fFault injection in
operating systems

why, where, since when, how, and now?

test specification (if any)
ensure dependability attribute / OS goals

availability, integrity, confidentiality, isolation, ...
Fault model

fail-stop? Fail-crash?
repair

roll-back, service degradation, reset, ...

assess severity
assess risk and adequacy of failures

~Aotert) £ +the B 77 L . sathel Y

‘example

sources & reading |

I TR wanad =

high-assurance microkernel

Formal specification & proofs

guaranteed run times
bug-free (against spec.)

but how many OSs have a specification?
at least, minimal consensus seems to be
“it should not crash”

fakes & relatiom -
o g ReS

where to inject

e.g. WIN32 e.g.
message syscall
fuzzing fuzzing e.g. send

applications

\N ="

e.g.

invalid input

crashing
modules

e.g.

e.g.
introduce

e.g. local < device S o = latency
ha rd WArlre@ |overheating 3 fuzzing v Sl
No P ': ,L/A\;
| 4 7R e.qg. S |
° \ 4 |

l e.g. VM R crashing AR Lo :i e.g. stuck bits
I hype rvisor migration L emulated _:

________ Fails _— _— _— _— — device _— _— _— _— _— _— _— _— _— _— _—

Focus of this talk

e.g.
syscall
fuzzing

applications

hardware

'hypervisor |

history

1969 hardware Fault injection at IBM

simulated to evaluate integrity of logic units during design

1970+ A. Avizienis: early theory on faults

coined “fault tolerance”, classification, modelling, ...

= foundation for injection & detection

history

1970 - 1993: nothing!?

fault tolerance in hard- and software
fault injection in hardware
hardware for fault injection in hardware...

not applied to OSs or not explicitly mentioned?

what about operating systems?

history

1993 FINE

fault-injection environment for UNIX

analyzed error propagation latency

1995 FERRARI

flexible SW-based fault and error injection system

injects into operating system

; flq‘ ads, /1/4//[13806‘7/? c\ d Karritag 364287328585110.jpg

1989: Prof. Barton P. Mlller Unlver5|ty oFW|sconS|n

dial-up connection to campus computer

thunderstorm — noise on the phone line

random characters crashed UNIX utilities

— let students write a random character generator
to test as much UNIX utilities as possible

tool called “Fuzz”

LukdsiPick:] {Faultinjection in operé‘ting systends seminaron Fault injection ; | June 2015 | Hasso Plattner Institute Potsdam | 12

[VAX (v) | Sun‘s) [HP(h) | i386(x) [AIX 1.1 (a) | StfaenBédidh P., Louis Fredl}il@bn, and Bryan Sb "An empirical study o|F the reliadility of UNIk utilities." Con{munications t“‘ the ACM 33.12 (1990): 32-44.

early Fuzzing

Mib/ccom - - . prolog . . . - - -
checkeq - psdit - -
checknr - - ptx - . . o o
col [. . .o . . refer . ® . - - le
colert - - rev - -
colrm - - sed
comm sh -
compress - soelim —
Nib/cpp sort
csh .o o o - o o spell P . . - ° °
dbx * - - spline -
de @ split
deqnu . - - - - sql _ _ _
deroff strings _
diction . - . - . -
strip
diff)
" style . - . - .
ditroff .o . - - -
sum
dtbl - - - - N
emacs . . o - - tail
n » . : L] bl
. tee
expand -
77 . _ _ _ _ telnet . . . - . o
fmt tex - - - -
fold - ro
ftp . . . - . . troff - - -
graph _ tsort . *
arep ul . . . - - .
o
em - - - - uniq
head - units o
ideal - - - - vgrind . - - -
indent o o . - - . vi . . -
join ® we
latex - — - _ yace
:‘e:‘ * * ¢ * * * Frested 85 5 75 5 9 7
i _ _ _ _ # crashed/hung 25 21 25 16 12 19
l::k . _ o . _ . Yo 29.4% 25.3% 33.3% 29.1% 24.5% 26.0%
Table 2: List of Utilities Tested and the Systems on which They Were Tested (part 1) Table 2: List of Utilities Tested and the Systems on which They Were Tested (part 2)
e = utility crashed, o = utility hung, * = crashed on SunOS 3.2 but not on SunOS 4.0, o = utility crashed, o= utility hung, * = crashed on SunOS 3.2 but not on SunOS 4.0,
@ = crashed only on SunOS 4.0, not 3.2. — = utility unavailable on that system. @ = crashed only on Sun0S 4.0, not 3.2. — = utility unavailable on that system.
! = utility caused the operating system to crash. ! = utility caused the operating system to crash.

history

again, what about operating systems?

1991: crashme
by George J. Carrette

developed for platforms

SUN-4, DECstation, IBM RT, Nixdorf, HP-UX, ...
actually test operating system robustness

crashme

invokes random data as procedure

programmatic approach

calculate random(seed, &rand);
(rand)();

no detection, monitoring, tracing, ...

crashme

manually triggered during runtime

fFault model

crash fault
/"\ must be detected by user/tester

crashme

used for Linux kernel testing

~ since late 1996 (2.0.20)

rare crash reports via mailing list
~400 messages

2 wmioe (5]

‘ Il Windows has recovered from an unexpected shutdown

c r a S h m e Windows can check online for a solution to the problem.
LI View problem details s Frahion | ,Wl

theoretically runs on wide variety of OSs

ran on Linux, Windows 7, 8, Server 2008, 2012
crashed & rebooted: 7, 8.1, 2008; hung: 7, 8.1

no success on Windows XP and 9x

binary header produced by Visual Studio > 2005 forbid execution

installed Windows XP & Visual Studio 2005
compiles, runs, no errors, no output

let’s take a look in the lab

using system calls

use APl instead of instructions to inject

see Angelo Haller’s slides
Trinity
found bugs and still actively used
grey-box testing

iknowthis, sysfuzz
grey-box testing

using system calls: ballista
1998 - 2001

originally intended as internet service (???)

test generated & executed based on API descriptions
black-box: only knows interface

pretty similar to Trinity?
aimed to be highly repeatable
detailed logging, reporting

later implemented for POSIX C-APl on 15 OSs

does not run on recent Linux (as noted on the Web site)

using system calls: ballista

Normalized Raw Failure Rates for 233 POSIX Calls
I : :

AlX 4.1

DUNIX 3.2
DUNIX 4.0
FreeBSD 2.2.5
HP-UX 9.05
HP-UX 10.20
Irix 5.3

Irix 6.2
Linux2.0.18

| 1 Catastroph;c
I

1 Catastrophic
]
1 Catastrophic

| : [Abort Failures
1 Catastrophic|] Restart Failure

LynxOS 2.4.0
NetBSD 1.3 I
QNX 4.22 2 Catastrophics

QNX 4.24
Sun0S 4.1.3
SunOS 5.5

0% 5% 10% 15% 20% 25%
Normalized Failure Rate

Figure 1. Raw robustness tests on 15 POSIX operating systems reveal a
significant Abort failure rate and several Catastrophic failures.

using system calls: ballista

Table 1: Data types most commonly associated with
abort robustness failures for 15 operating systems.

Percent associated with
Data Value robustness failures

Invalid file pointers 94.0%
(excluding NULL)

NULL file pointers 82.5%

Invalid buffer pointers 49.8%
(excluding NULL)

NULL buffer pointers 46.0%

MININT integers 44 .3%

MAXINT integers 36.3%

iofuzz
random input for IO devices

to test hypervisors

actually Found serious bugs in major products
— testing in VMs: not clear if host or guest crashed

source not available

also via T. Ormandy directly (asked via email)
but probably easy to build

Linux Kernel

via debugfs

/sys/kernel/debug/fail*

configurable triggers

interval, probabilities, count

fFilterable by processes
extensible

random testing

non-determinism
OS scheduler

workload

interrupts
hardware

memory positions
kernel address space randomization

— hard/impossible to repeat
but: no domain knowledge required

generic
higher re-use

effective
fuzzing
edge-case

black box

VS

specific
higher impl. efforts

efficient
incl. domain knowledge
usual-case

white box

work ahead?

do we need a taxonomy for the tradeoffs?

there are most likely more dimensions

do we need a generic framework

t
t
t
t

can

hat can be made more specific by extending it?
hat can work on specifications?
nat can automatically test virtualized?

hat is implemented more high-level?

we learn from testing old OSs?

http://worditout.com/
Fault-Tolerant environment
implementations
P test . aisbiity

kenawati t 8 SEINQ IEEE crashme

Comparing

inject automated)
applications S 8t8| [failures
random Proceedings specification INnput
most calls lot RT Barton

implemented &S H S t ems Eicg)]sst 0Ss

ballista . : utilities
'ALEJPI Computing fUZZ|ng Linux since
ugs much higher IBM study interesting
faults UNIX planned integrity Crash during cari
fault-injection Miller distributed Papers empirical
Doctor monitoring Philip us|ng WIN run

errors POS|X John gbout ACM haced ngedt ;
Engineerin . instea
knowlec%]ge 908 hardware history domain
model Symposium computer integrated - likely
knows ot memory dependability DeVale Annual
latency software maore
messages Transactions f lt kernel
error a u device

Windows -

detection I nj e C ti O n

robustness International

operating

you now enter the slide graveyard...

history

1995 FIAT

fFault injection based automated testing environment

distributed RT systems

planned injection in OS

1995 DOCTOR

SW fault injection env. for distributed RT systems

yet focussed on HW (CPU, mem, net) instead of OS

Sullivan, Mark, and Ram Chillarege. "Software defects and their impact on system availability: A study of field failures in
operating systems." FTCS. 1991.

results more or less confirm intuition

common: overruns, wrong pointers, wrong allocs etc.
skim paper for tables for more information

Forrester, Justin E., and Barton P. Miller. "An empirical study of the robustness of Windows NT applications using random
testing." Proceedings of the 4th USENIX Windows System Symposium. 2000.

Interesting points

random WIN32 messages cause high Failure rates
they can be sent from app to app!

even OS can crash

e.g. when generating very much HID input
UNIX more likely than Windows

Gu, Weining, et al. "Characterization of linux kernel behavior under errors." null. IEEE, 2003.

looks really elaborate & interesting

seems to
stick to establishes wording
explain kernel fault-injection API
do detailed fault analysis

Mukherjee, Arup, and Daniel P. Siewiorek. "Measuring software dependability by robustness benchmarking." Software
Engineering, IEEE Transactions on 23.6 (1997): 366-378.

have good discussion about

random pro/con

properties of test tools
in an abstract manner

Features a comparison of failure classifications

