
Fault Injection into GPGPU-
Applications using GPU-Qin

Anne Gropler, Hasso-Plattner-Institute
Prof. Dr. Andreas Polze, Lena Herscheid, M.Sc., Daniel Richter, M.Sc.

Seminar: Fault Injection
25/06/15

Motivation

2

Motivation

GPGPU Applications:

 DNA-Sequencing

 Simulations

3

 Linear Algebra

 Cryptography & Cryptanalysis

Permanent Hardware Faults

Causes:

 design faults

 manufacturing faults (single, series)

Example:

 Pentium-FDIV-Bug (Intel, 1994)

4

Transient Hardware Faults

Occurrence: non-deterministically
 single and multi bit flip

 stuck at 0

Cause: external events
 cosmic rays

 over-heated components

 electrostatic discharge

Increasing rate of occurrence

5

Transient Hardware Faults

NVIDIA GPUs support error correction code (ECC) for

 register files

 DRAM

 cache

 on-chip memory space

They can also occur in functional units (ALU, LSU),

then propagate to registers and/or memory!

6

Outcomes

Benign outcomes:

 Error occured, but no failure

Failure outcomes:

 Crash: hardware exceptions

 Hangs: Timeout, infinite loop

 SDC: silent data corruptions, incorrect output (there might be
no indication that something went wrong!)

7

GPU-Qin

Investigate error-resilience by performing fault-injection

Error-resilience:
 conditional property of the program not experiencing a failure given

that a fault has occured

Long-time goal: develop fault-tolerance mechanisms
 application-specific

 software-based

Challenge: massive parallelism
 Representative coverage of execution paths

 Time-efficiency
8

Fault Model

Assumption: cache, memory, register files are protected by ECC
(e.g. NIVIDIA Fermi GPU)

Simulation of transient hardware faults in functional units of
the GPU processor (ALU, LSU)

What to inject?

 Single bit flips

 Multi bit flips (supported, but evaluation is future work)

9

GPU-Qin

Profiler & Fault Injector

Based on CUDA

 performed on same hardware platform: NVIDIA

 error resilience becomes property of the app alone

 SIMT: single instruction / multiple thread

 cuda-gdb: CUA GPU debugging tool

10

GPU-Qin: Methodology

Requirements (1 of 3)

Representativeness:
 injected faults should be representative of the actual hardware faults

that occur at runtime

 faults should be injected uniformly over the set of all instructions
executed by the application

11

GPU-Qin: Methodology

Requirements (2 of 3)

Efficiency:
 fault injection should be fast enough to allow the application to be

executed to completion in reasonable time

 statistically significant estimates of error resilience needs thousands
of fault-injection experiments!

12

GPU-Qin: Methodology

Requirements (3 of 3)

Minimum Interference:
 fault-injection experiment should interfere minimally with the original

application

 minimal modification of resilience characteristics by the experiment

 fault injector should not change code nor data, other than for the
ocjective of injecting the faults themselves

13

GPU-Qin: Phase I

14

Grouping
Threads

Profiling
Fault Injection

Runs

Aggregate
Results

95%
Confidence

reached

based on

similarity in

behavior

Tool: GPGPU-Sim

to get instruction

count

once per app

1 thread of each

popular group

obtain execution

trace of the GPU

portion

map source lines

to executed

assembly instructions

NO

YES

GPU-Qin: Phase II

15

Grouping
Threads

Profiling
Fault Injection

Runs

Aggregate
Results

95%
Confidence

reached

based on

similarity in

behavior

Tool: GPGPU-Sim

to get instruction

count

once per app

1 thread of each

popular group

obtain execution

trace of the GPU

portion

map source lines

to executed

assembly instructions

NO

YES

GPU-Qin: Phase III

16

GPU-Qin: Phase III

17

Instruction Types and their Injection

Instruction Type Injection Location What does that simulate?

Arithmetic Destination register (vector with
multiple destination register:
randomly choose 1)

Error in ALU and FL-unit

Memory Destination register or address
register in LD/ST instructions

Faults in LSU

Control-Flow Cuda-gdb doesn‘t allow to modify
the predicate registers inject in
source operands of the instruction

Generally, „wrong decision“

18

fault: injected by flipping a randomly chosen single bit

GPU-Qin: Phase III

19

GPU-Qin: Phase III

20

Demo

Demo

Sorry, I really tried my best.

Results: SDCs

SDC rate varies across different benchmarks.

23

Results: Crashes

Crashes are a form of error detection performed by the GPU.

24

Results: Hangs

Hang: Timeouts, infinite loops

Uniformly lower than 1%.

25

Discussion: Heuristics

Thread partitioning into groups,

then profiling and fault injection based on most popular groups.

26

Discussion: Heuristics

Thread partitioning into groups,

then profiling and fault injection based on most popular groups.

27

Discussion: Heuristics

Limit number of loop iterations to 64.

28

Discussion: Heuristics

Fault is considered unactivated, if not seen activated within

an activation window of 1600 dynamic instructions.

How often was this window exceeded?
 36 cases in MAT

 29 cases in MRI-Q

 (…)

… in thousands of runs!

29

Summary: GPU-Qin

Trigger mechanism:

 Execution-driven

 Location-based

Injection time:

 During runtime

30

Injection level:

 Intermediate code
representation

 Instruction level
(assembly-language level
using GPU-based
debugger)

Summary: GPU-Qin

Intended use cases:

 Transient hardware faults

 Single bit flips

Fault Coverage:

 Multi bit flips at locations
“protected” by ECC ,
considered “No cost to
extend to multiple-bit flip”,
but is not evaluated yet.

31

Other use cases:

 Permanent hardware faults

 Over-heated components

 GPU Stress test

Discussion: Open Questions?

32

Grouping
Threads

Profiling
Fault Injection

Runs

Aggregate
Results

95%
Confidence

reached HOW?

NO

YES

Appendix

Sources and Further Research

GPU-Qin project homepage and related ressources:

http://netsyslab.ece.ubc.ca/wiki/index.php/FTGPU

GPGPU-Sim tool used in first phase („Grouping“)

http://www.gpgpu-sim.org/

Understanding the parallelism of GPUs

http://renderingpipeline.com/2012/11/understanding-the-parallelism-
of-gpus/

34

Sources and Further Research
Pay for extensive HDMI-cables to have less pixel errors?
http://www.expertreviews.co.uk/tvs-entertainment/7976/expensive-hdmi-

cables-make-no-difference-the-absolute-proof/page/0/1

Found a single bit flip!
https://blogs.oracle.com/ksplice/entry/attack_of_the_cosmic_rays1

GPU Stress Test
http://www.geeks3d.com/gputest/

Elektrotechnische und physikalische Ursachen für transiente Hardwarefehler
http://ess.cs.tu-

dortmund.de/Teaching/WS2012/SFt/Downloads/ausarbeitungen/Marc_S
pohr.pdf

35

Sources: Images
http://cdn2.expertreviews.co.uk/sites/expertreviews/files/styles/insert_main

_image/public/images/dir_335/er_photo_167680.png?itok=JANLYyfv

http://memeguy.com/photos/images/yesterday-was-the-first-day-of-linear-

algebra-this-was-how-the-class-ended-80154.jpg

http://frontiersmag.wustl.edu/wp-

content/uploads/2015/02/DNA_finger_large_CTAG1.jpg

http://www.chipsetc.com/uploads/1/2/4/4/1244189/1364845_orig.jpg?307

http://1.bp.blogspot.com/-tz38lMri9-

Y/T74L9mjV9UI/AAAAAAAAARc/g3KIlSnw-3s/s1600/bitflip.jpg

http://i2.kym-cdn.com/entries/icons/original/000/002/862/Re2idh_c.jpg 36

Hardware Exceptions (Crashes)

37

53%
46%

2%
1%

50%

16%

33%

Lane User Stack
Overflow

Warp out-of-range
Address

Warp Misaligned
Address

Device I llegal
Address

AES (Crash rate: 43%) MAT (Crash rate: 30%)

Results: Crashes

Crashes are a form of error detection performed by the GPU.

38

Crash latency – measure the fault
propagation

39

0 200 400 600 800 1000
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crash latency in milliseconds

C
D

F
 o

f
cr

as
h

la
te

nc
y

Warp out−of−range address

Warp misaligned address

Device illegal address

0 100 200 300 400 500 600 700 800 900 1000
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crash latency in milliseconds

C
D

F
 o

f
cr

as
h

la
te

nc
y

Warp out−of−range address

Warp misalignment address

