
Fault Tolerant System Calls

Luca Kleinschmidt

Supervised by Lukas Pirl

17.02.2025

1



Recap & Final Status

• Kernel Module

• Syscall Table patcher for a single syscall

• Syscall Table patcher with retry for generic syscall

• Python script to generate C code wrapper

• audit.d analysis of syscalls used by server and desktop

• Concept for erorr model creation and decision help for this approach

• Benchmark of single syscall wrap

• Distinction from related work

2



Recap: Issues with Linux Security Features

• Only functional on Linux 4.X

• 4.X is sufficient to validate the idea

• Current Linux versions use switch for syscalls

• cr0 register write-protected, can be easily bypassed with in-line-assembly

• cr register patch, avoid buffer overflow attacks

• switch avoid spectre 2 branch prediction attacks (jump into a wrong syscall but

not somewhere in kernelspace)

• Race condition in unload

3



Final Artifact

• Management code around syscall table overwriting for Linux 4.X

• code for code generation

• Concepts and Ideas can be implemented for newer Linux

4



Final Artifact

5



Related Work: FIRestarter

• stdlib not syscalls

• Assumes return codes are handled by application

• Assumption some exceptions might not be handled within the application (not

rust)

• Converts system library exceptions into handled errors/return codes to trigger

different execution path/error mitigation

• Different path for hard/persistent errors

• Soft errors checkpointing and rollback

6



Related Work: Fault Injection in a High-Performance Computing

• Uses LD PRELOAD

• Assumes that in HPC only specific lib and kernel versions are available,

modification possible

• Userspace only

7



Error Model Concept

• Can cover all occurrences of a call

• Analysis/profiling before deciding for relevant calls

• Can help with bad error handling in application code

• Cannot help with hard errors, only transient faults, which are not handled within

application code due to missing information

• Error classes distinct return values per syscall

8



Error Model Concept

• Fault in this case is anything which causes a syscall return code smaller 0 (can be

hard or transient fault, see heuristic later)

• Capture error based on fault in syscall

• Prevent error through retry and mitigate fault

• Only escalate error into user mode if fault cannot be mitigated

9



Heuristic for Error Model Concept

• Heuristics and Syscall retry list use case specific

• For guarded application: Look at syscalls which fail often or rarely?

• Scripts for creating system profile with audit.d for error model creation

10



Figure 1: Server Syscall success fail ratio from last presentation 11



Excerpt from example Error Model

• Attached device has sometimes

timing/busy issues and syscall fails

• But a retry of write could save it from

failure

12



Syscall Retry Matrix for Example

Syscall

Error
EPIPE EINVAL EINTR ENOSPC

write y n y y

Table 1: Excerpt from example heuristic for handling broken device write. See: errno.h,

errno-base.h and man for the syscall.

13

https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno.h
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno-base.h


Handling of persistent and soft errors

• Indication of error type only by return code

• Some error codes may hint at persistent or soft errors

• Mitigation of hard errors can be accelerated through heuristic

14



Side Effects of Syscalls

• Idempotent syscalls can always be retried

• Non-Idempotent per case decision, see ??

• man 2 syscall description about error code

• For other syscalls retry based on return value

• Related work on check pointing

15



Failure of Non-idempotent Syscalls

• File system access calls atomic on local File System

• NFS

• openat, unlink, rename . . .

• Operation executed but network error

16



Syscall Retry Matrix

Syscall

Error
EINVAL ENOSPC EINTR ENOMEM ENOTTY ENOENT

write n y y - - -

read n - y - - -

mmap n - ? y - -

ioctl n - - - n -

open n y y y - y

Table 2: Excerpt only. The Error Codes represent Error Classes, therefore reference possible

faults. The table describes a heuristic to prevent a failure. yes/no if a retry should and could

help to tolerate the error. - means the error code is not applicable for the syscall. ? would be

defined in concrete error Model. See: errno.h, errno-base.h and man for the syscall.

17

https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno.h
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno-base.h


Benchmark Setup

• Overhead Measurement in no-fault case

• C program reserves and frees 8092 times 1MiB and calculates Average

• bash script ran program 512 times

• mmap and mem overcommit disabled

• When all calls were wrapped, ioctl often fails therefor often waiting for retries,

therefor coose malloc/mmap

18



Benchmark Expectation

• Slight (5-10%) performance loss

• Assumption: Fault case will have additional waiting time as overhead (not

measured)

19



Benchmarking Results

• ca. 1% overhead

• Average: 147652.044921875 vs 148579.458984375 cycles

• May vary based on syscall usage of the application

20



How would a production environment look?

• Dynamic: Modify Kernel to allow for hooking into syscalltable

• Static: Modify Kernel directly for retries

• Know your system and create an error Model

• Translate error model into heuristic

• Implement heuristic to work with kernel

21



Disadvantages

• ca. 1% overhead

• For efficiency a granular analysis is needed

• Also guards syscalls which normally don’t fail in specific use cases

• No true black box implementation for efficient usage

• Enforces same behavior for all syscalls

22



Advantages

• only ca. 1% overhead

• Fault tolerance independent of application code

• Can be modified independent of application

• Can patch application later

• Different approvals for this and application

• Covers all syscalls, impossible to miss one

23



Achieved

• Collected system call statistics of real systems

• Tool to wrap a generic syscall including python script for code generation

• Profiling for creation of error model and related toleration

• Implementation of retry logic in kernel module

• Race condition example to test the retry logic

• Distinction from related work

24


