6. Operating Systems

6.3 Windows Ce.NET Device Driver Architecture

Overview

Built-In Vs. Installable Drivers
Device Manager
ActivateDeviceEx

Registry Enumerator
Services

Bus Drivers

DMA

Resource Manager

Interrupt Model

Device Driver Power Management
CETK

Operating Systems

Built-In Vs. Installable Drivers

= Built-in Drivers

o Also referred to as native device drivers
o Loaded in the GWES process space at system boot

o Generally for devices that are hardwired or must be loaded at
system boot up

o Uses a custom interface
= Installable Drivers
o Also referred to as streams device drivers

o Dynamically loaded by the Device Manager either at boot or on
insertion notification

o Exist as standalone DLLs
o Uses the streams interface driver architecture
m Hybrid Drivers

o Expose both a custom-purpose interface and a stream interface

Lﬁl Embedded

Operating Systems

Monolithic Vs. Layered Device Drivers

, GWES .
[[
DDl functions DDI functions
|
+
Layered Device Driver Monolithic Device
Driver

DDSI functions

Hardware

Lﬁl Embedded

perating Systems

Native Device Drivers

Used for built-in devices

Custom interfaces but a standard set of functionality
= Statically linked to an executable, while other are DLLs

Sample native device exist for:
o Display, Battery, Keyboard, Touch, LED

Lﬁl Embedded

Operating Systems

Streams Driver

= What is a Stream Driver?
e Common interface and functions to all Streams drivers
o |deal for I/O devices that are a data source or data sink

e Interface functions similar to file system APIs—such as
ReadFile, IOControl

e Streams drivers are used to access, from the application
level, the physical peripheral device as if it was a file.

Lﬁl Embedded

perating Systems

Streams Drivers Architecture

Application

Y
File |2P1s
r
File System Filesystem
10CTLs
Stream
Interface
Driver, Iogded
WindowsCE e Device at boot time
Kemel Manager
OAL =
b Interrupt events Y
Software
Hardware
Buitt4n
Hardware Platform Device

Lﬁl Embedded

Operating Systems

Implementing Streams Driver

How do you implement a Stream Driver?

e Select a device file name prefix

e Implement the required entry points
e Create the *.DEF file

e Create the registry values for your driver

Lﬁl Embedded

Operating Systems

Power Button .def File

LIBRARY PWRBUTTON
EXPORTS
PWR_In.! t . [HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PWRBUTTON]
PWR_Deinit "Prefix"—"PWR"
PWR_Open "D11"="PwrButton.D11"
PWR_Close "Order"=dword:2
PWR_Read "Toct]"=dword:4
PWR_Write
PWR_Seek

PWR_IOControl
PWR_PowerDown
PWR_PowerUp
PWR_PowerHandler
PWR_D11Entry

Lﬁl Embedded

Operating Systems

Streams Entry Points: Open and Close

e XXX_Open
-Opens a device for reading and/or writing.

-An application indirectly invokes this function when it calls
CreateFile to open special device file names.

-When this function is called, your device should allocate
the resources that it needs for each open context and
prepare for operation

e XXX _Close

-In response to CloseHandle, the operating system
invokes this function.

Operating Systems

Streams Entry Points: Init and Deinit

m XXX _Init
o Called when Device Manager loads the driver
e |Initializes resources that are to be used
e Memory mapping
m XXX Deinit
o Called when Device Manager unloads the driver

o Frees allocated resources, stops the IST

Lﬁl Embedded

Operating Systems

Streams Entry Points: Read, Write and Seek

m XXX Read

o Invoked when application calls ReadFile function
m XXX _Write

o Invoked when application calls WriteFile function
m XXX _Seek

o Allows moving the current I/O pointer

Lﬁl Embedded

Operating Systems

Streams Entry Points: |OControl

m XXX _|0Control

o Allows performing custom operations that do not
necessarily apply to files

e |/O control code identifies the operation

e /O control code is device-specific

Lﬁl Embedded

Operating Systems

Streams Entry Points: PowerUp and
PowerDown

m XXX _PowerDown
e Restores power to a device
m XXX_PowerUp
e Suspends power to the device

o Useful only with devices that can be shut off under
software control

d
Operating Systems

Device Manager

= Device Manager implemented as Device.exe
= User-level process that runs continously
= Not part of the Kernel but launch via Kernel

e HKEY_LOCAL_MACHINE\nit]
"Launch20"="Device.exe"

= Separate application that interacts with the kernel, the
registry and stream interface driver DLLs’

= Provides ActivateDeviceEx and DeactivateDeviceEx
APIs’

Lﬁl Embedded

Operating Systems

Device Manager (cont.)

m Device Driver Loading Process

- DEVICE.EXE
Kernel —_ | (VO Resource Manager)

l loads

REGENUM.DLL

loads

h

Registry REGENUM.DLL

enumerator (for ISA busses)
15 re-entrant

PCIBUS.DLL

Lﬁl Embedded

Operating Systems

ActivateDeviceEx

= What is ActivateDeviceEx?
e A function used by Device.exe to load a device driver

o A function used by the Registry Enumerator on each
subkey it finds (to load driver)

o ActivateDeviceEx uses the DI, Prefix, Index and Flags
fields of registry.

o Use ActivateDeviceEXx to load drivers. You can
useActivateDevice, but it simply calls ActivateDeviceEx.

)

Lﬁl Embedded

Operating Systems

ActivateDeviceEx (“\\HKEY_LOCAL_MACHINE\\Drivers\\BuiltIn\\PM”,

Registry Enumerator

= What is a Registry Enumerator?
e Loaded by Device Manager (Device.exe)
e Finds new devices by reading registry entries
e Re-entrant
e Implemented as REGENUM.DLL

m Code located at
WINCE400\public\common\oak\DRIVERS\REGENUM

],

edded
Operating Systems

Registry Enumerator (cont.)

m How does the Registry Enumerator work?

o Device.exe loads Registry Enumerator checking
HKLM\Drivers\RootKey

e Init function is called with the HKLM\Drivers\RootKey
key

e Reqgistry Enumerator examines key below
HKLM\Drivers\RootKey based on “Order” value

e Reqgistry Enumerator traverses subkeys of
HKLM\Drivers\RootKey and initializes a driver for each
entry.

Lﬁl Embedded

Operating Systems

Registry Enumerator (cont.)

m Registry Enumerator Example (Simplified)

[HKLM\Drivers]
"RootKey"="Dri ") .
"D??"—EzegEnE;VS;?“ [HKLM\Drivers\Virtual\NDIS]
- : "DT11"="NDIS.d11"
[HKLM\Drivers\Debug] ”grdir fﬂWﬁggil
"D11"="RegEnum.d11" rere=
'-(35332-533?353 [HKLM\Drivers\PCI]
-) "DI1"="PCIbus.d11"
[HKLM\Drivers\Debug\EDBG] ,Order’=dword:4
"Flags"=dword: 4 Flags"=dword:1

[HKLM\Drivers\Virtual]
"D11"="RegEnum.d11"
"Order"=dword:1
"Flags"=dword:1 —

],

edded
Operating Systems

20

10

Services

m Purpose of a Service

= Services.exe Vs. Device.exe

= Activating / Controlling a Service

= Registering a Service Programmatically
= Stopping a Running Service

= Services.exe at System Startup

m Services API's

Lﬁl Embedded

Operating Systems

21

Purpose of a Service

= Supplements existing device.exe

m Hosts services that do not require direct access to the
system

= Isolates those services from the system services

= Enhances device stability in a service failure and
decreases the likelihood of a system crash

= Provides a super service

],

edded
Operating Systems

22

11

Service.exe Vs. Device.exe

= Device.exe loads device drivers that manage devices

m Sevice.exe loads device drivers that manages software
services

m Services.exe is like Device.exe that hosts multiple
services.

= To use both Device.exe and Services.exe, 2 of the 32
available Windows CE process slots will be used

Lﬁl Embedded

Operating Systems

23

Activating / Controlling a Service

= Activating a service:
e Use built-in registry key
o Use ActivateService function

= Controlling a running service:
e Open a handle using CreateFile

e Send an |/O control or ReadFile, WriteFile and
SetFilePointer functions

--OR
o Use GetServiceHandle function

Operating Systems

24

12

Services Example

ActivateService(L"TELNETD", 0);

HANDLE hService =

CreateFile(L"TELO:",0,0,NULL,OPEN_EXISTING,0,NULL);
if(hService !'= INVALID_HANDLE_VALUE) {
DWORD dwState; //state values are defined in service.h
DeviceIoControl(hService, IOCTL_SERVICE_STATUS, NULL, O,
&dwState, sizeof(DWORD), NULL, NULL);

CloseHandle(hService);
}

Lﬁl Embedded

Operating Systems

25

Registering a Service Programmatically

= Use RegisterService function

= RegisterService is analogous to the RegisterDevice

function used to start device drivers running under
Device.exe

HANDLE hService = RegisterService("TEL",0,“
telnetd.d11",0);

Operating Systems

26

13

Stopping a Running Service

m Use DeregisterService function
n DeregisterService identifies and labels the service as invalid

n DeregisterService disallows any call attempts to CreateFile on a
given service handle

HANDLE hService = GetServiceHandle(L"TELO:"™, NULL,
NULL) ;
if (0 !'= hService)
DeregisterService(hService);

Lﬁl Embedded

Operating Systems

27

Service.exe at System Startup

= Enumerates through registry subkeys of HKLM\Services

[HKLM\Services\TELNETD]
"DI1"="TELNETD.DLL"
"Order"=dword:8
"Keep"=dword:1
"Prefix"="TEL"
"Index"=dword:0
"Context"=dword:1
"DisplayName"="Telnet Server"

"Description”="Services incoming telnet requests"

| |

Operating Systems

28

14

Services APIs’

= Services.exe implements the following functions
e XXX _Close
o XXX_Deinit
o XXX_Init
o XXX_I|OControl
e XXX_Read
o XXX_Seek
XXX_Write

Lﬁl Embedded

Operating Systems

29

Bus Drivers

= What is a Bus Driver?

o Load drivers for the devices onto their respective buses
= Examples are:

o PCI (PCIBus.dIl)

e PCMCIA (PCMCIA.DLL)

o |EEE 1394

e USB

Lﬁl Embedded

Operating Systems

30

15

PCI Bus Drivers

= PCI Bus Driver enumerates the PCl bus and loads
device drivers for any of the devices it finds

= PCl Bus Driver implemented as PCIBus.dll

= Sources available at
\WINCE400\public\common\oak\DRIVERS\PCIBUS

= PCIBus.dll is loaded by the registry enumerator

= PCIBus.dll is usually loaded last. So that all of the fixed
resources are allocated before the flexible resources of
the PCI devices are configured

Lﬁl Embedded

Operating Systems

31

PCI Bus: Enumerate and Load Device
Drivers

= How does PCI Bus enumerate and load device drivers?

PCIBus 0
I l Scans and

- enumerates
| PCI Device I | PCI Device l

PCI-PCI Bridge
PCIBus 1 Compares
PCI Device

PCIBus.dll

Loads driver
for PCI device

1
1_=x:*FRC00000°, *FFF00000*
_s=z:"100000°, *100000"

0

],

edded
Operating Systems

32

16

Resource Manager

= What is Resource Manager?

Manages all I/O resources by telling whether resource is
available to device driver

Uses registry setup to pre-allocate resources

Used by bus drivers to request IRQ and I/O space
resources when assigning resources to device driver

Initial state of Resource Manager is defined in registry

Define your own resources using ResourceCreatelList,
ResourceRelease and ResourceRequest APIs.

Lﬁl Embedded

Operating Systems

33

Resource Manager (cont.)

= Initial State of Resource Manager

[HKEY_LOCAL_MACHINE\Drivers\Resources\IRQ]
"Identifier"=dword:1
"Minimum"=dword:1
"Space"=dword:F
"Ranges"="1,3-7,9-0xF"
"Shared"="1,3-7,9-0xF"

[HKEY_LOCAL_MACHINE\Drivers\Resources\I0]
"Identifier"=dword:2
"Minimum"=dword:0
"Space"=dword:10000
"Ranges"="0-0xFFFF"

L

Lﬁl Embedded

Operating Systems

34

17

Interrupt Model

Kernel
Exceptio: Interrupt I
Handler | | Support Handler |

e

OAL routines

I/O Routines

| OEM Hardware

Lﬁl Embedded

Operating Systems

35

Interrupt Service Thread Priorities

= Nested Interrupts

o Are supported in Windows CE 3.0 and later versions in
conjunction with the Real-Time Priority System

o Interrupts of a higher priority may preempt ISRs of a lower
priority

o Kernel saves and restores the ISR’s state when high priority
interrupt occurs and completes respectively

o Level of interrupt nesting is limited solely by what the
Windows CE-based platform's hardware can support

= Interrupt Latencies
e Have no upper limit

o Mostly the latency for servicing interrupts in Windows CE is
less than the Windows-based desktop platforms

Lﬁl Embedded

perating Systems

36

18

Implementing Interrupts: Simple Example

m First step of implementing interrupts is to find out how
the interrupt is physically connected to device

= Example

Pin0
L Power button

Platform |GPIO

e Power button is connected to general purpose 1/0 pin 0

= Some interrupts are level triggered and some are edge
triggered

Lﬁl Embedded

Operating Systems 37

Single IRQ Model: OEMInterruptHandler

= Implement the interrupt service routine
= Example

OEMInterruptHandler(unsigned int ra) {

} else if(POWER_OFF_INT_STAT) {
// mask & clear the interupt
POWER_OFF_INT_MASK (0);
POWER_OFF_INT_CLR (1);
v_pDrvGlob->misc.offButton = 1;

. GPIO
iSysIntr= SYSINTR_POWER; — pin 0

return iSysIntr; . Retun

} sysintr

e Hardware interrupt happens
e OEMinterruptHandler gets called
e Ifinterruptis via GPIO pin 0, then mask the interrupt and return SYSINTR_POWER|

],

dded
Operating Systems 38

OEMInterruptEnable

= Performs any hardware operations necess_an‘ to allow a
device to generate the specified interrupt including

o Setting a hardware priority for the device, setting a hardware
interrupt enable port, and clearing any pending interrupt
conditions from the device

BOOL OEMInterruptEnable (DWORD idInt, .. .) {

BOOL bRet = TRUE;

switch (idInt) {

case SYSINTR_POWER:
POWER_OFF_INT_CLR (1);
POWER_OFF_INT_MASK (1);
break;

return bRet;

}

L

Lﬁl Embedded

Operating Systems

39

OEMInterruptDisable

= When a device driver is being unloaded and calls the
InterruptDisable kernel routine, the kernel in turn calls
OEMinterruptDisable

= System cannot be preempted when this function is called

= OEMiInterruptDisable function disables the specified
hardware interrupt identified in idInt

= Example

BOOL OEMInterruptDisable (DWORD idInt) {

switch (idInt) {

case SYSINTR_POWER:
POWER_OFF_INT_MASK (0);
break;

return bRet;

3

Operating Systems

40

20

OEMInterruptDone

m Kernel calls the OEMInterrupt function when a device driver calls
InterruptDone

= System cannot be preempted when this function is called

s OEMinterruptDone should re-enable the interrupt if the interrupt
was previously masked

= Example

BOOL OEMInterruptDone (DWORD idInt) {

switch (idInt) {
case SYSINTR_POWER:
// the power button is a toggle so
let both rising...
POWER_OFF_RISING_EDCGE;
POWER_OFF_INT_MASK (1);
break;

}

Lﬁl Embedded

Operating Systems

41

Interrupt Service Thread

= Is user-mode thread of device drivers for built-in
devices

= Does the actual processing of the interrupt

m Creates an event object associated with the logical
interrupt by calling CreateEvent function

= IST remains idle most of the time, awakened when the
kernel signals the event object

= IST usually runs at above-normal priority, boost priority
with CeSetThreadPriority function

Operating Systems

42

21

Interrupt Service Thread (cont.)

= Interruptlinitialize

o Call Interruptinitialize to link the Event with the Interrupt ID of
the ISR

= WaitForSingleObject
e Can be used to wait for an event to be signaled

o This call is usually inside a loop so that when interrupt is
processed, the IST gets back to this call waiting for the next
interrupt to be handled

= InterruptDone

o After the interrupt data is processed, the IST must call the
InterruptDone function to instruct the kernel to enable the
hardware interrupt related to this thread

Lﬁl Embedded

Operating Systems

43

Typical IST Start

HANDLE hThread; // IST Handle
DWORD sysIntr; // Logical ID

h

ISTData g_KeypadISTData;
// Create event to link to IST

// Translate IRQ to an logical ID (x86 CEPC)
g_KeypadISTData.sysIntr =Mapirqg2Sysintr(5);
// start the thread

&g_KeypadISTData, 0, NULL);

struct ISTData // Declare the Strucure to pass to the IST

HANDLE hEvent; // handle to the event to wait for interrupt
volatile BOOL abort; // flag to test to exit the IST

g_KeypadISTData.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

g_KeypadISTData.hThread = CreateThread(NULL,0,&KeypadIST,

],

dded
Operating Systems

44

22

Typical IST Start (cont.)

//Change the threads priority
CeSetThreadPriority(g_KeypadISTData.hThread,0);

//disconnect any previous event from logical ID
InterruptDisable(g_KeypadISTData.sysIntr);

// Connect Logical ID with Event

hEvent,NULL,0);

InterruptInitialize(g_KeypadISTData.sysIntr, g_KeypadISTData.

m Set the IST Thread Priority
= Disconnect any previous events from the associated ISR

= Connect to the associated ISR

Lﬁl Embedded

Operating Systems

45

Typical IST Start (cont.)

DWORD KeypadIST(void *dat)
{

ISTData* pData= (ISTData*)dat;

// loop until told to stop

while(!pData->abort)

{ // wait for the interrupt event...
WaitForSingleObject(pData->hEvent, INFINITE)
if(pData->abort)

break;
// Handle the interrupt...
// Let 0S know the interrupt processing is done
InterruptDone(pData->sysIntr);

}
Return 0;
}
= Code a loop that runs until manually aborted
= Once in the loop, immediately block until the triggering event is returned from
the kernel
= Do the actual processing of the interrupt.
= Signal InterruptDone in the Kernel with the Interrupt ID
Lﬁl Embedded
Operating Systems

46

23

Typical IST Stop

// set abort flag to true to let thread know
// that it should exit
g_KeypadISTData.abort =TRUE;

//disconnect event from Togical ID

//this internally sets g_KeypadISTData.sysIntr which in turn
//sets g_KeypadISTData.hEvent through the kernel
InterruptDisable(g_KeypadISTData.sysIntr);

//wait for thread to exit
waitForSingleObject(g_KeypadISTData.hEvent, INFINITE);

CloseHand1e(g_KeypadISTData.hEvent);
CloseHandle(g_KeypadISTData.hThread);

= Set a flag that will cancel the IST loop

m Call InterruptDisable to disconnect the triggering event from the
logical ID

n Close the Thread Add Reference for the code

Lﬁl Embedded

Operating Systems

47

Installable ISRs

= Installed by driver
= Handles interrupts for that device
= Need if interrupts are shared

= |Installed ISR can be generic routine to check if
device is the one requesting service

= Giisr.dll is the generic installable ISR

],

dded
Operating Systems

48

24

Implementing Installable ISRs

m Set up the registry for your installable ISR

= Required registry settings are IsrDIl and IsrHandler
o IsrDllis the interrupt service routine DLL name
o IsrHandler is the ISR function name

[HKLM\Drivers\BuiltIn\PCI\Template\WaveDev]
"Prefix"="WAV"
"DI1"="es1371.d11"
"Order"=dword:0
"Class"=dword:04
"SubClass"=dword:01
"ProgIF"=dword:00
"VendorID"=multi_sz:"1274","1274"
"DeviceID"=multi_sz:"1371","5880"
"IsrD11"="giisr.d11"
"IsrHandler"="ISRHandler"

Lﬁl Embedded

Operating Systems

49

Implementing Installable ISRs

[

GIISR_INFO Info;
m_hIsrHandler = LoadIntChainHandler(isri.szIsrD1T,

TransBusAddrToStatic(PCIBus, 0, PortAddress,
m_dwPcilLength, &inIoSpace,
&dwPhysAddr) ;
Info.SysIntr = m_IntrAudio;
Info.CheckPort = TRUE;

Info.PortAddr = (DWORD)dwPhysAddr + ES1371_dSTATUS_OFF;
Info.Mask = ES1371_INTSTAT_PENDING;

if (!'KernelLibIoControl(m_hIsrHandler, IOCTL_GIISR_INFO,
&Info, sizeof(Info), NULL, 0, NULL))
return FALSE;

isri.szIsrHandler, (BYTE) isri.dwIrq);

e

ed
Operating Systems

50

25

