
Camera Tracking on Moving
Objects using Raspberry Pi

Our progress so far

Let’s look at our project goals again…

Camera Tracker

- Inspiration: A stepper motor
driven, 3D printed and Arduino
controlled pan/tilt mount.

- Daniel Richter provides most parts
- Pan-Tilt-Mount is controlled via Xbox

controller

Drive mount using
wireless joystick
input

https://github.com/isaac879/Pan-Tilt-Mount
https://github.com/isaac879/Pan-Tilt-Mount
https://github.com/isaac879/Pan-Tilt-Mount

Camera Tracker

- Spice things up slightly by:
- Using Raspberry Pi (OpenCV support) as

controller
- Implementing a simple tracking algorithm
- Limit to one axis

→ Improve appropriately (e.g. more axes,
advanced tracking algorithms vs. faster
tracking)

drive mount

send recording

analyze recording

control

How far have we come in
achieving these goals?

Two subgroups:
1. Motor Control
2. Object Recognition

Motor Control – Schema

Driver

Driver

Driver

µP

Stepper
Motor

Stepper
Motor

Stepper
Motor

External
Power
Supply

Power
Supply
µP +

Drivers

Motor Control – Reality

Nema 17
Stepper
Motors External

Power
Supply
(12V/1A)

Stepper Drivers
(TMC2209)

Arduino
Uno

Hello Stepper

- IDE: VSCode (has Arduino
support)

- Use TMCStepper library to
control driver

- UART interface can set
motor velocity

- Use SoftwareSerial library
to fake serial interface
over digital pins

Hello Steppers

- Use AccelStepper library (most
commonly used library for
steppers with Arduino)

- AccelStepper uses DIRECTION
and STEP pins for control.
TMCStepper uses UART
interface

- TMC2209 driver supports both
operation modes

- .run() ist non-blocking and may
do nothing, but must be called
often

Struggle 1: Correctly Connecting Motor to Driver

Usually: TMC Manual: MKS Driver:

Source: How to Wire Stepper Motors

Source: TMC2209-LA - Trinamic

Source: [1]Source: MKS-StepStick-Driver: TMC2209

https://buildbotics.com/wiring-stepper-motors/
https://www.trinamic.com/products/integrated-circuits/details/tmc2209-la/
https://www.roboter-bausatz.de/p/mks-tmc2209-schrittmotortreiber?sPartner=8&gclid=Cj0KCQiAnNacBhDvARIsABnDa6-abN70RiLMSmDPBSo5cXTADZo4AJ1u-E6cKg1xUp-CjKQnrt-LkDoaAlJwEALw_wcB
https://github.com/makerbase-mks/MKS-StepStick-Driver

Struggle 2: Setting Reference Voltage (VREF)

- Driver has small potentiometer to control max
motor current

- Measure voltage with multimeter

- Calculate using

- … profit? 💸

Source: [1]

Source: Vref Calculator: How to Tune Your Stepper
Driver | All3DP

https://www.roboter-bausatz.de/p/mks-tmc2209-schrittmotortreiber?sPartner=8&gclid=Cj0KCQiAnNacBhDvARIsABnDa6-abN70RiLMSmDPBSo5cXTADZo4AJ1u-E6cKg1xUp-CjKQnrt-LkDoaAlJwEALw_wcB
https://all3dp.com/2/vref-calculator-tmc2209-tmc2208-a4988/
https://all3dp.com/2/vref-calculator-tmc2209-tmc2208-a4988/

Struggle 2: Setting Reference Voltage (VREF)

- Driver has small potentiometer to control max
motor current

- Measure voltage with multimeter

- Calculate using

- Measurements were never in valid range! 😣
- First driver’s potentiometer didn’t work

Source: [1]

Source: Vref Calculator: How to Tune Your Stepper
Driver | All3DP

https://www.roboter-bausatz.de/p/mks-tmc2209-schrittmotortreiber?sPartner=8&gclid=Cj0KCQiAnNacBhDvARIsABnDa6-abN70RiLMSmDPBSo5cXTADZo4AJ1u-E6cKg1xUp-CjKQnrt-LkDoaAlJwEALw_wcB
https://all3dp.com/2/vref-calculator-tmc2209-tmc2208-a4988/
https://all3dp.com/2/vref-calculator-tmc2209-tmc2208-a4988/

Struggle 2: Setting Reference Voltage (VREF)

- Driver has small potentiometer to control max
motor current

- Measure voltage with multimeter

- Calculate using

- → Max current can be set using UART
alternatively 🤞

Source: [1]

Source: Vref Calculator: How to Tune Your Stepper
Driver | All3DP

https://www.roboter-bausatz.de/p/mks-tmc2209-schrittmotortreiber?sPartner=8&gclid=Cj0KCQiAnNacBhDvARIsABnDa6-abN70RiLMSmDPBSo5cXTADZo4AJ1u-E6cKg1xUp-CjKQnrt-LkDoaAlJwEALw_wcB
https://all3dp.com/2/vref-calculator-tmc2209-tmc2208-a4988/
https://all3dp.com/2/vref-calculator-tmc2209-tmc2208-a4988/

Object Recognition using Raspberry Pi

- object recognition and websocket server in Python
- OpenCV for video capture and object tracking
- PySerial for connection to Arduino
- Websocket server for companion app

- companion app
- To select the object to be tracked

analyze recording
control

Implementation

Implementation

Performance of Object Tracking Algorithms

KCF /
1920x1080

CSRT /
1920x1080

KCF /
1280x720

CSRT /
1280x720

Raspberry Pi 5 FPS 2 FPS - -

Intel i7 90 FPS 27 FPS 60 FPS 27 FPS

M1 140 FPS 40 FPS 180 FPS 72 FPS

- different algorithms for object tracking available
- KCF: fast, but cannot recover from occlusion of the object
- CSRT: slower, but handles occlusion well

 → tradeoff between accuracy and speed (even more on limited resources)

Object Recognition - Current Problems

- selection of the Region of Interest needs a GUI
- running an X session on Raspberry Pi would degrade performance even more
- current solution: GUI on laptop with Websocket connection to Raspi

- where is the bottleneck for performance?
- connection to camera? camera resolution?
- object tracking algorithms?
- do we get a better performance with OpenCV for C++ compared to Python?
- replace raspberry pi
- overall: how to improve our solution to achieve more accuracy as well as more speed

Object Recognition - Development Experiences

- remote development can be cumbersome
- setup, debugging, SSH, sometimes also VNC
- not enough RAM for X session together with remote development tool
- “solution”: we do most development on our laptops (which also have webcams for testing)

- well documented (and actively developed) libraries are a blessing
- what we often saw instead: last commit on 4th August 2013, 142 unresolved issues, exits

with some unknown error message

- “hacking together” a solution often results in very convoluted code
 → refactoring needed

3D-Printing parts

- to mount camera and motors, we need to 3D print some parts
- we are allowed to use the laser cutter and 3D printer of Prof Baudisch’s lab
- however: many changes to original blueprint

→ Arduino Uno instead of Arduino Nano
→ 40 mm NEMA 17 instead of 22 mm NEMA 17
→ different camera

- → need to change blueprint
- → check usage of laser cutter for broader parts (mounts) and 3d printing for

finer parts (gears, screws)

Next milestones

1. We want to 3D-print the parts that need to be 3D-printed and assemble the
camera slider for at least one axis.

2. We want the motors to try keep the Region of Interest in the center of the
frame.

3. We want to improve performance of our object recognition on Raspberry Pi.

