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Built-In Vs. Installable Drivers

= Built-in Drivers

o Also referred to as native device drivers
o Loaded in the GWES process space at system boot

o Generally for devices that are hardwired or must be loaded at
system boot up

o Uses a custom interface
= Installable Drivers
o Also referred to as streams device drivers

o Dynamically loaded by the Device Manager either at boot or on
insertion notification

o Exist as standalone DLLs
o Uses the streams interface driver architecture
m Hybrid Drivers

o Expose both a custom-purpose interface and a stream interface
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Monolithic Vs. Layered Device Drivers
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Native Device Drivers

Used for built-in devices

Custom interfaces but a standard set of functionality
= Statically linked to an executable, while other are DLLs

Sample native device exist for:
o Display, Battery, Keyboard, Touch, LED
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Streams Driver

= What is a Stream Driver?
e Common interface and functions to all Streams drivers
o |deal for I/O devices that are a data source or data sink

e Interface functions similar to file system APIs—such as
ReadFile, IOControl

e Streams drivers are used to access, from the application
level, the physical peripheral device as if it was a file.
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Streams Drivers Architecture
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Implementing Streams Driver

How do you implement a Stream Driver?

e Select a device file name prefix

e Implement the required entry points
e Create the *.DEF file

e Create the registry values for your driver
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Power Button .def File

LIBRARY PWRBUTTON
EXPORTS
PWR_In.! t . [HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PWRBUTTON]
PWR_Deinit "Prefix"—"PWR"
PWR_Open "D11"="PwrButton.D11"
PWR_Close "Order"=dword:2
PWR_Read "Toct]"=dword:4
PWR_Write
PWR_Seek

PWR_IOControl
PWR_PowerDown
PWR_PowerUp
PWR_PowerHandler
PWR_D11Entry
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Streams Entry Points: Open and Close

e XXX_Open
-Opens a device for reading and/or writing.

-An application indirectly invokes this function when it calls
CreateFile to open special device file names.

-When this function is called, your device should allocate
the resources that it needs for each open context and
prepare for operation

e XXX _Close

-In response to CloseHandle, the operating system
invokes this function.
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Streams Entry Points: Init and Deinit

m XXX _Init
o Called when Device Manager loads the driver
e |Initializes resources that are to be used
e Memory mapping
m XXX Deinit
o Called when Device Manager unloads the driver

o Frees allocated resources, stops the IST

Lﬁl Embedded

Operating Systems

Streams Entry Points: Read, Write and Seek

m XXX Read

o Invoked when application calls ReadFile function
m XXX _Write

o Invoked when application calls WriteFile function
m XXX _Seek

o Allows moving the current I/O pointer
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Streams Entry Points: |OControl

m XXX _|0Control

o Allows performing custom operations that do not
necessarily apply to files

e |/O control code identifies the operation

e /O control code is device-specific
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Streams Entry Points: PowerUp and
PowerDown

m XXX _PowerDown
e Restores power to a device
m XXX_PowerUp
e Suspends power to the device

o Useful only with devices that can be shut off under
software control
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Device Manager

= Device Manager implemented as Device.exe
= User-level process that runs continously
= Not part of the Kernel but launch via Kernel

e HKEY_LOCAL_MACHINE\nit]
"Launch20"="Device.exe"

= Separate application that interacts with the kernel, the
registry and stream interface driver DLLs’

= Provides ActivateDeviceEx and DeactivateDeviceEx
APIs’
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Device Manager (cont.)

m Device Driver Loading Process
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ActivateDeviceEx

= What is ActivateDeviceEx?
e A function used by Device.exe to load a device driver

o A function used by the Registry Enumerator on each
subkey it finds (to load driver)

o ActivateDeviceEx uses the DI, Prefix, Index and Flags
fields of registry.

o Use ActivateDeviceEXx to load drivers. You can
useActivateDevice, but it simply calls ActivateDeviceEx.

)
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ActivateDeviceEx (“\\HKEY_LOCAL_MACHINE\\Drivers\\BuiltIn\\PM”,

Registry Enumerator

= What is a Registry Enumerator?
e Loaded by Device Manager (Device.exe)
e Finds new devices by reading registry entries
e Re-entrant
e Implemented as REGENUM.DLL

m Code located at
WINCE400\public\common\oak\DRIVERS\REGENUM
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Registry Enumerator (cont.)

m  How does the Registry Enumerator work?

o Device.exe loads Registry Enumerator checking
HKLM\Drivers\RootKey

e Init function is called with the HKLM\Drivers\RootKey
key

e Reqgistry Enumerator examines key below
HKLM\Drivers\RootKey based on “Order” value

e Reqgistry Enumerator traverses subkeys of
HKLM\Drivers\RootKey and initializes a driver for each
entry.
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Registry Enumerator (cont.)

m Registry Enumerator Example (Simplified)

[HKLM\Drivers]
"RootKey"="Dri " ) .
"D??"—EzegEnE;VS;?“ [HKLM\Drivers\Virtual\NDIS]
- : "DT11"="NDIS.d11"
[HKLM\Drivers\Debug] ”grdir fﬂWﬁggil
"D11"="RegEnum.d11" rere=
'-(35332-533?353 [HKLM\Drivers\PCI]
- ) "DI1"="PCIbus.d11"
[HKLM\Drivers\Debug\EDBG] ,Order’=dword:4
"Flags"=dword: 4 Flags"=dword:1

[HKLM\Drivers\Virtual]
"D11"="RegEnum.d11"
"Order"=dword:1
"Flags"=dword:1 —

],
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Services

m Purpose of a Service

= Services.exe Vs. Device.exe

= Activating / Controlling a Service

= Registering a Service Programmatically
= Stopping a Running Service

= Services.exe at System Startup

m Services API's
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Purpose of a Service

= Supplements existing device.exe

m Hosts services that do not require direct access to the
system

= Isolates those services from the system services

= Enhances device stability in a service failure and
decreases the likelihood of a system crash

= Provides a super service
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Service.exe Vs. Device.exe

= Device.exe loads device drivers that manage devices

m Sevice.exe loads device drivers that manages software
services

m Services.exe is like Device.exe that hosts multiple
services.

= To use both Device.exe and Services.exe, 2 of the 32
available Windows CE process slots will be used
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Activating / Controlling a Service

= Activating a service:
e Use built-in registry key
o Use ActivateService function

= Controlling a running service:
e Open a handle using CreateFile

e Send an |/O control or ReadFile, WriteFile and
SetFilePointer functions

--OR
o Use GetServiceHandle function

Operating Systems

24

12



Services Example

ActivateService(L"TELNETD", 0);

HANDLE hService =

CreateFile(L"TELO:",0,0,NULL,OPEN_EXISTING,0,NULL);
if(hService !'= INVALID_HANDLE_VALUE) {
DWORD dwState; //state values are defined in service.h
DeviceIoControl(hService, IOCTL_SERVICE_STATUS, NULL, O,
&dwState, sizeof(DWORD), NULL, NULL);

CloseHandle(hService);
}
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Registering a Service Programmatically

= Use RegisterService function

= RegisterService is analogous to the RegisterDevice

function used to start device drivers running under
Device.exe

HANDLE hService = RegisterService("TEL",0,“
telnetd.d11",0);

Operating Systems
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Stopping a Running Service

m Use DeregisterService function
n DeregisterService identifies and labels the service as invalid

n DeregisterService disallows any call attempts to CreateFile on a
given service handle

HANDLE hService = GetServiceHandle( L"TELO:"™, NULL,
NULL) ;
if (0 !'= hService)
DeregisterService(hService);
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Service.exe at System Startup

= Enumerates through registry subkeys of HKLM\Services

[HKLM\Services\TELNETD]
"DI1"="TELNETD.DLL"
"Order"=dword:8
"Keep"=dword:1
"Prefix"="TEL"
"Index"=dword:0
"Context"=dword:1
"DisplayName"="Telnet Server"

"Description”="Services incoming telnet requests"

| |
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Services APIs’

= Services.exe implements the following functions
e XXX _Close
o XXX_Deinit
o XXX_Init
o XXX_I|OControl
e XXX_Read
o XXX_Seek
XXX_Write
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Bus Drivers

= What is a Bus Driver?

o Load drivers for the devices onto their respective buses
= Examples are:

o PCI (PCIBus.dIl)

e PCMCIA (PCMCIA.DLL)

o |EEE 1394

e USB
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PCI Bus Drivers

= PCI Bus Driver enumerates the PCl bus and loads
device drivers for any of the devices it finds

= PCl Bus Driver implemented as PCIBus.dll

= Sources available at
\WINCE400\public\common\oak\DRIVERS\PCIBUS

= PCIBus.dll is loaded by the registry enumerator

= PCIBus.dll is usually loaded last. So that all of the fixed
resources are allocated before the flexible resources of
the PCI devices are configured
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PCI Bus: Enumerate and Load Device
Drivers

= How does PCI Bus enumerate and load device drivers?

PCIBus 0
I l Scans and

- enumerates
| PCI Device I | PCI Device l

PCI-PCI Bridge
PCIBus 1 Compares
PCI Device

PCIBus.dll

Loads driver
for PCI device

1
1_=x:*FRC00000°, *FFF00000*
_s=z:"100000°, *100000"

0

],
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Resource Manager

= What is Resource Manager?

Manages all I/O resources by telling whether resource is
available to device driver

Uses registry setup to pre-allocate resources

Used by bus drivers to request IRQ and I/O space
resources when assigning resources to device driver

Initial state of Resource Manager is defined in registry

Define your own resources using ResourceCreatelList,
ResourceRelease and ResourceRequest APIs.
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Resource Manager (cont.)

= Initial State of Resource Manager

[HKEY_LOCAL_MACHINE\Drivers\Resources\IRQ]
"Identifier"=dword:1
"Minimum"=dword:1
"Space"=dword:F
"Ranges"="1,3-7,9-0xF"
"Shared"="1,3-7,9-0xF"

[HKEY_LOCAL_MACHINE\Drivers\Resources\I0]
"Identifier"=dword:2
"Minimum"=dword:0
"Space"=dword:10000
"Ranges"="0-0xFFFF"

L
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Interrupt Model

Kernel
Exceptio: Interrupt I
Handler | | Support Handler |

e

OAL routines

I/O Routines

| OEM Hardware
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Interrupt Service Thread Priorities

= Nested Interrupts

o Are supported in Windows CE 3.0 and later versions in
conjunction with the Real-Time Priority System

o Interrupts of a higher priority may preempt ISRs of a lower
priority

o Kernel saves and restores the ISR’s state when high priority
interrupt occurs and completes respectively

o Level of interrupt nesting is limited solely by what the
Windows CE-based platform's hardware can support

= Interrupt Latencies
e Have no upper limit

o Mostly the latency for servicing interrupts in Windows CE is
less than the Windows-based desktop platforms

Lﬁl Embedded
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Implementing Interrupts: Simple Example

m First step of implementing interrupts is to find out how
the interrupt is physically connected to device

= Example

Pin0
L Power button

Platform |GPIO

e Power button is connected to general purpose 1/0 pin 0

= Some interrupts are level triggered and some are edge
triggered
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Single IRQ Model: OEMInterruptHandler

= Implement the interrupt service routine
= Example

OEMInterruptHandler(unsigned int ra) {

} else if(POWER_OFF_INT_STAT) {
// mask & clear the interupt
POWER_OFF_INT_MASK (0);
POWER_OFF_INT_CLR (1);
v_pDrvGlob->misc.offButton = 1;

. GPIO
iSysIntr= SYSINTR_POWER; — pin 0

return iSysIntr; . Retun

} sysintr

e  Hardware interrupt happens
e  OEMinterruptHandler gets called
e Ifinterruptis via GPIO pin 0, then mask the interrupt and return SYSINTR_POWER|

],
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OEMInterruptEnable

= Performs any hardware operations necess_an‘ to allow a
device to generate the specified interrupt including

o Setting a hardware priority for the device, setting a hardware
interrupt enable port, and clearing any pending interrupt
conditions from the device

BOOL OEMInterruptEnable ( DWORD idInt, .. .) {

BOOL bRet = TRUE;

switch (idInt) {

case SYSINTR_POWER:
POWER_OFF_INT_CLR (1);
POWER_OFF_INT_MASK (1);
break;

return bRet;

}

L
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OEMInterruptDisable

= When a device driver is being unloaded and calls the
InterruptDisable kernel routine, the kernel in turn calls
OEMinterruptDisable

= System cannot be preempted when this function is called

= OEMiInterruptDisable function disables the specified
hardware interrupt identified in idInt

= Example

BOOL OEMInterruptDisable ( DWORD idInt ) {

switch (idInt) {

case SYSINTR_POWER:
POWER_OFF_INT_MASK (0);
break;

return bRet;

3
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OEMInterruptDone

m  Kernel calls the OEMInterrupt function when a device driver calls
InterruptDone

= System cannot be preempted when this function is called

s OEMinterruptDone should re-enable the interrupt if the interrupt
was previously masked

= Example

BOOL OEMInterruptDone ( DWORD idInt ) {

switch (idInt) {
case SYSINTR_POWER:
// the power button is a toggle so
let both rising...
POWER_OFF_RISING_EDCGE;
POWER_OFF_INT_MASK (1);
break;

}

Lﬁl Embedded
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Interrupt Service Thread

= Is user-mode thread of device drivers for built-in
devices

= Does the actual processing of the interrupt

m Creates an event object associated with the logical
interrupt by calling CreateEvent function

= IST remains idle most of the time, awakened when the
kernel signals the event object

= IST usually runs at above-normal priority, boost priority
with CeSetThreadPriority function

Operating Systems
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Interrupt Service Thread (cont.)

= Interruptlinitialize

o Call Interruptinitialize to link the Event with the Interrupt ID of
the ISR

= WaitForSingleObject
e Can be used to wait for an event to be signaled

o This call is usually inside a loop so that when interrupt is
processed, the IST gets back to this call waiting for the next
interrupt to be handled

= InterruptDone

o After the interrupt data is processed, the IST must call the
InterruptDone function to instruct the kernel to enable the
hardware interrupt related to this thread

Lﬁl Embedded
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Typical IST Start

HANDLE hThread; // IST Handle
DWORD sysIntr; // Logical ID

h

ISTData g_KeypadISTData;
// Create event to link to IST

// Translate IRQ to an logical ID (x86 CEPC)
g_KeypadISTData.sysIntr =Mapirqg2Sysintr(5);
// start the thread

&g_KeypadISTData, 0, NULL);

struct ISTData // Declare the Strucure to pass to the IST

HANDLE hEvent; // handle to the event to wait for interrupt
volatile BOOL abort; // flag to test to exit the IST

g_KeypadISTData.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

g_KeypadISTData.hThread = CreateThread(NULL,0,&KeypadIST,

],

dded
Operating Systems

44

22



Typical IST Start (cont.)

//Change the threads priority
CeSetThreadPriority(g_KeypadISTData.hThread,0);

//disconnect any previous event from logical ID
InterruptDisable(g_KeypadISTData.sysIntr);

// Connect Logical ID with Event

hEvent,NULL,0);

InterruptInitialize(g_KeypadISTData.sysIntr, g_KeypadISTData.

m Set the IST Thread Priority
= Disconnect any previous events from the associated ISR

= Connect to the associated ISR

Lﬁl Embedded
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Typical IST Start (cont.)

DWORD KeypadIST(void *dat)
{

ISTData* pData= (ISTData*)dat;

// loop until told to stop

while(!pData->abort)

{ // wait for the interrupt event...
WaitForSingleObject(pData->hEvent, INFINITE)
if(pData->abort)

break;
// Handle the interrupt...
// Let 0S know the interrupt processing is done
InterruptDone(pData->sysIntr);

}
Return 0;
}
= Code a loop that runs until manually aborted
= Once in the loop, immediately block until the triggering event is returned from
the kernel
= Do the actual processing of the interrupt.
= Signal InterruptDone in the Kernel with the Interrupt ID
Lﬁl Embedded
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Typical IST Stop

// set abort flag to true to let thread know
// that it should exit
g_KeypadISTData.abort =TRUE;

//disconnect event from Togical ID

//this internally sets g_KeypadISTData.sysIntr which in turn
//sets g_KeypadISTData.hEvent through the kernel
InterruptDisable(g_KeypadISTData.sysIntr);

//wait for thread to exit
waitForSingleObject(g_KeypadISTData.hEvent, INFINITE);

CloseHand1e(g_KeypadISTData.hEvent);
CloseHandle(g_KeypadISTData.hThread);

= Set a flag that will cancel the IST loop

m Call InterruptDisable to disconnect the triggering event from the
logical ID

n Close the Thread Add Reference for the code
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Installable ISRs

= Installed by driver
= Handles interrupts for that device
= Need if interrupts are shared

= |Installed ISR can be generic routine to check if
device is the one requesting service

= Giisr.dll is the generic installable ISR

],
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Implementing Installable ISRs

m  Set up the registry for your installable ISR

= Required registry settings are IsrDIl and IsrHandler
o IsrDllis the interrupt service routine DLL name
o IsrHandler is the ISR function name

[HKLM\Drivers\BuiltIn\PCI\Template\WaveDev]
"Prefix"="WAV"
"DI1"="es1371.d11"
"Order"=dword:0
"Class"=dword:04
"SubClass"=dword:01
"ProgIF"=dword:00
"VendorID"=multi_sz:"1274","1274"
"DeviceID"=multi_sz:"1371","5880"
"IsrD11"="giisr.d11"
"IsrHandler"="ISRHandler"
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Implementing Installable ISRs

[

GIISR_INFO Info;
m_hIsrHandler = LoadIntChainHandler(isri.szIsrD1T,

TransBusAddrToStatic(PCIBus, 0, PortAddress,
m_dwPcilLength, &inIoSpace,
&dwPhysAddr) ;
Info.SysIntr = m_IntrAudio;
Info.CheckPort = TRUE;

Info.PortAddr = (DWORD)dwPhysAddr + ES1371_dSTATUS_OFF;
Info.Mask = ES1371_INTSTAT_PENDING;

if (!'KernelLibIoControl(m_hIsrHandler, IOCTL_GIISR_INFO,
&Info, sizeof(Info), NULL, 0, NULL))
return FALSE;

isri.szIsrHandler, (BYTE) isri.dwIrq);

e
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