
Fault Injection into GPGPU-
Applications using GPU-Qin

Anne Gropler, Hasso-Plattner-Institute
Prof. Dr. Andreas Polze, Lena Herscheid, M.Sc., Daniel Richter, M.Sc.

Seminar: Fault Injection
25/06/15

Motivation

2

Motivation

GPGPU Applications:

 DNA-Sequencing

 Simulations

3

 Linear Algebra

 Cryptography & Cryptanalysis

Permanent Hardware Faults

Causes:

 design faults

 manufacturing faults (single, series)

Example:

 Pentium-FDIV-Bug (Intel, 1994)

4

Transient Hardware Faults

Occurrence: non-deterministically
 single and multi bit flip

 stuck at 0

Cause: external events
 cosmic rays

 over-heated components

 electrostatic discharge

Increasing rate of occurrence

5

Transient Hardware Faults

NVIDIA GPUs support error correction code (ECC) for

 register files

 DRAM

 cache

 on-chip memory space

They can also occur in functional units (ALU, LSU),

then propagate to registers and/or memory!

6

Outcomes

Benign outcomes:

 Error occured, but no failure

Failure outcomes:

 Crash: hardware exceptions

 Hangs: Timeout, infinite loop

 SDC: silent data corruptions, incorrect output (there might be
no indication that something went wrong!)

7

GPU-Qin

Investigate error-resilience by performing fault-injection

Error-resilience:
 conditional property of the program not experiencing a failure given

that a fault has occured

Long-time goal: develop fault-tolerance mechanisms
 application-specific

 software-based

Challenge: massive parallelism
 Representative coverage of execution paths

 Time-efficiency
8

Fault Model

Assumption: cache, memory, register files are protected by ECC
(e.g. NIVIDIA Fermi GPU)

Simulation of transient hardware faults in functional units of
the GPU processor (ALU, LSU)

What to inject?

 Single bit flips

 Multi bit flips (supported, but evaluation is future work)

9

GPU-Qin

Profiler & Fault Injector

Based on CUDA

 performed on same hardware platform: NVIDIA

 error resilience becomes property of the app alone

 SIMT: single instruction / multiple thread

 cuda-gdb: CUA GPU debugging tool

10

GPU-Qin: Methodology

Requirements (1 of 3)

Representativeness:
 injected faults should be representative of the actual hardware faults

that occur at runtime

 faults should be injected uniformly over the set of all instructions
executed by the application

11

GPU-Qin: Methodology

Requirements (2 of 3)

Efficiency:
 fault injection should be fast enough to allow the application to be

executed to completion in reasonable time

 statistically significant estimates of error resilience needs thousands
of fault-injection experiments!

12

GPU-Qin: Methodology

Requirements (3 of 3)

Minimum Interference:
 fault-injection experiment should interfere minimally with the original

application

 minimal modification of resilience characteristics by the experiment

 fault injector should not change code nor data, other than for the
ocjective of injecting the faults themselves

13

GPU-Qin: Phase I

14

Grouping
Threads

Profiling
Fault Injection

Runs

Aggregate
Results

95%
Confidence

reached

based on

similarity in

behavior

Tool: GPGPU-Sim

to get instruction

count

once per app

1 thread of each

popular group

obtain execution

trace of the GPU

portion

map source lines

to executed

assembly instructions

NO

YES

GPU-Qin: Phase II

15

Grouping
Threads

Profiling
Fault Injection

Runs

Aggregate
Results

95%
Confidence

reached

based on

similarity in

behavior

Tool: GPGPU-Sim

to get instruction

count

once per app

1 thread of each

popular group

obtain execution

trace of the GPU

portion

map source lines

to executed

assembly instructions

NO

YES

GPU-Qin: Phase III

16

GPU-Qin: Phase III

17

Instruction Types and their Injection

Instruction Type Injection Location What does that simulate?

Arithmetic Destination register (vector with
multiple destination register:
randomly choose 1)

Error in ALU and FL-unit

Memory Destination register or address
register in LD/ST instructions

Faults in LSU

Control-Flow Cuda-gdb doesn‘t allow to modify
the predicate registers  inject in
source operands of the instruction

Generally, „wrong decision“

18

fault: injected by flipping a randomly chosen single bit

GPU-Qin: Phase III

19

GPU-Qin: Phase III

20

Demo

Demo

Sorry, I really tried my best.

Results: SDCs

SDC rate varies across different benchmarks.

23

Results: Crashes

Crashes are a form of error detection performed by the GPU.

24

Results: Hangs

Hang: Timeouts, infinite loops

Uniformly lower than 1%.

25

Discussion: Heuristics

Thread partitioning into groups,

then profiling and fault injection based on most popular groups.

26

Discussion: Heuristics

Thread partitioning into groups,

then profiling and fault injection based on most popular groups.

27

Discussion: Heuristics

Limit number of loop iterations to 64.

28

Discussion: Heuristics

Fault is considered unactivated, if not seen activated within

an activation window of 1600 dynamic instructions.

How often was this window exceeded?
 36 cases in MAT

 29 cases in MRI-Q

 (…)

… in thousands of runs!

29

Summary: GPU-Qin

Trigger mechanism:

 Execution-driven

 Location-based

Injection time:

 During runtime

30

Injection level:

 Intermediate code
representation

 Instruction level
(assembly-language level
using GPU-based
debugger)

Summary: GPU-Qin

Intended use cases:

 Transient hardware faults

 Single bit flips

Fault Coverage:

 Multi bit flips at locations
“protected” by ECC ,
considered “No cost to
extend to multiple-bit flip”,
but is not evaluated yet.

31

Other use cases:

 Permanent hardware faults

 Over-heated components

 GPU Stress test

Discussion: Open Questions?

32

Grouping
Threads

Profiling
Fault Injection

Runs

Aggregate
Results

95%
Confidence

reached HOW?

NO

YES

Appendix

Sources and Further Research

GPU-Qin project homepage and related ressources:

http://netsyslab.ece.ubc.ca/wiki/index.php/FTGPU

GPGPU-Sim tool used in first phase („Grouping“)

http://www.gpgpu-sim.org/

Understanding the parallelism of GPUs

http://renderingpipeline.com/2012/11/understanding-the-parallelism-
of-gpus/

34

Sources and Further Research
Pay for extensive HDMI-cables to have less pixel errors?
http://www.expertreviews.co.uk/tvs-entertainment/7976/expensive-hdmi-

cables-make-no-difference-the-absolute-proof/page/0/1

Found a single bit flip!
https://blogs.oracle.com/ksplice/entry/attack_of_the_cosmic_rays1

GPU Stress Test
http://www.geeks3d.com/gputest/

Elektrotechnische und physikalische Ursachen für transiente Hardwarefehler
http://ess.cs.tu-

dortmund.de/Teaching/WS2012/SFt/Downloads/ausarbeitungen/Marc_S
pohr.pdf

35

Sources: Images
http://cdn2.expertreviews.co.uk/sites/expertreviews/files/styles/insert_main

_image/public/images/dir_335/er_photo_167680.png?itok=JANLYyfv

http://memeguy.com/photos/images/yesterday-was-the-first-day-of-linear-

algebra-this-was-how-the-class-ended-80154.jpg

http://frontiersmag.wustl.edu/wp-

content/uploads/2015/02/DNA_finger_large_CTAG1.jpg

http://www.chipsetc.com/uploads/1/2/4/4/1244189/1364845_orig.jpg?307

http://1.bp.blogspot.com/-tz38lMri9-

Y/T74L9mjV9UI/AAAAAAAAARc/g3KIlSnw-3s/s1600/bitflip.jpg

http://i2.kym-cdn.com/entries/icons/original/000/002/862/Re2idh_c.jpg 36

Hardware Exceptions (Crashes)

37

53%
46%

2%
1%

50%

16%

33%

Lane User Stack
Overflow

Warp out-of-range
Address

Warp Misaligned
Address

Device I llegal
Address

AES (Crash rate: 43%) MAT (Crash rate: 30%)

Results: Crashes

Crashes are a form of error detection performed by the GPU.

38

Crash latency – measure the fault
propagation

39

0 200 400 600 800 1000
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crash latency in milliseconds

C
D

F
 o

f
cr

as
h

la
te

nc
y

Warp out−of−range address

Warp misaligned address

Device illegal address

0 100 200 300 400 500 600 700 800 900 1000
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crash latency in milliseconds

C
D

F
 o

f
cr

as
h

la
te

nc
y

Warp out−of−range address

Warp misalignment address

