

Final Presentation: Carrera Car

Embedded Operating Systems Tom Braun, Björn Daase, Leon Matthes 11.02.2021

Recap

Goal:

- Driving as fast as a human

Midterm results:

- 2 driving cars
- Detect curves using accelerometer

- Mapping sensor data to track
- Using track data for speed regulation
- Accelerometer provides random data after some time

Recap

Goal:

- Driving as fast as a human

Midterm results:

- 2 driving cars
- Detect curves using accelerometer

- Mapping sensor data to track
- Using track data for speed regulation
- Accelerometer provides random data after some time
 - fixed by using a different library and using gyro data

Recap

Goal:

- Driving as fast as a human

Midterm results:

- 2 driving cars
- Detect curves using accelerometer

- Mapping sensor data to track
- Using track data for speed regulation
- Accelerometer provides random data after some time
 - fixed by using a different library and using gyro data

How To Go Fast...

Self Built Car vs Carrera

- Our car is slower with the same motor
- Determined as a hardware issue
 - Still slow when disabling PWM and setting motor pin to HIGH
 - Applying 5V to motor pin doesn't change anything
 - Manually applying 12V to the motor increases torque considerably
 - Circuit diagram reveals Driver-Mosfet was used incorrectly

The Road Ahead...

Idea

- Create track map
 - Drive at constant safe speed (predetermined)
 - Save driven track
 - Determine track layout from history
- Use map to adjust speed
 - If curve ahead => slow down
 - If straight ahead => drive faster

Mapping the Track

- Drive at constant safe speed (predetermined)
- Save driven track
 - Get gyro value => **Time Constraint** (faster computation = better resolution)
 - Save value in collection => **Memory Constraint**
- Determine track layout from history
 - After a delay diff first and second half
 - If difference is under a threshold => even number of laps

Memory Constraint

- Arduino Nano has only 2KiB memory
- 2KiB = 512 Floats
- Need around 1300 Floats for two laps
- Solution: Run length encoding (RLE)
 - Successive Gyro values are very similar => Either curve, or no curve
 - Only necessary to store changes above threshold
 - We now need about 400 values for 5 laps => 2 Laps in $\frac{1}{2}$ of RAM
- No longer a problem on ESP32, however:
 - Reduces time to diff laps Helps with **Time Constraint**
 - Smoothes noisy data

400 RLE Entries for 3500 measurements

Speed Adjustment

- Update guess of current position based on RLE track data diffing
- Brake if in front of curve, top speed when on straights

- Our only hard Real-time deadline
 - If we don't brake in front of curves, our data is useless
- Factors to consider
 - Length of RLE diffing takes longer
 - Hardware components may need time to react
 - No other tasks run on the microcontroller
 - Debugging outputs may take time

Debugging

- Microcontroller on wheels
 - Not possible to keep stable connection to PC
 - Static testing not useful => Cannot mock input & output
- Ideas
 - Use Wifi/BT
 - Energy constrained, only 10 mF capacitor
 - OLED display
 - Hard to read while driving
 - Updating takes ~10ms decreases gyro resolution considerably
 - printf-Debugging
 - Save data at runtime
 - Has lowest impact on behavior (ESP has enough memory)
 - Stop & Print after button press

Learnings

- Software can only use given hardware (and not make it faster)
- Board with better specs than needed very helpful for development
- Debugging can have considerable impact in real-time environment
- Memory constraints can make some solutions impossible

Results

Goal:

- Driving as fast as a human

Midterm results:

- A fast driving car
- Detect curves using accelerometer

- Mapping sensor data to track
- Using track data for speed regulation
- Accelerometer provides random data after some time
 - fixed by using a different library and using gyro data

