Fault Tolerant System Calls

Luca Kleinschmidt
Supervised by Lukas Pirl

17.02.2025

Recap & Final Status

e Kernel Module

e Syscall Table patcher for a single syscall

e Syscall Table patcher with retry for generic syscall

e Python script to generate C code wrapper

e audit.d analysis of syscalls used by server and desktop

e Concept for erorr model creation and decision help for this approach
e Benchmark of single syscall wrap

e Distinction from related work

Recap: Issues with Linux Security Features

e Only functional on Linux 4.X

e 4 X is sufficient to validate the idea

e Current Linux versions use switch for syscalls

e cr0 register write-protected, can be easily bypassed with in-line-assembly
e cr register patch, avoid buffer overflow attacks

e switch avoid spectre 2 branch prediction attacks (jump into a wrong syscall but
not somewhere in kernelspace)

e Race condition in unload

Final Artifact

e Management code around syscall table overwriting for Linux 4.X
e code for code generation

e Concepts and Ideas can be implemented for newer Linux

Final Artifact

r)

asmlinkage long syscall_wrapper(struct pt_regs *params) {
long retval = original_call(params);
int retry;
num_used++;

if (retval < 0) {
for (retry = 0; retry < NUM_RETRIES; retry++) {
msleep(retry_intervals[retryl);
retval = original_call(params);

if (retval >= 0)
break;
}
}

return retval;

Related Work: FIRestarter

e stdlib not syscalls
e Assumes return codes are handled by application

e Assumption some exceptions might not be handled within the application (not
rust)

e Converts system library exceptions into handled errors/return codes to trigger
different execution path/error mitigation

e Different path for hard/persistent errors

e Soft errors checkpointing and rollback

Related Work: Fault Injection in a High-Performance Computing

e Uses LD_PRELOAD

e Assumes that in HPC only specific lib and kernel versions are available,
modification possible

e Userspace only

Error Model Concept

e Can cover all occurrences of a call

Analysis/profiling before deciding for relevant calls

Can help with bad error handling in application code

Cannot help with hard errors, only transient faults, which are not handled within
application code due to missing information

Error classes distinct return values per syscall

Error Model Concept

e Fault in this case is anything which causes a syscall return code smaller 0 (can be
hard or transient fault, see heuristic later)

e Capture error based on fault in syscall

e Prevent error through retry and mitigate fault

e Only escalate error into user mode if fault cannot be mitigated

Heuristic for Error Model Concept

e Heuristics and Syscall retry list use case specific
e For guarded application: Look at syscalls which fail often or rarely?

e Scripts for creating system profile with audit.d for error model creation

10

Syscall Success and Fail Counts

pmab
piiem
opajesd
Zaunown
pM6

[}

wiee
aweun
apw
vpieubss
piddiab.

Ko ppe
1esdes

puiq
umopinus
zadid

auop
Jawinnes
Gswpuas
Auijun
wnaubis~y
Zessaddey
pisies
Swewposieh
1pp
pi621a6
gdnp.

Tl joda
nokay
ssa1ppe”pR1es
ud ye

1dox0s1as
dnp

spes

zdnp
Auipeas
anoexe
abues asop
sewn
vyem

e jode
dnosB e
196de>
1dox0siah
ojpuss
opeaid
PI616
15173sNqoITIas.
Bswndal
o105
12UU0>
R7l0ds
Asewdo1dbisu
pid16.
wopuenab
pinajab
woynral
ssae
pim36

t yosuap16
Uy
 dewunuw
g

+ 1a1000w

t vouwind

- oam

- uoidebis Ty
t noud

]

poor
deww

asop
jeuado

JereIsIMau

on

Server Syscall success fail ratio from last presentat

Figure 1

Excerpt from example Error Model

EAGAIN The file descriptor fd refers to a file other
ne

has been marked nonblocking (0_NONBLOCK),
would block. See
0_NONBLOCK flag.

timing/busy issues and syscall fails
EAGAIN or EWOULDBLOCK

file descriptor fd refers to a socket and has been
marked nonblocking (O_NONBLOCK), and the write would block.

than a socket
and the write
for further details on the

Attached device has sometimes

POSIX.1-2001 allows either error to be returned for this [] But a retry Of write Could save It from
case, and does not require these constants to have the same
value, so a portable application should check for both
possibilities. fa | I ure
EBADF fd is not a valid file descriptor or is not open for
writing.
EDESTADDRREQ
d

refers to a datagram socket for which a peer address has
not been set using

EDQUOT The user's quota of disk blocks on the filesystem
containing the file referred to by fd has been exhausted.

EFAULT buf is outside your accessible address space.

EFBIG An attempt was made to write a file that exceeds the
implementation-defined maximum file size or the process's
file size limit, or to write at a position past the maximum
allowed offset.

EINTR The call was interrupted by a signal before any data was
written; see 5

EINVAL fd is attached to an object which is unsuitable for
writing; or the file was opened with the 0_DIRECT flag, and
either the address specified in buf, the value specified in
count, or the file offset is not suitably aligned.

12

Syscall Retry Matrix for Example

Error | co1pE | EINVAL | EINTR | ENOSPC
Syscall

write [v [» [v [

Table 1: Excerpt from example heuristic for handling broken device write. See: errno.h,
errno-base.h and man for the syscall.

13

https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno.h
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno-base.h

Handling of persistent and soft errors

e Indication of error type only by return code
e Some error codes may hint at persistent or soft errors

e Mitigation of hard errors can be accelerated through heuristic

14

Side Effects of Syscalls

Idempotent syscalls can always be retried

Non-ldempotent per case decision, see 77
e man 2 syscall description about error code

e For other syscalls retry based on return value

Related work on check pointing

15

Failure of Non-idempotent Syscalls

File system access calls atomic on local File System
e NFS

openat, unlink, rename ...

Operation executed but network error

16

Syscall Retry Matrix

Error || £INVAL | ENOSPC | EINTR | ENOMEM | ENOTTY | ENOENT
Syscall
write n y y - - -
read n - - - -
mmap n - ? y - -
ioctl n - - - n -
open n y y y - y

Table 2: Excerpt only. The Error Codes represent Error Classes, therefore reference possible

faults. The table describes a heuristic to prevent a failure. yes/no if a retry should and could

help to tolerate the error. - means the error code is not applicable for the syscall. ? would be

defined in concrete error Model. See: errno.h, errno-base.h and man for the syscall.

17

https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno.h
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno-base.h

Benchmark Setup

Overhead Measurement in no-fault case

C program reserves and frees 8092 times 1MiB and calculates Average

bash script ran program 512 times

e mmap and mem overcommit disabled

When all calls were wrapped, ioctl often fails therefor often waiting for retries,

therefor coose malloc/mmap

18

Benchmark Expectation

e Slight (5-10%) performance loss

e Assumption: Fault case will have additional waiting time as overhead (not
measured)

19

Benchmarking Results

e ca. 1% overhead
o Average: 147652.044921875 vs 148579.458984375 cycles

e May vary based on syscall usage of the application

20

How would a production environment look?

Dynamic: Modify Kernel to allow for hooking into syscalltable

Static: Modify Kernel directly for retries
e Know your system and create an error Model

Translate error model into heuristic

Implement heuristic to work with kernel

21

Disadvantages

e ca. 1% overhead

e For efficiency a granular analysis is needed

e Also guards syscalls which normally don't fail in specific use cases
e No true black box implementation for efficient usage

e Enforces same behavior for all syscalls

22

only ca. 1% overhead

Fault tolerance independent of application code

Can be modified independent of application

Can patch application later

Different approvals for this and application

Covers all syscalls, impossible to miss one

23

Collected system call statistics of real systems

e Tool to wrap a generic syscall including python script for code generation

Profiling for creation of error model and related toleration

Implementation of retry logic in kernel module

Race condition example to test the retry logic

Distinction from related work

24

