6. Real-Time Operating Systems

6.2 Real-Time Extensions for Linux

Roadmap of Section 6.1

© History, Overview
© Real-Time Linux

© Concept, Architecture

© API, Modules

© Physical Memory Access, /O, Interrupt Handling,
Periodic Threads, IPC

© Samples
© RTAI vs. RTLinux vs. RTLinux Pro
© Literature

HPI
g Embedded Systems
Programming

31.01.2012

31.01.2012

RTLinux History

© Developed at the New Mexico Institute of
Technology by Michael Barabanov under the
direction of Professor Victor Yodaiken

© Development, ownership and rights were
moved FSMLabs (Finite State Machine Labs)

© Version 2 introduced in October 1999

© Version 3 February 2001

S Avail)able for X86, PowerPC and Alpha (MIPS
beta

© Lot of RTLinux'es available all using the same
idea

1HPI
g Embedded Systems
Programming 3

RTLinux Overview

© Adds hard real-time capabilities to Linux
© Interrupt Emulation / Kernel Source Patch

© Normal Linux Processes run as idle task of
RT Core

© Real-Time IPC between RT-tasks and
Linux Processes

© Periodic Threads
© High Resolution Timer
© Real-Time Scheduler

iHPI
g Embedded Systems
Programming 4

Motivation for a Real-Time Linux

© Standard operating system offers rich set of
services, tools

© Usage of standard development tools (gcc,
gdb)

© Linux is a free operating system, while most
special purpose OS are expensive

© RT-Kernel Code changes possible
© Usage of existing Know-How
© POSIX compatible

i |
Linux Architecture
8 BEE
1 N N A
L "o’h‘D;.;i;e‘.sﬁ;,;,;‘I [H — ,mem::wm comet |

31.01.2012

01818

RTLinux Architecture

Linux is executed in the background

4
/ User Processes

Wit I U

LR Syster Libraries_ _ _ _ _ ____!
» | S N T [
K k ! 1 Device Drivers ! Unix / Linux Kernel

N \\ - ” //

Direct e l T T T Software Interupts
Hardware fT————-T-—Z-—x ~

Access E_ RT-Linux Scheduler | poalTime Linux Core

J

110 l T H Hardware Interupts

Hardware

£

Embedded Systems
Programming

£

Basic Concept: Interrupt Emulation

© Layer of emulation software between the Linux
kernel and the interrupt controller hardware

© In the Linux source code all occurrences of cli, sti
and iret instructions are replaced with emulating
macros S_CLI S_STland S_IRET

© All hardware interrupts are caught by the emulator

© Linux has no direct control over the interrupt
controller it does not influence processing of
realtime interrupts that do not pass through the
emulator

Embedded Systems
Programming

31.01.2012

31.01.2012

Interrupt Emulation: Soft Interrupts

© Disabling a hardware interrupt resets a variable within
the emulator

© When an interrupt occurs the variable is checked and if
set the Linux interrupt handler routine invoked

© If the variable is disabled the
handler will not be invoked and S_CLI: movl $0, SFIF
a bit is set in the variable that
holds the information about all S-STI: sti

S pushfl
pending interrupts pushl $KERNEL_CS

© Re-enabling interrupts causes pushl $1f
all pending Linux interrupt S_IRET
handlers to be invoked 1:
Embedded Systems
Programming 9

Interrupt Emulation: S_IRET Macro

© Save data register to access S_IRET: push 7ds
global variables L o

© Bitmask representing all B e e
unmasked pending interrupts is cli _
scanned for a set bit nOL e, e

@ If no pending interrupt was found e e
the interrupt state variable is set S_CLI
and a hard return from interrupt is o SFIDTC,feax,d)
performed v s

© If an interrupt was found a jump igglxz/;:“
is made to the Linux handler iret

Programming 10

Interrupt Emulation: Interrupt Handler

if (real-time linux handler registered)
call real-time linux handler

if (softinterrupts enabled)
call linux interrupt handler

else mark interrupt as pending

iret

e interrupt vector table overwriten by real-time linux patch

)
g Embedded Systems

Programming

RTLinux Modules

rtl_core.o - main module
rtl_time.o-controls processor clocks
rtl_sched.o-implements a real-time scheduler

rtl_posixio.o-provides a POSIX-like interface to device
drivers

rtl_fifo.o-creates a real-time non-blocking FIFO
implementation between real-time modules and user-space
processes

© mbuff.o-provides a shared memory between real-time
tasks and user-space processes

© rtl_ipc.o-provides POSIX-style blocking mutexes and
semaphores

© rtl_debug.o-adds support for a source-level debugger
© rtl_com.o-interface with serial ports

o 0 0 O

Q

b
g Embedded Systems

Programming

31.01.2012

Threads

© Posix Thread API for Real-Time Threads
© All real-time tasks are threads in one rt-process per
processor
int pthread create(pthread t * thread,
pthread_attr_t * attr,

void * (*thread code) (void¥*),
void * arg);

pthread join()
pthread delete np()
pthread attr_getcpu np()

o 0 0 O

pthread_attr_setcpu np()

g Embedded Systems
Programming

Threads Scheduling

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched param *param);

int sched get priority max(int policy):; // 1000000
int sched get priority min(int policy):; // 0 = min prio
struct itimerspec {

struct timespec it_interval; /* timer period */

struct timespec it_value; /* timer expiration */

int pthread make periodic_np (pthread t thread, const
struct itimerspec *its);

int pthread wait_np (void);

g Embedded Systems
Programming

31.01.2012

#include <rtl.h>
#include <time.h>
#include <pthread.h>
pthread t thread;
void * thread code (void)
{
pthread make periodic_np (pthread self() ,gethrtime(),10000000) ;

while (1) {
pthread wait np ()
rtl_printf("Hello World\n"):;
}
return 0;
}
int init_module(void) {
return pthread create(&thread, NULL, thread code, NULL);
}
void cleanup module (void) {
pthread delete_np (thread);
}

.
g Embedded Systems
Programming 15

Scheduler Implementations

© Original scheduler: priority-based FIFO, one-
shot

© 1000000 priorities
© Not a good performance with tasks > 20
© EDF and RMS scheduler available

© One-shot mode

© Reprogramming of timer chip at each scheduling
decision

© Periodic Modes - timer chip programmed once
© Better performance, not all periods available

)
g Embedded Systems

Programming 16

31.01.2012

31.01.2012

RTLinux Inter Process Communication

© Real-Time FIFOs
© Implemented using soft interrupts
© Non-blocking real-time interface

© Communication between real-time and non-real-
time tasks

© Character device for normal Linux processes
© Shared Memory
© Support of mmap() in posixio.o

)
g Embedded Systems

Programming 17

Real-Time FIFOS API

int rtf_create(unsigned int fifo, int
size);

// fifo is a value unique within the
system, and must be less than RTF_NO

int rtf_ create_handler (unsigned int fifo,
int (* handler) ()):

int rtf_get(unsigned int fifo, char * buf,
int count);

int rtf_put(unsigned int fifo, char * buf,
int count);

int rtf_destroy(unsigned int fifo);

b
g Embedded Systems

Programming 18

Synchronisation: Mutex

© Initialisation

int pthread mutex init(pthread mutex t
*mutex, const pthread mutexattr_t *attr);

© Locking a Mutex
int pthread mutex lock (pthread mutex_t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);
© Unlocking a Mutex

int pthread mutex unlock (pthread mutex_t *mutex);

© Mutex options:
© Lock counts, error checks, priority ceiling

)
g Embedded Systems

Programming

Synchronisation: Semaphores

© Initialisation of an unnamed Semaphore

#include <semaphore.h>
int sem_init(sem_t *sem, int pshared,

unsigned int value);
© Signal a semaphore (unblock)
int sem_post(sem_t *sem);
© Synchronous Wait
int sem wait(sem_t *sem);

© Non-Blocking Wait

int sem_trywait(sem t *sem);

e

g Embedded Systems
Programming

20

31.01.2012

10

Physical Memory and I/0O Port Access

© Output a byte to a port:

#include <asm/io.h>

void rtl_outb(char value, short port)
© Output a word to a port:

#include <asm/io.h>

void rtl outw(unsigned int value, unsigned short
port)

© Read a byte from a port:

#include <asm/io.h>

char rtl_inb(unsigned short port)
© Read a word from a port:

#include <asm/io.h>

short rtl_inw(unsigned short port)

g Embedded Systems
Programming

21

Interrupt Handling: Soft Interrupts

© Soft interrupts are normal Linux kernel interrupts
© some Linux kernel functions can be called from them safely
© do not provide hard real-time performance

// allocates a virtual irq number and installs the
handler function for it

int rtl_get_soft_irq(void
(*handler) (int, void *, struct pt regs *),
const char * devname);

//triggers virtual interrupts

void rtl_global pend irq(int ix);

void rtl free_soft_irqg(unsigned int irq);

g Embedded Systems
Programming

22

31.01.2012

11

Interrupt Handling: Hard Interrupts

© Very low latency
© Usage of very limited function set
#include <rtl core.h>

int rtl_request irq(unsigned int irq,

unsigned int (*handler) (unsigned int,
struct pt_regs *));

© handler will be executed with hardware interrupts

disabled

© We have to reenable the interrupt line with the method

rtl _hard enable irqg()

int rtl_free_irq(unsigned int irq);

)
g Embedded Systems

Programming

23

Timing API

#include <rtl_time.h>

int clock_gettime (clockid t clock_id, struct timespec

*ts):

hrtime_t clock _gethrtime (clockid t clock);

Currently supported clocks are:

°

0
0

CLOCK_MONOTONIC: This POSIX clock runs at a steady rate, and is
never adjusted or reset.

CLOCK_REALTIME: standard POSIX realtime clock.

CLOCK_RTL_SCHED: The clock that the scheduler uses for task
scheduling.

CLOCK_8254: Used on non-SMP x86 machines for scheduling.

°

CLOCK_APIC: Used on SMP x86 machines. This corresponds to the local
APIC clock of the processor that executes clock_gettime. You cannot read
or set the APIC clock of other processors.

b
g Embedded Systems

Programming

24

31.01.2012

12

31.01.2012

Implementing RTLinux Applications

© Only hard real time tasks should be
implemented as RT-modules

© Do as much as possible in non-real time Linux
processes
© GUI, File System 1/O, Networking, DB-Access...
© Be careful while implementing real-time tasks
© Whole system can hang
© Use debugger

© There is no memory protection in kernel space

el
g Embedded Systems
25

Programming

Higher Striker
Real-Time Linux and Periodic Threads

© rtLinux can schedule Threads up to 40 kHz periodically / low jitter
(100Mhz CPU)

© Buffers are read/written each period

© Experiment data must be sampled every 13us because of sampling
theorem

© Table shows write ahead buffer that must be used

Iterations / period Busy 13 us 26 ps 260 us
waiting
100000 ~ 2s 1 1 4 48
1000000 ~ 26s 1 40 50 59
other processes / almost not very slow | slow Almost
interactive reaction time | active normal
= J.Gressmann, B. Kaufmann 2004
&“ Embedded Systems
Programming 26

13

Real-Time Linux

for (r = 0; r < runs; ++r) {
initialize (writeAheadBuffer, writeAhead);
start();
for (i = 0; i < iterations; ++i) {
LukasResult result;
writeMs (byte) ; readLS():
status = readStatus():
if (TEST_EMPTY_ MS(status))
update (result) ;
while (TEST_EMPTY_ LS (status)) {
pthread wait_np();
status = readStatus():
}

}
stop();

rtf_put(fifo, &result, sizeof (LukasResult)):;

}

)
g Embedded Systems

Programming

27

Installing RTLinux

© Download new Kernel Source

© Patch Kernel witch RTLinux Patch
© Configure Kernel

© Build new patched Kernel

© Install Kernel

© Reboot

© Start RTLinux modules

© Insert your own RT module

© Changed API for some modules

)
g Embedded Systems

Programming

28

31.01.2012

14

Real-Time Linux Implementations

epgepepgepepoepgepepenn

RT-Linux
ftp:/fitp.fsmlabs.com/publ/rtlinux
RTAI
ftp://Iwww.aero.polimi.it/RTAI/
KURT

http://iwww.ittc.ukans.edu/kurt/
Linux/RK

http://www.cs.cmu.edu/~rajkumar/linux-rk.html
RED-Linux
http:/llinux.ece.uci.edu/RED-Linux/SDK/

ART Linux

http://www etl.go.jp/etl/robotics/Projects/ART-Linux/
SMART-Linux

http://www.ime.usp.br/~dilma

Linux-SRT
http://www.uk.research.att.com/~dmi/linux-srt/
QLinux
http://www.cs.umass.edu/~lass/software/qglinux/

)
g Embedded Systems

Programming

29

Real-Time Application Interface (RTAI)

© Developed at the Dipartimento di Ingeneria
Aerospaziale, Politecnico di Milano by
Professor Paolo Mantegazza

© Common approach to rtLinux, supports original
rtLinux API, extended features

0

© Supports x86, PowerPC, Arm, MIPS, Cris

Floating point support

© Open Source

)
g Embedded Systems

Programming

30

31.01.2012

15

31.01.2012

Typical Performance

© RTAI on a Pentium Il, 233MHz

© simultaneously servicing Linux, which was working
under a heavy load

© Maximum periodic task iteration rate: 125KHz
© Typical sampling task rate: 10KHz (Pentium 100)

© Jitter at maximum task iteration rate: 0-13us UP,
0-30ps SMP

© One-shot interrupt integration rate: 30KHz (Pentium-
class CPU), 10KHz (486-class CPU)

© Context switching time: approximately 4pus

)
g Embedded Systems

Programming 31

FSMLabs RTLinuxPro 2.0 Features

© Improved scheduler performance

© Lnet: hard real-time networking API for
communication over Ethernet or Firewire

© Improved documentation
© Test/validation tools for RT-modules

© Removed kernel module semantic of rt-
modules

© Standard C-programs can be real-time
© rtl module loader

)
g Embedded Systems

Programming 32

16

RTLinuxPro FIFOs

© Extended FIFO implementation

© Support of security attributes

mkfifo ("/mydev2", 0777)

ftruncate (fd2, 4096);
Embedded Systems

Programming

int mkfifo (const char *pathname, int mode);

© Integration into the Linux file system

£d2 = open("/mydev2",0_ NONBLOCK) ;

33

RTLinuxPro Example:
A Real-Time Thread

pthread_t thread;

void *thread_code(void *t)
struct timespec next;
int count = 0;

clock_gettime(CLOCK_REALTIME, &next);

while (1) {
timespec_add_ns(&next, 1000¥1000);

&next, NULL);
count+4+;
i’ (!(count % 1000))
printf("woke %d times\n",count);

}

return NULL;

b
g Embedded Systems

Programming

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME,

34

31.01.2012

17

RTLinuxPro Example: Main

int main(void)

{

pthread_create(&thread, NULL, thread_code, (void *)0);
rtl_main_wait();
pthread_cancel(thread);
pthread_join(thread, NULL);
return 0;
}
./hello.rtl
)
g Embedded Systems

Programming 35

Low Latency Kernel Patches

© Monoalithic kernel and interrupt handling
causes long scheduling delays,

© Low Latency Patch

© Insertion of rescheduling points into kernel
(cooperative scheduling)

© latency = max. time between 2 rescheduling
points
© RED Linux
© Preemptable Linux

© Allow more than one execution flow in kernel

© Kernel structures have to be protected by
synchronization mechanisms (Mutex, Spinlock)

b
g Embedded Systems

Programming 36

31.01.2012

18

CPU-Shielding - Real-Time for SMP

© Developed by Concurrent Computer Corporation

© Implemented in RedHawk Linux, Suse
Enterprise Real-time Linux

© Applicable for symmetric multiprocessor systems

© High-priority tasks and interrupts are bound to a
more shielded CPU

© Shielded CPU's are protected/shielded from
unpredictable processing activities

© Configuration via processor affinity (processes
and interrupts)

HPI
g Embedded Systems
Programming

37

Literature

© “A Linux-based Real-Time Operating System”,
Michael Barabanov (Thesis)

© “The RTLinux Manifesto”, Victor Yodaiken

© Finite State Machine Labs : www.fsmlabs.com
© Tutorials, Manuals, RTLinux Sources

© http://www.mrao.cam.ac.uk/~dfb/doc/rtlinux/
GettingStarted/node42.html

© RTAI : www.rtai.org

HPI
g Embedded Systems
Programming

38

31.01.2012

19

