decouples the implementation of services from the time when they are configured

• The service configurator pattern should be applied when:

• a service needs to be initiated, suspended, resumed, and terminated 
dynamically

• a service configuration decision must be deferred until runtime

• depending service implementation must be configured independently at 
runtime

• Already used in device drivers architecture in 
Windows NT and Solaris, inetd, Java applets
im WWW-Browsers, Linux modules
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is a Factory function located in the dynamic link library

libnet svcs a.dll. The Service Configurator frame-

work dynamically links this DLL into the application’s ad-

dress space and then invokes the make Time Server Fac-

tory function. This function dynamically allocates a new

Time Server instance, as follows:

Service *make_Time_Server(void)
{
return new Time_Server;

}

The final string parameter in the first entry specifies an en-

vironment variable containing a port number that the Time

Serverwill listen on for Clerk connections. The Service

Configurator converts this string into an “argc/argv”-

style vector and passes it to the init hook of the Time

Server. If the init method succeeds, the Service *

is stored in the Service Repository under the name

Time Server.

9.3.2 Distributed Configuration

If we did not wanted to co-locate the Time Server and

the Clerk all that is required is to split the svc.conf file

into two parts. One part would contain the Time Server

entry and the other part would contain the Clerk entry. The

services themselves would not have to change by virtue of

the fact that the Service Configurator pattern has decoupled

their behavior from their configuration. Figure 5 shows what

the configuration would look like with the Time Server

and Clerk co-located in the same process and what the

configuration would look like after the split.

9.4 Reconfiguring an Application

Now suppose we need to change the algorithm implementa-

tion of the Clerk. For example, we may decide to switch

from an implementation of the Berkeley algorithm [2] to an

implementation of Cristian’s algorithm[3], both of which are

outlined below:

Berkeley algorithm – In this approach, the Time

Server acts as an active component, polling every

machine periodically to ask what time it is there. Based

on the responses it receives, it computes its notion of

the correct time and then tells all the machines to adjust

their clocks accordingly.

Cristian’s algorithm – In this approach, the Time

Server is a passive entity responding to queries made

by Clerks. It does not actively query other machines to

determine its own notion of time.

A change in the algorithm may be needed in response to

the characteristics of the Time Server. If the machine

on which the Time Server resides has a WWV receiver4

the Time Server can act as a passive entity and Cristian

4AWWV receiver intercepts the short pulses broadcastedby theNational

Institute of Standard Time (NIST) to provide Universal Coordinated Time

(UTC) to the public.
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Figure 6: State Diagram of the Service Lifecycle

algorithm would be best suited. On the other hand, if the

machine on which the Time Server resides does not have

a WWV receiver then an implementation of the Berkeley

algorithmwould be more appropriate.

Figure 5 shows a change in the Clerk implementation

(corresponding to the change in clock synchronization algo-

rithm). The change takes place in the process of separating

the Time Server and the Clerk that were previously

co-located.

Ideally, we want to perform this change in the algorithm

implementation without affecting the execution of other ser-

vices or other components of the time service. Accomplish-

ing this using the Service Configurator simply requires the

followingmodification to the svc.conf file:

# Terminate Clerk
remove Time_Server_Clerk

The only additional requirement is to have the Service

Configurator process this directive. This can be done by

generating an external event (such as the UNIX SIGHUP

signal or an RPC notification). On receipt of this event, the

application would consult the configuration file again and

terminate the execution of the Clerk service. The Service

Configurator would call the finimethod of the Clerk and

thereby terminate the execution of the Clerk component. The

execution of other services will not be affected.

Once the Clerk service has been terminated, changes can

bemade to the algorithm implementation. The code can then

be recompiled and relinked. To add a Clerk service back to

the Service Configurator, a similar approach as above can

be taken. The configuration file would be modified with a

new directive specifying dynamically linking the Clerk, as

follows:

# Reconfigure a new Clerk.
dynamic Passive_Time_Server_Clerk Service *

libnet_svcs_p.dll:make_Clerk()
"-h tango.cs:$TIME_SERVER_PORT"
"-h perdita.wuerl:$TIME_SERVER_PORT"
"-h atomic-clock.lanl.gov:$TIME_SERVER_PORT"

An external event would then be generated, causing the con-

figuration file to be re-read and the Clerk component to be

8
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Service Configurator Pattern 

• Service - Specifies the interface that 
contains the abstract hook methods 

• Concrete service - Implements hook 
methods and other service specific 
functionality (event processing, 
communication with clients)

• Service repository - maintains a repository 
of all services offered by a Service 
Configurator-based application
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Figure 2: Structure of a Distributed Time Service

service to a distributed system should not require downtime

for existing services.

Figure 2 uses OMT notation to illustrate the structure of

the distributed time service designed according to the Service

Configurator pattern. The Service base class provides a

standard interface for configuring and controlling services

(such as Time Servers or Clerks). A Service Configurator-

based application uses this interface to initiate, suspend, re-

sume, and terminate a service, as well as to obtain run-time

information (such as service access point) about the service.

Two subclasses of the Service base class appear in

the distributed time service: Time Server and Clerk.

Each subclass represents a concrete Service that has spe-

cific functionality in the distributed time service. The Time

Server service is responsible for receiving and processing

requests for time updates fromClerks. The Clerk service

is a Connector [5] factory that (1) creates a new connection

for every server, (2) dynamically allocates a new handler to

send time update requests to a connected server, (3) receives

the replies from all the servers through the handlers, and (4)

then updates the local system time.

The Service Configurator pattern makes the distributed

time service more flexible by managing the configuration of

the service components of the time service, thereby decou-

pling it from the implementation issues. In addition, the

Service Configurator provides a framework to consolidate

the configuration and management of other communication

services under one administrative unit.

4 Applicability

Use the Service Configurator pattern when:

Services must be initiated, suspended, resumed, and

terminated dynamically;

The implementation of a service may change, but its

configurationwith respect to related services remains the

same and/or the configuration of services may change,

but their implementations remain the same;
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Figure 3: Structure of the Service Configurator pattern

An application or system can be simplified by being

composed of multiple independently developed and dy-

namically configurable services;

The management of multiple services can be simplified

or optimized by configuring and reconfiguring them us-

ing a single administrative unit.

Do not use the Service Configurator pattern when:

Dynamic (re)configuration is undesirable due to security

restrictions (in this case, static configuration may be

necessary);

The initialization or termination of a service is too com-

plicated or too tightly coupled to its context to be per-

formed in a uniform manner;

A service does not benefit from dynamic configuration

or reconfiguration since it never changes;

Stringent performance requirements mandate the need

to minimize the extra levels of indirection incurred by

the OS and language mechanisms used for dynamic

(re)configuration.

5 Structure and Participants

The structure of the Service Configurator pattern is illus-

trated using OMT notation in Figure 3. The key participants

in the Service Configurator pattern include the following:

Service (Service)

– Specifies the interface that contains hooks used

by a Service Configurator-based application

to dynamically configure and reconfigure the

Service.

Concrete Service (Clerk and Time Server)

– Implements the service hooks (such as initializa-

tion and termination) and other service-specific

functionality (such as event processing, and com-

munication with clients and other services).

Service Repository (Service Repository)
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Figure 4: Interaction Diagram for the Service Configurator

Pattern

– Maintains a repository of all the services offered

by a Service Configurator-based application. This

allows administrative entities to centrally manage

and control the behavior of the services.

6 Collaborations

Figure 4 depicts the following collaborations between com-

ponents in the three phases of the Service Configurator pat-

tern:

Service configuration – The Service Configurator ini-

tializes a Service by calling the init method on

it. Once the Service has been initialized success-

fully, the Service Configurator adds it to the Service

Repository. The Service Repository is used

by the Service Configurator to manage and control all

the Services.

Service processing –Once a Service has been config-

ured into the system it is executed. While theService

is executing, the Service Configurator can suspend and

resume the Service.

Service termination – The Service Configurator termi-

nates the Service once it is no longer needed. The

Service Configurator calls the fini method on the

Service to allow it to clean up before terminating.

Once a Service is terminated, it is removed from the

Service Repository.

7 Consequences

7.1 Benefits

The Service Configurator pattern offers the following bene-

fits:

Centralized administration: The pattern consolidates

one or more services into a single administrative unit. This

helps to simplify development by automatically perform-

ing common service initialization and termination activities

(such as opening and closing files, acquiring and releasing

locks, etc.). In addition, it centralizes the administration of

communication services by imposing a uniformset of config-

urationmanagement operations over them (such as initialize,

suspend, resume, and terminate).

Increased modularity and reuse: The pattern improves

themodularity and reusability of communication services by

decoupling the implementation of these services from the

configuration of the services. In addition, all services have

a uniform interface by which they are configured, thereby

encouraging reuse.

Increased configuration dynamism: The pattern en-

ables a service to be dynamically reconfigured without mod-

ifying, recompiling, or relinking existing code. In addition,

reconfiguration of a service can often be performed without

restarting the service or other active services with which it is

co-located.2

Increased opportunity for tuning and optimization:

The pattern increases the range of service configuration alter-

natives available to developers by decoupling service func-

tionality from the execution agent used to invoke the service.

Developers can adaptively tune daemon concurrency levels

to match client demands and available OS processing re-

sources by chosing from a range of execution agents. Some

alternatives include spawning a thread or process at the ar-

rival of a client request or pre-spawning a thread or process

at service creation time.

7.2 Drawbacks

The Service Configurator pattern has the following draw-

backs:

Lack of determinism: The pattern makes it hard to de-

termine the behavior of a service until run-time. This is

particularly problematic for real-time systems since a dy-

namically configured service may not perform predictably

when run with certain other services. For example, one ser-

vice may consume excessive CPU cycles, thereby starving

out other services.

Reduced reliability: An application that uses the Service

Configurator pattern may be less reliable since a particular

configuration of services may adversely affect the execution

of the services. For instance, a faulty service may crash,

thereby corrupting state information it shares with other ser-

vices. This is particularly problematic if multiple services

are configured to run within the same process.
2It is beyond the scope of this pattern to ensure robust dynamic service

reconfiguration. Supporting robust reconfiguration is primarily a matter of

protocols and policies, whereas the Service Configurator pattern primarily

addresses (re)configurationmechanisms.
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Virtual Component Pattern [Corsaro ‘02]

• Provides an application transparent way of loading and unloading components

• Reduction of static and dynamic memory footprint for embedded applications

• Ensures that middleware provides a rich and configurable set of functionality, 
yet occupies main memory only for components that are actually used

• One example are compliant implementations of CORBA having many features 
not needed by all applications

• A server application may not use all versions of the CORBA IIOP protocol

• A client application may not use all collocation optimizations, interceptors, 
or smart proxy mechanisms

• “Pure client” applications do not require a POA

• Applications may not use all common middleware services (naming, 
security, transactions ...)
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Virtual Component Pattern - Solution

• Identify components whose interfaces represent the building blocks of the 
middleware

• Define concrete components that implement the middleware capabilities

• Define factories that create concrete components using a set of loading/
unloading strategies

• Lazy loading: e.g. when memory gets low

• Eagerly loading: e.g. as soon as the instance reference count goes to 0

24

ConcreteComponentFactory 

Class 

Responsibility 

Create ConcreteComponents, using 

the appropriate loading strategy 

Collaborator 

Loading Strategy 

strategy that loaded and instantiated a POA concrete

component lazily, i.e., on-demand at run-time. Con-

versely, a real-time application that cannot tolerate

the jitter introduced by this lazy initialization can use

a loading strategy that pre-loaded and initialized the

POA eagerly, i.e., at ORB initialization time.

LoadingStrategy 

Class 

Responsibility 

Provide a way of loading and 

instantiating components 

Collaborator 

Unloading strategy, which defines how and when a

concrete component and its associated resources are

unloaded.

For example, components could be reference

counted, and once the instance count reaches zero the

associated resources are unloaded, i.e. the compo-

nent instance can be released and its associated DLL

could be unloaded. Unloading may be lazy or eager.

Lazy unloadingmeans a component is unloaded only

when available memory becomes low, then classes

with a zero instance count may be unloaded. Eager

unloading means a component class is unloaded im-

mediately whenever the instance count goes to zero.

UnloadingStrategy 

Class 

Responsibility 

Provide a way of unloading 

components 

Collaborator 

The structure of participants in the Virtual Component

pattern is shown in the class diagram in Figure 1.

ComponentFactory

+CreateComponent()

ConcreteComponentFactory

+CreateComponent()

«interface»

Component

ConcreteComponent

LoadingStrategy

<<create>>

UnloadingStrategy

Figure 1: Virtual Component Static Structure.

7 Dynamics

To illustrate the collaborations performed by participants

in the Virtual Component pattern, we examine three dif-

ferent loading scenarios.

Scenario 1. This scenario shows an eager static loading

strategy where the entire concrete component is loaded

during program startup.

At application startup time, all needed components

are loaded and initialized.

The application code creates a concrete component

via a component factory, which can either provide a

pre-initialized component or create a new one. No

dynamic loading is necessary in this case.

The application code then uses the component.

In this scenario the unloading policy does nothing,

since unloading a component that is unused defeats

the purpose of eager static loading.

The following figure illustrates the eager static loading

strategy:

aClient aComponentFactory aComponent

CreateComponent

aMethod

<<create>>

Scenario 2. This scenario shows an eager dynamic

loading strategy where a concrete component factory

loads the entire concrete component when it is instructed

to resolve the component at run-time.
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Open ORB - Metaspace Models

• Interface metamodel provides access to the external representation of a 
component (provided and required interfaces) (introspection)

• Architectural metamodel provides access to the implementation in form of a 
software architecture (component graph and architectural constraints)

• Interception metamodel allows for dynamic insertion of interceptors (insertion 
of pre- and post-behavior)

25 Figure 2: Structure of the meta-space in Open ORB

ORB focused on a novel middleware archi-
tecture where all the elements are consistent
with the principles of reflection.

Conclusions and
Future Directions

In the past two years, existing implemen-
tations of traditional middleware have been
incorporating some of the contributions of-
fered by research in reflective middleware.
CORBA has now a standard for portable in-
terceptors [7]. Orbix2000 allows the spec-
ification of different policies and supports
dynamic loading of new components called
plug-ins [12]. Despite the usefulness of
these features, the degree of support for cus-
tomization and dynamic adaptation is only
partial, not covering all aspects of the de-
sign and the different phases of a platform’s
life cycle. This is mostly due to the inher-
ent black-box nature of these technologies,
which limits the extent to which elements of
the design can be opened and exposed to the
programmer. Reflection, on the other hand,
offers a truly generic solution to the prob-
lem with a principled approach to middle-
ware design that naturally renders itself to

openness. Finally, the use of reflection per-
mits the manipulation and adaptation of the
different aspects of a platform in ways that
were not anticipated during its design.

We believe that it is now time for the mid-
dleware community to get together to dis-
cuss the architecture of the next generation
middleware technologies. Reaching an inter-
national consensus in this area and working
for the emergence of standards for reflective
middleware would be extremely beneficial.
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Interceptor Pattern [POSA II]

• Allows services to be added transparently to a framework

• Problem: Late integration of new services

• Solution: 

• For a set of framework events (outgoing call,
incoming request ...) processed by a framework specify and expose an 
interceptor callback interface

• Applications can derive concrete interceptors from this interface to 
implement out-of-band services

• Applications can register concrete interceptors at dispatchers

• Context objects allow concrete interceptors to introspect and control 
certain aspects of the framework’s internal state and behavior

• Also a mechanism to change behavior and application-level QoS parameters
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The Interceptor Pattern - Dynamics
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