
Camera Tracking on Moving
Objects using RPi + Arduino

Ella, Lukas, Philipp, and Daniel

Motivation

Inspiration: A stepper motor driven, 3D printed
and Arduino controlled pan/tilt mount.

● Daniel Richter provides most parts
● Pan-Tilt-Mount is controlled via Xbox

controller Drive mount using
wireless joystick
input

https://github.com/isaac879/Pan-Tilt-Mount
https://github.com/isaac879/Pan-Tilt-Mount

Project Goal

Spice things up slightly by:

● Using Raspberry Pi (OpenCV support) as
controller

● Implementing a simple tracking algorithm
● Limit to two axis

→ Improve appropriately (e.g. more axes, advanced
tracking algorithms vs. faster tracking)

drive mount

video-stream

analyze video,
track object
calculate offset

control,
live-feed

send axis
correction

Implementation

Three subtasks:
1. Object Tracking (Raspberry Pi)
2. Motor Control (Arduino)
3. Build Camera Bot

Object Tracking
User Journey

1. Start Raspberry
[RPi opens a websocket
server]

2. Start Companion
[Companion connects to
server to get a live-feed]

3. User selects ROI to track

4. Camera “follows”

live-feed ROI offset

Object Tracking
User Journey

1. Start Raspberry
[RPi opens a websocket
server]

2. Start Companion
[Companion connects to
server to get a live-feed]

3. User selects ROI to track

4. Camera “follows”

analyze video,
track object
calculate offset

control bytes “f”, “c”, “t”, “q”

companion

live-feed ROI offset

compress to jpg and send as stream

f: get frame

c: connect arduino

t: select ROI request

q: exit

Object Tracking

track object

Objective:
Keep ROI in the center of the frame

1. Track ROI

2. Calculate offset from center

3. Normalize according to frame
size

4. Discretize into 10 velocity
buckets per axis

5. send correction vector to
Arduino

live-feed ROI

send axis correction

[x_velocity, y_velocity]

x, y in [-5, 5]

offset

Ingredients RPi
● OpenCV
● CSRT-Tracker
● WebSocket on

separate thread
● Serial

communication on
separate thread

USB

Motor Control

Driver

Driver

Stepp
er

Motor

Stepp
er

Motor

External
Power
Supply

12 V
250mA – 650mA

[x_velocity, y_velocity]

x, y in [-5, 5]

USB
(power supply)

Motor Control

Driver

Driver

Stepp
er

Motor

Stepp
er

Motor

External
Power
Supply

12 V
250mA – 650mA

[x_velocity, y_velocity]

x, y in [-5, 5]

USB
(power supply)

Nema 17 Stepper
Motors

External Power Supply (12V/1A)

Stepper Drivers (TMC2209)

Arduino Uno

y-axis

x-axis

Since Mid-Presentation

C++ Rewrite
Motivation:

● Only 1-2 FPS on RPi using Python and
OpenCV

Attempt:

● Rewrite RPi application in C++

C++ Rewrite
Motivation:

● Only 1-2 FPS on RPi using Python and
OpenCV

Attempt:

● Rewrite RPi application in C++

Journey:

● hard to interop
OpenCV for C++ with OpenCV for Python
companion

● different multithreading paradigms
concurrent programming in C++ is harder
than it seems at first glance

● pointer arithmetic and seg faults

C++ Rewrite
Motivation:

● Only 1-2 FPS on RPi using Python and
OpenCV

Attempt:

● Rewrite RPi application in C++

Journey:

● hard to interop
OpenCV for C++ with OpenCV for Python
companion

● different multithreading paradigms
concurrent programming in C++ is harder
than it seems at first glance

● pointer arithmetic and seg faults

Result:

● ~4 FPS
Lessons

1. When debugging, check all your assumptions! They’re probably wrong.
2. Put I/O intensive and compute intensive tasks into separate threads.
3. If your devices need WiFi for communicating with each other, set up your own lab WiFi instead of using smartphone

hotspots. It will save you hours of debugging and makes port forwarding much easier.

C++ Rewrite

Main Loop

Websocket

Serial

Arduino-to-Raspberry communication

- Serial library in Python/C++ to connect Raspberry
to Arduino

- Arduino has built-in support for Serial
- communication protocol:

- current position of the object on the frame communicated as
integer coordinate between (0,0) and (10, 10)

- (5,5) is the middle of the frame
- advantage: only need to transmit two digits, but accurate

enough for our use case

Building the CameraBot

● Initially used the 3D printer in Prof Baudisch’s lab

○ → Ended up taking too much time, so we
outsourced

● Had to make changes to original blueprint

→ Arduino Uno instead of Arduino Nano
→ 40 mm NEMA 17 instead of

22 mm NEMA 17
→ Different camera size
→ Different scope

- no slider axis but feedback loop This part of took more than 1h to print
(in good quality)

The long tale of fast custom printing

5.01.2023: Order of 3D parts (estimated delivery
time 5-7 days)

18.01.2023: Asking again per mail what the status is

18.01.2023: ~“Will send tomorrow. We had
difficulties printing one part”

24.01.2023: Automatic email confirming delivery

26.01.2023: Arrival of package
The package.

3D-printing: Assembly

Learnings:

● Parts are not 100% accurate

● Parts are not completely round

● Tight assembly increases friction

● Moving parts have to be thinned by file and
smoothed by sand-paper or aceton

● 3D printed bearings have a lot of friction

Putting it all together

● Motors didn’t move setup including
camera

○ Measured amperage using measurement
unit within motors circuit in iot lab

○ Initially used 200 mA

● Changed RMS-Current in code up to
500 mA

● Interesting: Stepper motors use base
ampere rate at rest

video: see
https://drive.google.com/file/d/17-qmVV_L9QbTcYhCXW39X6Ke_67
63iK9/view?usp=sharing

https://docs.google.com/file/d/17-qmVV_L9QbTcYhCXW39X6Ke_6763iK9/preview
https://drive.google.com/file/d/17-qmVV_L9QbTcYhCXW39X6Ke_6763iK9/view?usp=sharing
https://drive.google.com/file/d/17-qmVV_L9QbTcYhCXW39X6Ke_6763iK9/view?usp=sharing

Hardware Projects - Learnings

● Hardware iteration cycles take long

● Surprise: Software iteration cycles take long

○ Development experience on
Arduino and RaspberryPi is poor

● Solution:
write for PC, test and debug on PC,
then adapt for RPi

● We didn’t emulate an arduino:
Painful debugging experience

● Measure everything to be certain

Hardware Projects - Learnings

● hobbyist and hardware stuff can be really
badly documented

● the hardware ultimately sets the limit of a
device’s performance

● 3D printing takes a long time, but ordering
3D printed
parts might take even longer

Evaluation

Object Recognition: Performance of Algorithms

- different algorithms for object tracking available
- KCF: fast, but cannot recover from occlusion of the object
- CSRT: slower, but handles occlusion well

 → tradeoff between accuracy and speed (even more on limited resources)
 → we ended up electing CSRT

Learning:

● CSRT is ok for occlusion but often can’t recover if ROI was lost

Object Recognition: Performance

- we switched from Python to C++ because
of better performance → in our tests,
performance is still around a third of a
second in most cases

- C++ on RPi

- Get around 3-4 FPS

Learning:

● C++ is faster, we assume because it’s compiled
and doesn’t use garbage collection

● The difference to Python is not huge:
Bottleneck was hardware (no GPU for CV)

Last time’s milestones: How far did we get?

✅ 3D-print and assemble the camera slider for at least one axis

✅ Motors should keep the Region of Interest in the center of the frame

✅ Have a realistic user journey

✅ Evaluate performance of implementation and find potentials for improvement

What future teams could add to the project

❎ further improve usability

❎ further improve performance software-wise

❎ more reliable ROI tracking

❎ use better hardware (like Nvidia Jetson)

❎ use more fault-tolerant communication protocols

❎ more fine-grained motor control

❎ support additional axes

Video

