6. Real-Time Operating Systems

6.2 Real-Time Extensions for Linux

Roadmap of Section 6.1

© History, Overview
© Real-Time Linux

© Concept, Architecture

© API, Modules

© Physical Memory Access, /O, Interrupt Handling,
Periodic Threads, IPC

© Samples
© RTAI vs. RTLinux vs. RTLinux Pro
© Literature
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RTLinux History

© Developed at the New Mexico Institute of
Technology by Michael Barabanov under the
direction of Professor Victor Yodaiken

© Development, ownership and rights were
moved FSMLabs (Finite State Machine Labs)

© Version 2 introduced in October 1999

© Version 3 February 2001

S Avail)able for X86, PowerPC and Alpha (MIPS
beta

© Lot of RTLinux'es available all using the same
idea
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RTLinux Overview

© Adds hard real-time capabilities to Linux
© Interrupt Emulation / Kernel Source Patch

© Normal Linux Processes run as idle task of
RT Core

© Real-Time IPC between RT-tasks and
Linux Processes

© Periodic Threads
© High Resolution Timer
© Real-Time Scheduler
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Motivation for a Real-Time Linux

© Standard operating system offers rich set of
services, tools

© Usage of standard development tools (gcc,
gdb)

© Linux is a free operating system, while most
special purpose OS are expensive

© RT-Kernel Code changes possible
© Usage of existing Know-How
© POSIX compatible
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RTLinux Architecture

Linux is executed in the background
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Basic Concept: Interrupt Emulation

© Layer of emulation software between the Linux
kernel and the interrupt controller hardware

© In the Linux source code all occurrences of cli, sti
and iret instructions are replaced with emulating
macros S_CLI S_STland S_IRET

© All hardware interrupts are caught by the emulator

© Linux has no direct control over the interrupt
controller it does not influence processing of
realtime interrupts that do not pass through the
emulator
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Interrupt Emulation: Soft Interrupts

© Disabling a hardware interrupt resets a variable within
the emulator

© When an interrupt occurs the variable is checked and if
set the Linux interrupt handler routine invoked

© If the variable is disabled the
handler will not be invoked and S_CLI: movl $0, SFIF
a bit is set in the variable that
holds the information about all S-STI: sti

S pushfl
pending interrupts pushl $KERNEL_CS

© Re-enabling interrupts causes pushl $1f
all pending Linux interrupt S_IRET
handlers to be invoked 1:
Embedded Systems
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Interrupt Emulation: S_IRET Macro

© Save data register to access S_IRET: push 7ds
global variables L o

© Bitmask representing all B e e
unmasked pending interrupts is cli _
scanned for a set bit nOL e, e

@ If no pending interrupt was found e e
the interrupt state variable is set S_CLI
and a hard return from interrupt is o SFIDTC,feax,d)
performed v s

© If an interrupt was found a jump igglxz/;:“
is made to the Linux handler iret

Programming 10




Interrupt Emulation: Interrupt Handler

if (real-time linux handler registered)
call real-time linux handler

if (softinterrupts enabled)
call linux interrupt handler

else mark interrupt as pending

iret

e interrupt vector table overwriten by real-time linux patch

)
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RTLinux Modules

rtl_core.o - main module
rtl_time.o-controls processor clocks
rtl_sched.o-implements a real-time scheduler

rtl_posixio.o-provides a POSIX-like interface to device
drivers

rtl_fifo.o-creates a real-time non-blocking FIFO
implementation between real-time modules and user-space
processes

© mbuff.o-provides a shared memory between real-time
tasks and user-space processes

© rtl_ipc.o-provides POSIX-style blocking mutexes and
semaphores

© rtl_debug.o-adds support for a source-level debugger
© rtl_com.o-interface with serial ports

o 0 0 O
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Threads

© Posix Thread API for Real-Time Threads
© All real-time tasks are threads in one rt-process per
processor
int pthread create(pthread t * thread,
pthread_attr_t * attr,

void * (*thread code) (void¥*),
void * arg);

pthread join()
pthread delete np()
pthread attr_getcpu np()

o 0 0 O

pthread_attr_setcpu np()
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Threads Scheduling

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched param *param);

int sched get priority max(int policy):; // 1000000
int sched get priority min(int policy):; // 0 = min prio
struct itimerspec {

struct timespec it_interval; /* timer period */

struct timespec it_value; /* timer expiration */

int pthread make periodic_np (pthread t thread, const
struct itimerspec *its);

int pthread wait_np (void);
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#include <rtl.h>
#include <time.h>
#include <pthread.h>
pthread t thread;
void * thread code (void)
{
pthread make periodic_np (pthread self() ,gethrtime(),10000000) ;

while (1) {
pthread wait np ()
rtl_printf("Hello World\n"):;
}
return 0;
}
int init_module(void) {
return pthread create(&thread, NULL, thread code, NULL);
}
void cleanup module (void) {
pthread delete_np (thread);
}

.
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Scheduler Implementations

© Original scheduler: priority-based FIFO, one-
shot

© 1000000 priorities
© Not a good performance with tasks > 20
© EDF and RMS scheduler available

© One-shot mode

© Reprogramming of timer chip at each scheduling
decision

© Periodic Modes - timer chip programmed once
© Better performance, not all periods available

)
g Embedded Systems
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RTLinux Inter Process Communication

© Real-Time FIFOs
© Implemented using soft interrupts
© Non-blocking real-time interface

© Communication between real-time and non-real-
time tasks

© Character device for normal Linux processes
© Shared Memory
© Support of mmap() in posixio.o

)
g Embedded Systems

Programming 17

Real-Time FIFOS API

int rtf_create(unsigned int fifo, int
size);

// fifo is a value unique within the
system, and must be less than RTF_NO

int rtf_ create_handler (unsigned int fifo,
int (* handler) ()):

int rtf_get(unsigned int fifo, char * buf,
int count);

int rtf_put(unsigned int fifo, char * buf,
int count);

int rtf_destroy(unsigned int fifo);

b
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Synchronisation: Mutex

© Initialisation

int pthread mutex init(pthread mutex t
*mutex, const pthread mutexattr_t *attr);

© Locking a Mutex
int pthread mutex lock (pthread mutex_t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);
© Unlocking a Mutex

int pthread mutex unlock (pthread mutex_t *mutex);

© Mutex options:
© Lock counts, error checks, priority ceiling

)
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Synchronisation: Semaphores

© Initialisation of an unnamed Semaphore

#include <semaphore.h>
int sem_init(sem_t *sem, int pshared,

unsigned int value);
© Signal a semaphore (unblock)
int sem_post(sem_t *sem);
© Synchronous Wait
int sem wait(sem_t *sem);

© Non-Blocking Wait

int sem_trywait(sem t *sem);

e
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Physical Memory and I/0O Port Access

© Output a byte to a port:

#include <asm/io.h>

void rtl_outb(char value, short port)
© Output a word to a port:

#include <asm/io.h>

void rtl outw(unsigned int value, unsigned short
port)

© Read a byte from a port:

#include <asm/io.h>

char rtl_inb(unsigned short port)
© Read a word from a port:

#include <asm/io.h>

short rtl_inw(unsigned short port)

g Embedded Systems
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Interrupt Handling: Soft Interrupts

© Soft interrupts are normal Linux kernel interrupts
© some Linux kernel functions can be called from them safely
© do not provide hard real-time performance

// allocates a virtual irq number and installs the
handler function for it

int rtl_get_soft_irq(void
(*handler) (int, void *, struct pt regs *),
const char * devname);

//triggers virtual interrupts

void rtl_global pend irq(int ix);

void rtl free_soft_irqg(unsigned int irq);

g Embedded Systems
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Interrupt Handling: Hard Interrupts

© Very low latency
© Usage of very limited function set
#include <rtl core.h>

int rtl_request irq(unsigned int irq,

unsigned int (*handler) (unsigned int,
struct pt_regs *));

© handler will be executed with hardware interrupts

disabled

© We have to reenable the interrupt line with the method

rtl _hard enable irqg()

int rtl_free_irq(unsigned int irq);

)
g Embedded Systems
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Timing API

#include <rtl_time.h>

int clock_gettime (clockid t clock_id, struct timespec

*ts):

hrtime_t clock _gethrtime (clockid t clock);

Currently supported clocks are:

°

0
0

CLOCK_MONOTONIC: This POSIX clock runs at a steady rate, and is
never adjusted or reset.

CLOCK_REALTIME: standard POSIX realtime clock.

CLOCK_RTL_SCHED: The clock that the scheduler uses for task
scheduling.

CLOCK_8254: Used on non-SMP x86 machines for scheduling.

°

CLOCK_APIC: Used on SMP x86 machines. This corresponds to the local
APIC clock of the processor that executes clock_gettime. You cannot read
or set the APIC clock of other processors.

b
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Implementing RTLinux Applications

© Only hard real time tasks should be
implemented as RT-modules

© Do as much as possible in non-real time Linux
processes
© GUI, File System 1/O, Networking, DB-Access...
© Be careful while implementing real-time tasks
© Whole system can hang
© Use debugger

© There is no memory protection in kernel space

el
g Embedded Systems
25

Programming

Higher Striker
Real-Time Linux and Periodic Threads

© rtLinux can schedule Threads up to 40 kHz periodically / low jitter
(100Mhz CPU)

© Buffers are read/written each period

© Experiment data must be sampled every 13us because of sampling
theorem

© Table shows write ahead buffer that must be used

Iterations / period Busy 13 us 26 ps 260 us
waiting
100000 ~ 2s 1 1 4 48
1000000 ~ 26s 1 40 50 59
other processes / almost not very slow | slow Almost
interactive reaction time | active normal
= J.Gressmann, B. Kaufmann 2004
&“ Embedded Systems
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Real-Time Linux

for (r = 0; r < runs; ++r) {
initialize (writeAheadBuffer, writeAhead);
start();
for (i = 0; i < iterations; ++i) {
LukasResult result;
writeMs (byte) ; readLS():
status = readStatus():
if (TEST_EMPTY_ MS(status))
update (result) ;
while (TEST_EMPTY_ LS (status)) {
pthread wait_np();
status = readStatus():
}

}
stop();

rtf_put(fifo, &result, sizeof (LukasResult)):;

}

)
g Embedded Systems

Programming

27

Installing RTLinux

© Download new Kernel Source

© Patch Kernel witch RTLinux Patch
© Configure Kernel

© Build new patched Kernel

© Install Kernel

© Reboot

© Start RTLinux modules

© Insert your own RT module

© Changed API for some modules

)
g Embedded Systems
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Real-Time Linux Implementations

epgepepgepepoepgepepenn

RT-Linux
ftp:/fitp.fsmlabs.com/publ/rtlinux
RTAI
ftp://Iwww.aero.polimi.it/RTAI/
KURT

http://iwww.ittc.ukans.edu/kurt/
Linux/RK

http://www.cs.cmu.edu/~rajkumar/linux-rk.html
RED-Linux
http:/llinux.ece.uci.edu/RED-Linux/SDK/

ART Linux

http://www etl.go.jp/etl/robotics/Projects/ART-Linux/
SMART-Linux

http://www.ime.usp.br/~dilma

Linux-SRT
http://www.uk.research.att.com/~dmi/linux-srt/
QLinux
http://www.cs.umass.edu/~lass/software/qglinux/

)
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Real-Time Application Interface (RTAI)

© Developed at the Dipartimento di Ingeneria
Aerospaziale, Politecnico di Milano by
Professor Paolo Mantegazza

© Common approach to rtLinux, supports original
rtLinux API, extended features

0

© Supports x86, PowerPC, Arm, MIPS, Cris

Floating point support

© Open Source

)
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Typical Performance

© RTAI on a Pentium Il, 233MHz

© simultaneously servicing Linux, which was working
under a heavy load

© Maximum periodic task iteration rate: 125KHz
© Typical sampling task rate: 10KHz (Pentium 100)

© Jitter at maximum task iteration rate: 0-13us UP,
0-30ps SMP

© One-shot interrupt integration rate: 30KHz (Pentium-
class CPU), 10KHz (486-class CPU)

© Context switching time: approximately 4pus

)
g Embedded Systems
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FSMLabs RTLinuxPro 2.0 Features

© Improved scheduler performance

© Lnet: hard real-time networking API for
communication over Ethernet or Firewire

© Improved documentation
© Test/validation tools for RT-modules

© Removed kernel module semantic of rt-
modules

© Standard C-programs can be real-time
© rtl module loader

)
g Embedded Systems
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RTLinuxPro FIFOs

© Extended FIFO implementation

© Support of security attributes

mkfifo ("/mydev2", 0777)

ftruncate (fd2, 4096);
Embedded Systems

Programming

int mkfifo (const char *pathname, int mode);

© Integration into the Linux file system

£d2 = open("/mydev2",0_ NONBLOCK) ;

33

RTLinuxPro Example:
A Real-Time Thread

pthread_t thread;

void *thread_code(void *t)
struct timespec next;
int count = 0;

clock_gettime( CLOCK_REALTIME, &next );

while (1) {
timespec_add_ns( &next, 1000¥1000 );

&next, NULL);
count+4+;
i’ (!(count % 1000))
printf("woke %d times\n",count);

}

return NULL;

b
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clock_nanosleep( CLOCK_REALTIME, TIMER_ABSTIME,

34
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RTLinuxPro Example: Main

int main(void)

{

pthread_create( &thread, NULL, thread_code, (void *)0 );
rtl_main_wait();
pthread_cancel( thread );
pthread_join( thread, NULL );
return 0;
}
./hello.rtl
)
g Embedded Systems
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Low Latency Kernel Patches

© Monoalithic kernel and interrupt handling
causes long scheduling delays,

© Low Latency Patch

© Insertion of rescheduling points into kernel
(cooperative scheduling)

© latency = max. time between 2 rescheduling
points
© RED Linux
© Preemptable Linux

© Allow more than one execution flow in kernel

© Kernel structures have to be protected by
synchronization mechanisms (Mutex, Spinlock)

b
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CPU-Shielding - Real-Time for SMP

© Developed by Concurrent Computer Corporation

© Implemented in RedHawk Linux, Suse
Enterprise Real-time Linux

© Applicable for symmetric multiprocessor systems

© High-priority tasks and interrupts are bound to a
more shielded CPU

© Shielded CPU's are protected/shielded from
unpredictable processing activities

© Configuration via processor affinity (processes
and interrupts)

HPI
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Literature

© “A Linux-based Real-Time Operating System”,
Michael Barabanov (Thesis)

© “The RTLinux Manifesto”, Victor Yodaiken

© Finite State Machine Labs : www.fsmlabs.com
© Tutorials, Manuals, RTLinux Sources

© http://www.mrao.cam.ac.uk/~dfb/doc/rtlinux/
GettingStarted/node42.html

© RTAI : www.rtai.org
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