Fault Injection into GPGPU-
Applications using GPU-Qin

Anne Gropler, Hasso-Plattner-Institute
Prof. Dr. Andreas Polze, Lena Herscheid, M.Sc., Daniel Richter, M.Sc.
Seminar: Fault Injection
25/06/15

Motivation

Original One edited pixel The error highlighted

Motivation

GPGPU Applications:
— DNA-Sequencing — Linear Algebra

— Simulations — Cryptography & Cryptanalysis

Permanent Hardware Faults

Causes:
— design faults
— manufacturing faults (single, series)

Example:
— Pentium-FDIV-Bug (Intel, 1994)

Transient Hardware Faults

Occurrence: non-deterministically
— single and multi bit flip

before
bit flip
Cause: external events Tolq1 14 2Memory
after
— cosmic rays 4 A%
¥ I \
— over-heated components t ¥ Vo yleeves
— electrostatic discharge Lowering HT Cosmic
voltage radiation

Increasing
heat

Increasing rate of occurrence

Transient Hardware Faults

NVIDIA GPUs support error correction code (ECC) for
— register files
— DRAM
— cache
— on-chip memory space

They can also occur in functional units (ALU, LSU),
then propagate to registers and/or memory!

Outcomes

Benign outcomes:

— Error occured, but no failure

Failure outcomes:

— Crash: hardware exceptions
— Hangs: Timeout, infinite loop

— SDC: silent data corruptions, incorrect output (there might be
no indication that something went wrong!)

ST = 1.333820449136241002 39277 = 1.333739068902037589

3,145,727

GPU-Qin

Investigate error-resilience by performing fault-injection
Error-resilience:

— conditional property of the program not experiencing a failure given
that a fault has occured

Long-time goal: develop fault-tolerance mechanisms
— application-specific
— software-based

Challenge: massive parallelism

— Representative coverage of execution paths
— Time-efficiency

Fault Model

Assumption: cache, memory, register files are protected by ECC
(e.g. NIVIDIA Fermi GPU)

Simulation of transient hardware faults in functional units of
the GPU processor (ALU, LSU)

What to inject?
— Single bit flips
— Multi bit flips (supported, but evaluation is future work)

GPU-Qin
Profiler & Fault Injector

Based on CUDA
— performed on same hardware platform: NVIDIA
— error resilience becomes property of the app alone
— SIMT: single instruction / multiple thread
— cuda-gdb: CUA GPU debugging tool

GPU-Qin: Methodology

Requirements (1 of 3)

Representativeness:

— injected faults should be representative of the actual hardware faults
that occur at runtime

— faults should be injected uniformly over the set of all instructions
executed by the application

GPU-Qin: Methodology

Requirements (2 of 3)

Efficiency:
— fault injection should be fast enough to allow the application to be
executed to completion in reasonable time

— statistically significant estimates of error resilience needs thousands
of fault-injection experiments!

GPU-Qin: Methodology

Requirements (3 of 3)

Minimum Interference:

— fault-injection experiment should interfere minimally with the original
application

— minimal modification of resilience characteristics by the experiment

— fault injector should not change code nor data, other than for the
ocjective of injecting the faults themselves

GPU-Qin: Phase |

Grouping
Threads

based on
similarity in
behavior

Tool: GPGPU-Sim

to get instruction
count

once per app

Profiling

NO

Fault Injection
Runs

95%
Confidence
reached

Aggregate
Results

14

GPU-Qin: Phase Il

Grouping
Threads

Fault Injection

—> Profiling

1 thread of each
popular group

obtain execution
trace of the GPU
portion

map source lines
to executed
assembly instructions

NO

Runs

95%

Confidence
reached

Aggregate
Results

15

GPU-Qin: Phase Il

Breakpoint hit PC;hit

1 = native 5 l - single step | E single step native 5 |
execution execution execution ; execution

I b\ J 'I‘

Fault v

: injection activation window '
start end

GPU program execution via cuda-gdb

Fig. 4: Phase III - The fault-injection process

16

GPU-Qin: Phase Il

Breakpoint hit

1 = native 5 l - single step
execution execution

» 5T\ J "|‘

start

PC: hit

Fault
injection

|e single step native %l
1 execution : execution

Ve

activation window '
end

GPU program execution via cuda-gdb

Fig. 4: Phase III - The fault-injection process

17

Instruction Types and their Injection

fault: injected by flipping a randomly chosen single bit

Instruction Type

Injection Location

What does that simulate?

Arithmetic Destination register (vector with Error in ALU and FL-unit
multiple destination register:
randomly choose 1)

Memory Destination register or address Faults in LSU

register in LD/ST instructions

Control-Flow

Cuda-gdb doesn‘t allow to modify
the predicate registers = inject in
source operands of the instruction

Generally, ,,wrong decision”

18

GPU-Qin: Phase Il

Breakpoint hit

1 = native 5 l - single step
execution execution

» 5T\ J "|‘

start

PC: hit

Fault
injection

|e single step native %l
1 execution : execution

Ve

activation window '
end

GPU program execution via cuda-gdb

Fig. 4: Phase III - The fault-injection process

19

GPU-Qin: Phase Il

Breakpoint hit PC;hit
1 = native 5 l - single step | E single step
execution execution i execution

start

Ve

activation window

Fault
injection

native
execution

>

» 5T\ J "|‘

end

GPU program execution via cuda-gdb

Fig. 4: Phase III - The fault-injection process

File "profiler.py”, line 216, in <module>
main ()
File "profiler.py”, line 214, in main
protiler(con!iqure.binaty_path,O,trial)
File "profiler.py”, line 68, in profiler
cuda gdb p.expect (CUDA GDB_EXPECT)
File "/usr/lib/python2.7/dist-packages/pexpect/ init .py", line 1418, in expect
timeout, searchwindowsize)
File "/usr/lib/python2.7/dist-packages/pexpect/ init .py", line 1433, in expect list

reaxpoint pending on .

(last 100 chars): 'loaded Use the "file" command.\r\nMake breakpoint pending on future shared library load° (y or [n]) °*
<class ‘pexpect.TIMEOUT'>
None

match index: None
exitstatus: None
flag eof: False

closed: False

timeout: 30

delimiter: <class 'pexpect.EOF'>
logfile: None

logfile read: None
logfile send: None
maxread: 1000000
ignorecase: False
searchwindowsize: None
delaybeforesend: 0.05
delayafterclose: 0.1

gropler@fusco:~/GPU-Injector-master$ python profiler.py
Traceback (most recent call last):
File "profiler.py”, line 216, in <module>
main ()
File "profiler.py”, line 214, in main
protiler(contiqure.binary_path,O,trial)
File "profiler.py”, line 68, in profiler
cuda gdb p.expect (CUDA GDB_EXPECT)
File "/usr/lib/python2.7/dist-packages/pexpect/ init .py", line 1418, in expect
timeout, searchwindowsize)
File "/usr/lib/python2.7/dist-packages/pexpect/ init .py", line 1433, in expect list

- ocaded.
(last 100 chars): 'loaded. Use the "file" command.\r\nMake breakpoint pending on future shared
<class ‘pexpect.TIMEOUT'>

None o

aacen sndex: one Sorry, | really tried my best
exitscatus: None ’ f
flag eof: False

pid: 807

child fd: 4

closed: False

timeout: 30

delimiter: <class 'pexpect.EOF'>
logfile: None

logfile read: None

logfile send: None

maxread: 1000000

ignorecase: False
searchwindowsize: None
delaybeforesend: 0.05
delayafterclose: 0.1

Results: SDCs

SDC rate varies across different benchmarks.

Benchmarks

23

Results: Crashes

Crashes are a form of error detection performed by the GPU.

Benchmarks

24

Results: Hangs

Hang: Timeouts, infinite loops

Uniformly lower than 1%.

Discussion: Heuristics

Thread partitioning into groups,
then profiling and fault injection based on most popular groups.

Il group2
16%

w= groupd
25.00%

¥ group3 ¥ : : ¥ & group?
0.39% 4 =
W sroupl
54%

Fig. 2: Percentage of number of threads in each group to the total number of
thread. Left: LBM Righr: Monte Carlo

Discussion: Heuristics

Thread partitioning into groups,
then profiling and fault injection based on most popular groups.

TABLE I: The group identification process leads to classifying the bench-
marks in three categories.

Category Benchmarks Groups Groups e
to threads
profile in

picked
groups
Category | AES, MRI-Q, MAT |1 1 100%
MergeSort-k(), Transpose

Category 11 SCAN, Stencil, Monte | 2 - 10 1 -4 05% -
Carlo, SAD, LEM, 100%
HashGPU

Categroy III BFS 19 2 >60%

Discussion: Heuristics

Limit number of loop iterations to 64.

50% 40%
a0% o 30%
¥
™ 30% ® 25%
o < 20%

® 15%
“ 10%
5%
0%

2 20%

vy
10%
0%

Fig. 6: Comparison of SDC and crash rate for different iteration threshold.
Left: SDC. Right: Crash

Discussion: Heuristics

Fault is considered unactivated, if not seen activated within
an activation window of 1600 dynamic instructions.

How often was this window exceeded?
— 36 cases in MAT
— 29 cases in MRI-Q

— (...)

... in thousands of runs!

Summary: GPU-QIn

Trigger mechanism: Injection level:
— Execution-driven — Intermediate code
— Location-based representation

— Instruction level
(assembly-language level
using GPU-based
debugger)

Injection time:
— During runtime

Summary: GPU-QIn

Intended use cases: Other use cases:
— Transient hardware faults — Permanent hardware faults
— Single bit flips — Over-heated components

— GPU Stress test

Fault Coverage:

— Multi bit flips at locations
“protected” by ECC,
considered “No cost to
extend to multiple-bit flip”,
but is not evaluated yet.

Discussion: Open Questions?

Grouping
Threads

Fault Injection

Profiling

HOW?

NO

Runs

95%
Confidence
reached

Aggregate
Results

32

Appendix

Sources and Further Research

GPU-Qin project homepage and related ressources:
http://netsyslab.ece.ubc.ca/wiki/index.php/FTGPU

GPGPU-Sim tool used in first phase (,,Grouping”)
http://www.gpgpu-sim.org/

Understanding the parallelism of GPUs

http://renderingpipeline.com/2012/11/understanding-the-parallelism-
of-gpus/

Sources and Further Research

Pay for extensive HDMI-cables to have less pixel errors?

http://www.expertreviews.co.uk/tvs-entertainment/7976/expensive-hdmi-
cables-make-no-difference-the-absolute-proof/page/0/1

Found a single bit flip!
https://blogs.oracle.com/ksplice/entry/attack_of the cosmic_raysl

GPU Stress Test
http://www.geeks3d.com/gputest/

Elektrotechnische und physikalische Ursachen flir transiente Hardwarefehler

http://ess.cs.tu-
dortmund.de/Teaching/WS2012/SFt/Downloads/ausarbeitungen/Marc_S
pohr.pdf

Sources: Images

http://cdn2.expertreviews.co.uk/sites/expertreviews/files/styles/insert_main
_image/public/images/dir_335/er_photo_167680.png?itok=JANLYyfv

http://memeguy.com/photos/images/yesterday-was-the-first-day-of-linear-
algebra-this-was-how-the-class-ended-80154.jpg

http://frontiersmag.wustl.edu/wp-
content/uploads/2015/02/DNA_finger large CTAG1.jpg

http://www.chipsetc.com/uploads/1/2/4/4/1244189/1364845 orig.jpg?307

http://1.bp.blogspot.com/-tz38IMri9-
Y/T74L9mjVOUI/AAAAAAAAARC/g3KIISnw-3s/s1600/bitflip.jpg

http://i2.kym-cdn.com/entries/icons/original/000/002/862/Re2idh_c.jpg

Hardware Exceptions (Crashes)

0
1% 20

Lane User Stack
Overflow

33%

War p out-of-range
Address

46%

50% 53%

Warp Misaligned
Address

Device lllegal
Address

16%

AES (Crash rate: 43%) MAT (Crash rate: 30%)

37

Results: Crashes

Crashes are a form of error detection performed by the GPU.

TABLE IV: Description of CUDA hardware exceptions

Exception type

Descrption

Lane user stack overflow

Occurs when a thread exceeds its stack
memory limit

Warp out-of-range address

Occurs when a thread within a warp ac-
cesses an out-of-bounds local or shared
memory address

Warp misaligned address

Occurs when a thread within a warp ac-
cesses an incorrectly aligned local or shared
memory address

Device illegal address

Occurs when a thread accesses an out-of-
bounds global memory address

38

Crash latency — measure the fault
propagation

CDF of crash latency

CDF of crash latency

1 1
0 200 400

—O©— Warp out—of—range address
—&4&— Warp misaligned address
—— Device illegal address

1 1
600 800 1000

e | —&— Warp out—ofrange address
Warp misalignment address

0 100 200 300 400 500 600 700 800 900 1000
Crash latency in milliseconds

39

