
What is Ada?

What we are telling today
This is not yet another Ada tutorial

Ada origins and history

Ada overview
Some Ada concepts

Ada runtime systems
Ravenscar
SPARK à Appendix

A personal journey with Ada

Getting started with Ada
Projects of interest for Railergy

This is not yet another Ada tutorial
The objective of this course is to provide some basic concepts and to spark some interest in Ada.
We might be off-topic sometimes, if so, it is fully intentional…

Ada is a very versatile language that was designed from scratch to cover (among others)
- Safety Critical Systems
- Secure Systems
- Realtime Applications
- Non- linear programming
- Distributed systems
- Very large and complex systems

Ada has been designed by a large industrial team against a given set of requirements, which was novel at the time.

We will provide some starting points for self- studying or systematic learning and teaching in academia at the end of the
session.

Who is the lady? Augusta Ada King, Countess of Lovelace
(1815-1852)
English mathematician and writer, chiefly known for her work on Charles

Babbage's proposed mechanical general-purpose computer, the Analytical
Engine. She is believed by some to be the first to recognise that the machine
had applications beyond pure calculation, and to have published the
first algorithm intended to be carried out by such a machine. As a result, she is
often regarded as the first to recognise the full potential of computers and as
one of the first to be a computer programmer.

“The Analytical Engine might act upon other things besides number, were objects
found whose mutual fundamental relations could be expressed by those of the

abstract science of operations, and which should be also susceptible of
adaptations to the action of the operating notation and mechanism of the
engine...Supposing, for instance, that the fundamental relations of pitched

sounds in the science of harmony and of musical composition were susceptible
of such expression and adaptations, the engine might compose elaborate and

scientific pieces of music of any degree of complexity or extent”

Above text from Wikipedia

Note G by Ada Lovelace

Bernoulli algorithm

Ada origins
1815-1835 Augusta Ada Byron is born, the daughter of Lord Byron, the poet, and Anne Isabella Millbanke, the mathematician. Ada marries

and becomes the Countess of Lovelace.

1833-1852 Ada Lovelace meets and then collaborates with Charles Babbage, the inventor of the Difference Engine and the Analytical Engine.
She writes mathematical treatises on how computing machines might be used. (See "Ada, the Enchantress of Numbers"
[Toole92].)

1975-1978 The U.S. Department of Defense (DoD) confronts the "software crisis" and sponsors a series of studies leading to a decision to
create a standard language for use in military embedded or mission-critical systems. The [Steelman78] document is issued, stating
requirements to be satisfied by the new language. A request for proposals is issued.

1978-1979 Four competitors are selected (Blue, Green, Red, Yellow) for the first phase of a design competition. All four select Pascal as the
base language upon which to build, and submit initial design proposals. The competition is narrowed to the Green and Red teams,
who then refine and expand their design proposals.

1980 The name, Ada, is selected for the new language, honoring the person who is now considered to be the world's first computer
programmer.

1979-1983 The Green team (headed by Jean Ichbiah of France, from Bull) wins and produces document MIL-STD-1815A, the Ada Language
Reference Manual. [ARM83] (Note use of the year of Ada's birth.)

1995, 2005,
2012

The language has evolved as an ANSI standard in several versions (Ada95, Ada2005, Ada2012)

Ada main features
Object orientated programming
Strong typing
Abstractions to fit program domain
Generic programming/templates
Exception handling
Facilities for modular organization of code
Standard libraries for I/O, string handling, numeric computing, containers
Systems programming
Concurrent programming
Real-time programming
Distributed systems programming
Numeric processing
Interfaces to other languages (C, COBOL, Fortran)

Hello World!

A subprogram in Ada can be either a procedure or a
function.
A procedure, as illustrated above, does not return a value
when called.
with is used to reference external modules that are
needed in the procedure.

This version utilizes an Ada feature known as
a use clause, which has the form use package-name. As
illustrated by the call on Put_Line, the effect is that
entities from the named package can be referenced
directly, without the package-name. prefix

Ada Packages

Packages
Packages let you make your code modular, separating your

programs into semantically significant units. Additionally
the separation of a package's specification from its body
(which we will see below) can reduce compilation time.

While the with clause indicates a dependency, you can see in
the example above that you still need to prefix the
referencing of entities from the Week package by the
name of the package. (If we had included a use Week
clause, then such a prefix would not have been necessary.)

Accessing entities from a package uses the dot notation, A.B,
which is the same notation as the one used to access
record fields.

A with clause can only appear in the prelude of a compilation
unit (i.e., before the reserved word, such as procedure,
that marks the beginning of the unit). It is not allowed
anywhere else. This rule is only needed for methodological
reasons: the person reading your code should be able to
see immediately which units the code depends on.

Ada packages vs. C/C++ header files
Packages look similar to, but are semantically very different from, header files in C/C++.

The first and most important distinction is that packages are a language-level mechanism. This is in contrast to a #include'd
header file, which is a functionality of the C preprocessor.

An immediate consequence is that the with construct is a semantic inclusion mechanism, not a text inclusion mechanism.
Hence, when you with a package, you are saying to the compiler "I'm depending on this semantic unit", and not "include
this bunch of text in place here".

The effect of a package thus does not vary depending on where it has been withed from. Contrast this with C/C++, where the
meaning of the included text depends on the context in which the #include appears.

This allows compilation/recompilation to be more efficient. It also allows tools like IDEs to have correct information about the
semantics of a program. In turn, this allows better tooling in general, and code that is more analyzable, even by humans.

An important benefit of Ada with clauses when compared to #include is that it is stateless. The order of with and use clauses
does not matter, and can be changed without side effects.

Some aspects of the Ada type
system

Strong typing
Ada's type system allows the programmer to construct powerful abstractions that represent the real world, and to provide

valuable information to the compiler, so that the compiler can find many logic or design errors before they become bugs. It
is at the heart of the language, and good Ada programmers learn to use it to great advantage. Four principles govern the
type system:

Strong typing: types are incompatible with one another, so it is not possible to mix apples and oranges. There are, however,
ways to convert between types.

Static typing: type checked while compiling, this allows type errors to be found earlier.

Abstraction: types represent the real world or the problem at hand; not how the computer represents the data internally.
There are ways to specify exactly how a type must be represented at the bit level, but we will defer that discussion to
another chapter.

Name equivalence, as opposed to structural equivalence used in most other languages. Two types are compatible if and only
if they have the same name; not if they just happen to have the same size or bit representation. You can thus declare two
integer types with the same ranges that are totally incompatible, or two record types with exactly the same components,
but which are incompatible.

Types are incompatible with one another. However, each type can have any number of subtypes, which are compatible with
their base type and may be compatible with one another. See below for examples of subtypes which are incompatible
with one another.

Ada type hierarchy
Types are organized hierarchically. A type

inherits properties from types above it
in the hierarchy. For example, all
scalar types (integer, enumeration,
modular, fixed-point and floating-
point types) have operators "<", ">"
and arithmetic operators defined for
them, and all discrete types can serve
as array indexes.

Classification of types (some examples…)

Constrained vs. Unconstrained

By giving a constraint to an unconstrained subtype, a subtype or object becomes constrained:

Defining new types and subtypes

followed by the description of the type, as explained in detail in each category of type.

Formally, the above declaration creates a type and its first subtype named T. The type itself, correctly called the "type of T", is
anonymous; the RM refers to it as T (in italics), but often speaks sloppily about the type T. But this is an academic consideration;
for most purposes, it is sufficient to think of T as a type. For scalar types, there is also a base type called T'Base, which
encompasses all values of T.

For signed integer types, the type of T comprises the (complete) set of mathematical integers. The base type is a certain hardware
type, symmetric around zero (except for possibly one extra negative value), encompassing all values of T.

As explained above, all types are incompatible; thus:

is illegal, because Integer_1 and Integer_2 are different and incompatible types. It is this feature which allows the compiler to detect
logic errors at compile time, such as adding a file descriptor to a number of bytes, or a length to a weight. The fact that the two
types have the same range does not make them compatible: this is name equivalence in action, as opposed to structural
equivalence.

Defining new types and subtypes

The declaration of Integer_2 is bad because the constraint 7 .. 11 is not compatible with Integer_1; it raises Constraint_Error
at subtype elaboration time.

Integer_1 and Integer_3 are compatible because they are both subtypes of the same type, namely Integer_1'Base.

It is not necessary that the subtype ranges overlap, or be included in one another. The compiler inserts a run-time range
check when you assign A to B; if the value of A, at that point, happens to be outside the range of Integer_3, the program
raises Constraint_Error.

There are a few predefined subtypes which are very useful:

Derived types
A derived type is a new, full-blown type created from an existing one. Like any other type, it is incompatible with its parent;

however, it inherits the primitive operations defined for the parent type.

Here both types are discrete; it is mandatory that the range of the derived type be included in the range of its parent.
Contrast this with subtypes. The reason is that the derived type inherits the primitive operations defined for its parent,
and these operations assume the range of the parent type.

Inheritance of
primitive
operations

More Object Oriented concepts (tagged
types, classwide types, dispatching
operations, and others are available. But
for safety critical systems, dynamic OO
concepts are very restricted in use)

Here we use the type Weekend_Days
derived from the type Week in order to
inherit primitive behaviour from the
related subprogram

A subprogram will only become a primitive
of the type if:

The subprogram is declared in the same
scope as the type and

The type and the subprogram are declared
in a package

Limited Types
Limiting a type means disallowing assignment Programmers can define their own types to be limited, too, like this:

(The ellipsis stands for private, or for a record definition, these concepts will not be discussed in detail in this session)

A limited type also doesn't have an equality operator unless the programmer defines one.

The “concurrency types” described on the next slides are always limited.

Concurrency Types
The Ada language uses types for one more purpose in addition to classifying data + operations. The type system integrates

concurrency (threading, parallelism). Programmers will use types for expressing the concurrent threads of control of their
programs.

The core pieces of this part of the type system are the task types and the protected types.

Task types are limited, i.e. they are restricted in the same way as limited private types, so assignment and comparison are not
allowed.

Task types and Tasks

Tasks

A task unit is a program unit that is obeyed concurrently with the rest of an Ada program. The corresponding activity, a new
locus of control, is called a task in Ada terminology, and is similar to a thread, for example in Java Threads. The execution
of the main program is also a task, the anonymous environment task. A task unit has both a declaration and a body, which
is mandatory. A task body may be compiled separately as a subunit, but a task may not be a library unit, nor may it be
generic. Every task depends on a master, which is the immediately surrounding declarative region - a block, a subprogram,
another task, or a package. The execution of a master does not complete until all its dependent tasks have terminated.
The environment task is the master of all other tasks; it terminates only when all other tasks have terminated.

Task units are similar to packages in that a task declaration defines entities exported from the task, whereas its body contains
local declarations and statements of the task.

Tasks example

Task types

It is possible to declare task types, thus allowing task units to be created dynamically, and incorporated in data structures

Rendezvous
This task type implements a single-slot

buffer, i.e. an encapsulated variable that
can have values inserted and removed in
strict alternation. Note that the buffer
task has no need of state variables to
implement the buffer protocol: the
alternation of insertion and removal
operations is directly enforced by the
control structure in the body of
Encapsulated_Buffer_Task_Type which
is, as is typical, a loop.

Rendezvous explained The only entities that a task may export are entries.

An entry looks much like a procedure. It has an identifier and may
have in, out or in out parameters.

Ada supports communication from task to task by means of the
entry call. Information passes between tasks through the actual
parameters of the entry call. We can encapsulate data structures
within tasks and operate on them by means of entry calls, in a
way analogous to the use of packages for encapsulating
variables.

The main difference is that an entry is executed by the called task,
not the calling task, which is suspended until the call completes.
If the called task is not ready to service a call on an entry, the
calling task waits in a (FIFO) queue associated with the entry.

This interaction between calling task and called task is known as a
rendezvous. The calling task requests rendezvous with a specific
named task by calling one of its entries. A task accepts
rendezvous with any caller of a specific entry by executing an
accept statement for the entry.

If no caller is waiting, it is held up. Thus entry call and accept
statement behave symmetrically.

Selective Wait (1)
To avoid being held up when it could be

doing productive work, a server task
often needs the freedom to accept a call
on any one of a number of alternative
entries. It does this by means of
the selective wait statement, which
allows a task to wait for a call on any of
two or more entries.

If only one of the alternatives in a selective
wait statement has a pending entry call,
then that one is accepted. If two or more
alternatives have calls pending, the
implementation is free to accept any one
of them. For example, it could choose
one at random. This introduces bounded
non-determinism into the program. A
sound Ada program should not depend
on a particular method being used to
choose between pending entry calls.

Selective Wait (2)

creates two variables of type
Encapsulated_Variable_Task_Type. They can be used thus:

Guards
Depending on circumstances, a server task may

not be able to accept calls for some of the
entries that have accept alternatives in a
selective wait statement. The acceptance of
any alternative can be made conditional by
using a guard, which is Boolean precondition
for acceptance. This makes it easy to write
monitor-like server tasks, with no need for
an explicit signaling mechanism, nor for
mutual exclusion. An alternative with a True
guard is said to be open. It is an error if no
alternative is open when the selective wait
statement is executed, and this raises the
Program_Error exception.

Ada Exceptions

Exception declaration
Ada uses exceptions for error handling. Unlike

many other languages, Ada speaks
about raising, not throwing, an exception
and handling, not catching, an exception.

Ada exceptions are not types, but instead objects,
which may be peculiar to you if you're used to
the way Java or Python support exceptions.

Raising an exception

Ada Runtime Library

Ada Runtime Library
The run-time library for a language is typically the standard library of functions responsible for implementing the interface

with the underlying functionality exposed by the system. These are normally statically linked against the executable at
compile-time.

The Ada run-time library is responsible for the implementation of the standard library defined in annexes A-H of the Ada
Language Reference Manual. Not all annexes defined in the standard are required to be implemented for a specific
platform.

See also: http://ada-auth.org/standards/12rm/html/RM-TOC.html

Appendix A: Predefined Language Environment
Appendix B: Interface to Other Languages
Appendix C: Systems Programming
Appendix D: Real-Time Systems
Appendix E: Distributed Systems
Appendix F: Information Systems
Appendix G: Numerics
Appendix H: High Integrity Systems

http://ada-auth.org/standards/12rm/html/RM-TOC.html

Ravenscar profile
The Ravenscar profile is a subset of

the Ada tasking features designed for safety-
critical hard real-time computing. It was
defined by a separate technical report in
Ada 95; it is now part of the Ada 2012
Standard. It has been named after the
English village of Ravenscar, the location of
the 8th International Real-Time Ada
Workshop (IRTAW 8).

A Ravenscar Ada application uses the following
compiler directive:

This is the same as writing the following set of configuration pragmas:

Ada and Jakob

A personal voyage with Ada (1987- ….)

1987

1990

NO WAY

A personal voyage with Ada (1995- ….)

Windows NT !!!

A personal voyage with Ada (2010- ….)
Esterel Technologies SCADE KCG is an automatic code

generator, which is qualifiable to DO-178C DAL A, IEC
61508 SIL, EN50128 SIL3/4, ISO26262 ASIL D (and
others)

Since 2012, there is an Ada / SPARK backend.

The requirements were developed with the following
SCADE + Ada users:

- Rolls Royce Aero Engines, Derby UK (FADEC for
commercial turbofans)

- BAE Systems, Rochester UK (Eurofighter Typhoon)
- Alstom, Villeurbanne F (Railway/ Signalling)
and partner companies:
- Praxis (now Altran), Bath UK, developers of SPARK

language
- AdaCore, Paris F, maintaining GNAT

A personal voyage with Ada (2020)

Analysis of
ALSTOM ETCS Core
Software for DB

(retrofit for
ICE T/ 1/ 3)

Getting started with Ada

Learning Ada
A good starting point is the Ada information clearinghouse
https://www.adaic.org/learn/materials/ for a list of books and online tutorials
The Ada information clearinghouse also maintains a list of free and commercial

tools and libraries

https://www.adaic.org/learn/materials/

Universities in Germany teaching Ada
Karlsruhe Institute of Technology – Karlsruhe
Anhalt University of Applied Science – Köthen
Frankfurt University of Applied Science – Frankfurt
Chemnitz University of Technology – Chemnitz
Munich Technical University – Garching
Regensburg University of Applied Science – Regensburg
Rosenheim University of Applied Sciences – Rosenheim
Technical University of Applied Sciences – Berlin
University of Stuttgart – Stuttgart
University of Duisburg-Essen – Duisburg
University of Jena – Jena
University of Bremen – Bremen
University of Weimar – Weimar
Wiesbaden University of Applied Sciences – Wiesbaden
Universität der Bundeswehr München – Munich
Thüringer Landessternwarte Tautenburg – Tautenburg

Getting started with Ada

Ada IDEs and compilers

Most Ada tools and compilers are proprietary and very expensive
(and there has been a lot of consolidation of the market)
Vendor Name Win Linux other License Target Origin

PTC ObjectAda yes yes Comm Host Aonix

PTC APEX Ada No Yes Comm Embedded Rational

GreenHills Ada Optimizing
Compiler

Yes yes Comm Embedded GreenHills

DDC-I SCORE Ada Yes Yes Comm Embedded DDC-I

AdaCore GNAT Yes Yes Mac GPLv3+ Host &
Embedded

GNU

Getting started with Ada

GNAT Community
is maintaining the community version of GNAT (GNU Ada Translator)

Get GNAT:
https://www.adacore.com/download (for Windows, Linux and Mac; the Windows and Linux versions also include GPS

(GNAT Programming Studio IDE))

On Ubuntu:
sudo apt-get update –y

sudo apt-get install -y gnat-gps

GAP (GNAT Academic Program)
AdaCore provides the GAP Package to members at no cost.
Membership is open to teachers, as well as graduate students using Ada or SPARK technologies in the context of a

master’s thesis or Ph.D.
https://www.adacore.com/academia

https://www.adacore.com/download
https://www.adacore.com/academia

Appendix: SPARK

SPARK
SPARK is a formally defined computer programming language based on the Ada programming language, intended for the

development of high integrity software used in systems where predictable and highly reliable operation is essential. It
facilitates the development of applications that demand safety, security, or business integrity.

The SPARK language consists of a well-defined subset of the Ada language that uses contracts to describe the specification of
components in a form that is suitable for both static and dynamic verification.

In SPARK83/95/2005, the contracts are encoded in Ada comments (and so are ignored by any standard Ada compiler), but are
processed by the SPARK "Examiner" and its associated tools.

SPARK 2014, in contrast, uses Ada 2012's built-in "aspect" syntax to express contracts, bringing them into the core of the
language. The main tool for SPARK 2014 (GNATprove) is based on the GNAT/GCC infrastructure, and re-uses almost the
entirety of the GNAT Ada 2012 front-end.

SPARK Overview
SPARK aims to exploit the strengths of Ada while trying to eliminate all its potential ambiguities and insecurities.

SPARK programs are by design meant to be unambiguous, and their behavior is required to be unaffected by the
choice of Ada compiler. These goals are achieved partly by omitting some of Ada's more problematic features (such
as unrestricted parallel tasking) and partly by introducing contracts which encode the application designer's
intentions and requirements for certain components of a program.

• The combination of these approaches is meant to allow SPARK to meet its design objectives, which are:
• logical soundness
• rigorous formal definition
• simple semantics
• security
• expressive power
• verifiability
• bounded resource (space and time) requirements.
• minimal runtime system requirements

Spark contract examples
Consider:

What does this subprogram actually do? In pure Ada, it could do virtually anything – it might increment the X by one or one
thousand; or it might set some global counter to X and return the original value of the counter in X; or it might do
absolutely nothing with X at all.

With SPARK 2014, contracts are added to the code to provide additional information regarding what a subprogram actually
does. For example, we may alter the above specification to say:

This specifies that the Increment procedure does not use (neither update nor read) any global variable and that the only data
item used in calculating the new value of X is X itself.

This specifies that Increment will use the global variable Count in the
same package as Increment, that the exported value of Count depends
on the imported values of Count and X,
and that the exported value of X does not depend on any variables
at all (it will be derived from constant data only).

SPARK Verification conditions
GNATprove can also generate a set of verification conditions or VCs. VCs are used to attempt to establish certain

properties hold for a given subprogram. At a minimum, the GNATprove will generate VCs attempting to establish
that all run-time errors cannot occur within a subprogram, such as
• array index out of range
• type range violation
• division by zero
• numerical overflow.

If a postcondition or other assertions are added to a subprogram, GNATprove will also generate VCs that require the
user to show that these properties hold for all possible paths through the subprogram.

Under the hood, GNATprove uses the Why3 intermediate language and VC Generator, and the CVC4, Z3, and Alt-Ergo
theorem provers to discharge VCs. Use of other provers (including interactive proof checkers) is also possible
through other components of the Why3 toolset.

Notes and references
[Toole92]: B. A. Toole, "Ada, the Enchantress of Numbers," Strawberry Press, 1992.

[Steelman78]: "Department of Defense Requirements for High Order Computer Programming Languages - 'Steelman',"
Defense Advanced Research Projects Agency, 1978.

[ARM83] [ARM83] "Reference Manual for the Ada Programming Language," ANSI/MIL- STD-1815A-1983, U.S. Department of
Defense, February 1983.

Current Ada Reference Manual: http://ada-auth.org/standards/12rm/html/RM-TOC.html

http://ada-auth.org/standards/12rm/html/RM-TOC.html

© 2020

